Skip to main content

The Genus Lysobacter

  • SECTION 3.3 Gamma Subclass
  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The species classified in the genus Lysobacter are Gram-negative rods that move by gliding. The cells are slender and cylindrical, with rounded ends (Figs. 1 and 2). They typically measure 0.4–0.6 × 2–5 µm, but in the population there are also always long to very long (up to 70 µm) cells and filaments. The cell shape and the occurrence of long cells are both very characteristic for the genus. Lysobacter cells resemble the vegetative cells of certain myxobacteria, specifically of the genera Polyangium and Sorangium, with which the lysobacters were confused for many years. They also share with the myxobacteria a high GC content of their DNA of 65 to 70 mol%. Due to the gliding movements of the cells, the colonies of Lysobacter are spreading or swarming on solid media and may become very large and extremely thin Figs. 3 and 4). Sometimes the organisms produce copious amounts of slime, and the colonies then become thick and deliquescent, but colonies with a wrinkled and dry surface also occur. Lysobacter colonies may be white or cream-colored but often they are greenish-yellow, purplish-red, or brown, although their color is often rather pale. Some strains produce an unpleasant odor reminiscent of certain pseudomonads or of pyridine. In agitated liquid cultures, the lysobacters grow as homogeneous cell suspensions, but, as with all gliding bacteria, the suspended cells are unable to translocate. The Lysobacter species live in soil, decaying organic matter, and fresh water, sometimes in large populations. Many strains are of considerable ecological and biotechnological interest as producers of exoenzymes and of antibiotics.

Phase contrast photomicrographs of Lysobacter. (a), (b), and (d) L. antibioticus strain UASM L17 (= ATCC 29480) grown on CY agar (0.3% Casitone, 0.1% yeast extract) for 3 days at 20°C. Typical is a fairly regular cylindrical cell shape and a substantial variation in cell length. (c) L. enzymogenes type strain UASM 495 (= ATCC 29487), grown on VY/2 (yeast) agar for 13 days at 30°C. (a) Bar = 20 µm. (b), (c), and (d) Bars = 10 µm.

Phase contrast photomicrographs of slime structures produced by Lysobacter. (a) L. antibioticus strain UASM L17 grown on CYG2 agar (CY agar plus 0.3% glucose) for 3 days at 20°C. For photography, the cells were transferred to a thin film of water agar. A network of slime threads is clearly visible. Bar = 10 µm. (b) The cyanobacteriolytic lysobacter of Shilo (1970). Edge of a colony on Shilo’s (2% Casitone) agar in a chamber culture. Slime trails have been laid by the cells during their gliding movements. Bar = 10 µm.

The Lysobacter colony. Bars = 1 mm. (a), (b), and (c) L. antibioticus strain UASM L17 grown on different media for 7 days at 20°C: (a), on CA2 agar (0.075% KNO3, 1% glucose); (b), on MYX agar (0.5% Na glutamate, 0.1% yeast extract, 0.2% glucose); and (c), on CY agar. (d) and (e) the chitinoclastic strain (NCIB 8501) of Veldkamp (1955): (d) grown on CA2 agar; (e) grown on CY agar; both 7 days old (20°C). (f) L. enzymogenes strain UASM 495 grown on CA2 agar for 7 days at 20°C. In all cases, the colonies are spreading, but they still are rather small after 1 week. On diluted CA2 agar containing nitrate as the sole nitrogen source, the swarm colonies of all three strains remain rather delicate. In (e), small crystals can be seen within the colonies, as is often the case with lysobacters.

Lysobacter antibioticus strain UASM L17. Edge of a swarm colony showing the typical flamelike protrusions. CY agar, 7 days at 20°C. Bar = 1 mm.

The genus Lysobacter was defined by Christensen and Cook (1978) who also described the presently recognized species and created a new family, Lysobacteraceae, and a new order, Lysobacterales. The organisms thus classified had already been known, however, for a long time under various names, such as Cytophaga, Sorangium, and Myxobacter (the latter an obsolete myxobacterial genus), which were usually presented with some doubts of the investigators concerning the classification of their strains. The first lysobacter in the scientific literature may have been Flexibacter albuminosus (Soriano, 1945, 1947), which had the cell size and shape of a lysobacter and formed thick dirty-white colonies and a diffusible dark pigment. But the description is not accurate enough and the strains are no longer available so that the question cannot be decided. The first unequivocal Lysobacter strain was a chitinolytic strain first tentatively identified as Cytophaga johnsonae Veldkamp, (1955). It is deposited at the National Collection of Industrial Bacteria (NCIB no. 8501) and was originally listed as a Polyangium species. The strain has a GC content of 71 mol% (Tm) and was noted as an unusual case of a cytophaga with a high GC content (Mitchell et al., 1969). Other early strains that later turned out to be lysobacters are: 1) “myxobacter” or “Sorangium” strain 495, which was studied because it attacks nematodes (Katznelson et al., 1964) and various bacteria (Gillespie and Cook, 1965) and contains very interesting proteases (for details, see “Practical Aspects,” this chapter); the strain also produces two peptide antibiotics, the myxosidins (Clapin and Whitaker, 1976, 1978); 2) “Myxobacter” AL-1, which became of interest because it digested cells and cell walls of Arthrobacter crystallopoietes (Ensign and Wolfe, 1965) and which was later found to excrete two unusual proteases; 3) “Sorangium” 3C, producer of the wide-spectrum phenazine antibiotic myxin (Peterson et al., 1966); 4) “Cytophaga” L1, (NCIB 9497) for which a patent was filed for a number of unusual enzymes of practical interest, e.g., keratinase, laminarinase, and chitinase (Brit. Pat. 1,048,887, 23 November 1966), and 5) “Cytophaga johnsonae” (ATCC 21123), originally isolated because of its lytic enzymes at Kyowa Hakko in Japan (Jap. Pat. 06624, 1969), and from which the new quinoline antibiotic G1499–2 was obtained (Evans et al., 1978). In addition a number of lysobacters, usually labeled “myxobacters,” were isolated because they attacked cyanobacteria and green algae and multiplied spectacularly during algal blooms. Thus, “myxobacter” FP-1 specialized on cyanobacteria (Shilo, 1967, Shilo, 1970); “Cytophaga” N-5, later renamed “myxobacter” 44, lysed cyanobacteria and green algae (Stewart and Brown, 1969); “myxobacters” 45 and 46, which with “myxobacter” 44, “Sorangium” 3C, and “myxobacter” AL-1, have an uncommonly high GC content of around 70 mol% (Stewart and Brown, 1971); and the cyanobacterium-lysing bacteria with a high GC content isolated from British waters, e.g., strains CP-1, -2, -3, and -4 (Daft and Stewart, 1971; Daft et al., 1975).

The phylogenetic position of the genus Lysobacter remained obscure until recently. To the early investigators, gliding motility suggested some relationship with other, existing groups of unicellular gliding prokaryotes, specifically the myxobacteria and the cytophagas (Reichenbach, 1981). This is reflected by the names given to the strains isolated at that time. But as was already correctly anticipated in the taxonomic description of the new organisms, these bacteria form a group of their own (Christensen and Cook, 1978). Later, 16S RNA studies demonstrated that Lysobacter is relatively closely related with the xanthomonads and belongs to the gamma-3 branch of the purple bacteria (Woese et al., 1985) known today as the class Proteobacteria (Stackebrandt et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *See, for example, Drews (1974), p. 6.

Literature Cited

  • Ahmad, S., B. Rightmire, R. A. Jensen. 1986 Evolution of the regulatory isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase present in the Escherichia coli genealogy J. Bacteriol. 165 146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews, B. A., J. A. Asenjo. 1984 Exocellular synthesis of lytic enzyme complex: β (1–3) glucanase, protease and mannanase in inducible and constitutive bacteria 9–13 Verlag Chemie Weinheim

    Google Scholar 

  • Asenjo, J. A. 1980 Continuous isolation of yeast-lytic enzymes from Cytophaga, 49–55 H. H. Weetall, and G. P. Royer (ed.) Enzyme engineering, vol. 5 Plenum Press New York

    Google Scholar 

  • Asenjo, J. A., P. Dunnill. 1981 The isolation of lytic enzymes from Cytophaga and their application to the rupture of yeast cells Biotechnol. Bioengineer. 23 1045–1056

    CAS  Google Scholar 

  • Asenjo, J. A., P. Dunnill, M. D. Lilly. 1981 Production of yeast-lytic enzymes by Cytophaga species in batch culture Biotechnol. Bioengineer. 23 97–109

    CAS  Google Scholar 

  • Au, D. M., A. S. Kang, D. J. Murphy. 1989 An immunologically related family of apolipoproteins associated with triacylglycerol storage in the cruciferae Arch. Biochem. Biophys. 273 516–526

    CAS  PubMed  Google Scholar 

  • Bachovkin, W. W. 1986 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: Evidence for a moving histidine mechanism Biochem. 25 7751–7759

    Google Scholar 

  • Bachovkin, W. W., R. Kaiser, J. H. Richards, J. D. Roberts. 1981 Catalytic mechanism of serine proteases: Reexamination of the pH dependence of the histidyl 1J13C2-H coupling constant in the catalytic triad of α-lytic protease Proc. Natl. Acad. Sci. USA 78 7323–7326

    Google Scholar 

  • Bauer, C. A., G. D. Brayer, A. R. Sielecki, M. N. G. James. 1981 Active site of α-lytic protease Eur. J. Biochem. 120 289–294

    CAS  PubMed  Google Scholar 

  • Behki, R. M., S. M. Lesley. 1972 Deoxyribonucleic acid degradation and the lethal effect by myxin in Escherichia coli J. Bacteriol. 109 250–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boileau, G., N. Larivière, K. L. Hsi, N. G. Seidah, M. Chrétien. 1982 Characterization of multiple forms of porcine anterior pituitary proopiomelanocortin amino-terminal glycopeptide Biochem. 21 5341–5346

    CAS  Google Scholar 

  • Bone, R., D. Frank, C. A. Kettner, D. A. Agard. 1989 Structural analysis of specificity: α-Lytic protease complexes with analogues of reaction intermediates Biochem. 28 7600–7609

    CAS  Google Scholar 

  • Bone, R., A. B. Shenvi, C. A. Kettner, D. A. Agard. 1987 Serine protease mechanism: Structure of an inhibitory complex of α-lytic protease and a tightly bound peptide boronic acid Biochem. 26 7609–7614

    CAS  Google Scholar 

  • Bonner, D. P., J. O’Sullivan, S. K. Tanaka, J. M. Clark, R. R. Whitney. 1988 Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties J. Antibiot. 41 1745–1751

    CAS  Google Scholar 

  • Brayer, G. D., L. T. J. Delbaere, M. N. G. James. 1979 Molecular structure of the α-lytic protease from myxobacter 495 at 2.8 Å resolution J. Mol. Biol. 131 743–775

    CAS  PubMed  Google Scholar 

  • Christensen, P. 1989 Order II. Lysobacterales Christensen and Cook 1978, 372 2082–2089 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore

    Google Scholar 

  • Christensen, P. J., F. D. Cook. 1972 The isolation and enumeration of cytophagas Can. J. Microbiol. 18 1933–1940

    CAS  PubMed  Google Scholar 

  • Christensen, P., F. D. Cook. 1978 Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio Int. J. Syst. Bacteriol. 28 367–393

    Google Scholar 

  • Clapin, D. F., D. R. Whitaker. 1976 Production and antibiotic properties of myxosidin, an antibiotic of myxobacter 495 Proceed. Can. Fed. Biol. Soc. 19 33

    Google Scholar 

  • Clapin, D. F., D. R. Whitaker. 1978 The structure of myxosidin A and B, antibiotics of myxobacter 495 Proceed. Can. Fed. Biol. Soc. 21 29

    Google Scholar 

  • Daft, M. J., S. McCord, W. D. P. Stewart. 1973 The occurrence of blue-green algae and lytic bacteria at a waterworks in Scotland Water Treatm. Examinat. 22 114–124

    Google Scholar 

  • Daft, M. J., S. B. McCord, W. D. P. Stewart. 1975 Ecological studies on algal-lysing bacteria in fresh water Freshwat. Biol. 5 577–596

    Google Scholar 

  • Daft, M. J., W. D. P. Stewart. 1971 Bacterial pathogens of freshwater blue-green algae New Phytol. 70 819–829

    Google Scholar 

  • Daft, M. J., W. D. P. Stewart. 1973 Light and electron microscope observations on algal lysis by bacterium CP-1 New Phytol. 72 799–808

    Google Scholar 

  • Dhundale, A. R., T. Furuichi, S. Inouye, M. Inouye. 1985 Distribution of multicopy single-stranded DNA among myxobacteria and related species J. Bacteriol. 164 914–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drews, G. 1974 Mikrobiologisches Praktikum Springer-Verlag Berlin

    Google Scholar 

  • Dworkin, M. 1969 Sensitivity of gliding bacteria to actinomycin D J. Bacteriol. 98 851–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ensign, J. C., R. S. Wolfe. 1965 Lysis of bacterial cell walls by an enzyme isolated from a myxobacter J. Bacteriol. 90 395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ensign, J. C., R. S. Wolfe. 1966 Characterization of a small proteolytic enzyme which lyses bacterial cell walls J. Bacteriol. 91 524–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein, D. M., P. C. Wensink. 1988 The α-lytic protease gene of Lysobacter enzymogenes J. Biol. Chem. 263 16586–16590

    CAS  PubMed  Google Scholar 

  • Evans, J. R., E. J. Napier, R. A. Fletton. 1978 G 1499–2, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii J. Antibiot. 31 952–958

    CAS  Google Scholar 

  • Fallowfield, H. J., M. J. Daft. 1988 The extracellular release of dissolved organic carbon by freshwater cyanobacteria and the interaction with Lysobacter CP-1 Brit. Phycol. J. 23 317–326

    Google Scholar 

  • Fujinaga, M., L. T. J. Delbaere, G. D. Brayer, M. N. G. James. 1985 Refined structure of α-lytic protease at 1.7 Å resolution J. Mol. Biol. 183 479–502

    Google Scholar 

  • Ghuysen, J. M. 1968 Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism Bacteriol. Rev. 32 425–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie, D. C., F. D. Cook. 1965 Extracellular enzymes from strains of Sorangium Can. J. Microbiol. 11 109–118

    CAS  PubMed  Google Scholar 

  • Godchaux, W., E. R. Leadbetter. 1983 Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group J. Bacteriol. 153 1238–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grunberg, E., J. Berger, G. Beskid, R. Cleeland, H. N. Prince, E. Titsworth. 1967 Studies on the in vitro and in vivo chemotherapeutic properties of the antibiotic myxin Chemotherapia 12 272–281

    CAS  Google Scholar 

  • Guntermann, U., I. Tan, A. Hüttermann. 1975 Induction of α-glucosidase and synthesis during the cell cycle of myxobacter AL-1 J. Bacteriol. 124 86–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada, S., S. Tsubotani, T. Hida, H. Ono, H. Okazaki. 1986 Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to β-lactam antibiotics Tetrahedr. Lett. 27 6229–6232

    CAS  Google Scholar 

  • Harada, S., S. Tsubotani, T. Hida, K. Koyama, M. Kondo, H. Ono. 1988 Chemistry of a new antibiotic: lactivicin Tetrahedr. 44 6589–6606

    CAS  Google Scholar 

  • Harada, S., S. Tsubotani, H. Ono, H. Okazaki. 1984 Cephabacins, new cephem antibiotics of bacterial origin II. Isolation and characterization J. Antibiot. 37 1536–1545

    CAS  Google Scholar 

  • Harcke, E., F. von Massow, H. Kühlwein. 1975 On the structure of the peptidoglycan of cell walls from Myxobacter AL-1 (Myxobacterales) Arch. Microbiol. 103 251–257

    CAS  PubMed  Google Scholar 

  • Hartmann, W., I. Tan, A. Hüttermann, H. Kühlwein. 1977 Studies on the cell cycle of Myxobacter AL-1 II. Activities of seven enzymes during the cell cycle Arch. Microbiol. 114 13–18

    CAS  PubMed  Google Scholar 

  • Hedges, A., R. S. Wolfe. 1974 Extracellular enzyme from myxobacter AL-1 that exhibits both β-1,4-glucanase and chitosanase activities J. Bacteriol. 120 844–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofsteenge, J., W. J. Weijer, P. A. Jekel, J. J. Beintema. 1983 p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens 1 Eur. J. Biochem. 133 91–108

    CAS  PubMed  Google Scholar 

  • Hsu, S. C., J. L. Lockwood. 1975 Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil Appl. Microbiol. 29 422–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunkapiller, M. W., S. H. Smallcombe, D. R. Whitaker, J. H. Richards. 1973 Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease Biochem. 12 4732–4743

    CAS  Google Scholar 

  • Hunter, J. B., J. A. Asenjo. 1987a Kinetics of enzymatic lysis and disruption of yeast cells: I. Evaluation of two lytic systems with different properties Biotechnol. Bioengineer. 30 471–480

    CAS  Google Scholar 

  • Hunter, J. B., J. A. Asenjo. 1987b Kinetics of enzymatic lysis and disruption of yeast cells: II. A simple model of lysic kinetics Biotechnol. Bioengineer. 30 481–490

    CAS  Google Scholar 

  • Jackson, R. L., G. R. Matsueda. 1970 Myxobacter AL-1 protease 591–599 G. E. Perlmann, and L. Lorand (ed.) Methods in enzymology, vol. 19 Academic Press New York

    Google Scholar 

  • Jackson, R. L., R. S. Wolfe. 1968 Composition, properties, and substrate specificities of myxobacter AL-1 protease J. Biol. Chem. 243 879–888

    CAS  PubMed  Google Scholar 

  • Jarvis, D., J. L. Strominger. 1967 Structure of the cell wall of Staphylococcus aureus Biochem. 6 2591–2598

    CAS  Google Scholar 

  • Jekel, P. A., W. J. Weijer, J. J. Beintema,. 1983 Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis Analyt. Biochem. 134 347–354

    CAS  PubMed  Google Scholar 

  • Jolles, J., J. L. Nussbaum, P. Jolles,. 1983 Enzymic and chemical fragmentation of the apoprotein of the major rat brain myelin proteolipid Biochim. Biophys. Acta 742 33–38

    CAS  PubMed  Google Scholar 

  • Juráek, L., D. R. Whitaker. 1967 Amino acid composition of the α-and β-lytic proteases of Sorangium sp Can. J. Biochem. 45 917–927

    Google Scholar 

  • Kaplan, H., V. B. Symonds, H. Dugas, D. R. Whitaker. 1970 A comparison of properties of the α-lytic protease of Sorangium sp. and porcine elastase Can. J. Biochem. 48 649–658

    CAS  PubMed  Google Scholar 

  • Kaplan, H., D. R. Whitaker. 1969 Kinetic properties of the α-lytic protease of Sorangium sp., a bacterial homologue of the pancreatopeptidases Can. J. Biochem. 47 305–316

    CAS  PubMed  Google Scholar 

  • Katz, W., J. L. Strominger. 1967 Structure of the cell wall of Micrococcus lysodeikticus Biochem. 6 930–937

    CAS  Google Scholar 

  • Katznelson, H., D. C. Gillespie, F. D. Cook. 1964 Studies on the relationships between nematodes and other soil microorganisms III. Lytic action of soil myxobacters on certain species of nematodes Can. J. Microbiol. 10 699–704

    CAS  PubMed  Google Scholar 

  • Krulwich, T. A., J. C. Ensign, D. J. Tipper, J. L. Strominger. 1967 Sphere-rod morphogenesis in Arthrobacter crystallopoites J. Bacteriol. 94 734–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesley, S. M., R. M. Behki. 1967 Mode of action of myxin on Escherichia coli J. Bacteriol. 94 1837–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestrone, G., W. Brandt. 1980 Evaluation of two cuprimyxin formulations in the treatment of cutaneous and ophthalmic infections in horses and cattle Vet. Med./Small Anim. Clin. 75 1307–1311

    CAS  Google Scholar 

  • Maestrone, G., R. Darker, F. Hemrick, M. Mitrovic. 1972 Topical antimicrobial activity of 6-methoxy-1-phenazinol 5,10-dioxide, cupric complex Am. J. Vet. Res. 33 185–193

    CAS  PubMed  Google Scholar 

  • Maestrone, G., M. Mitrovic. 1974 Chemotherapeutic activity of 6-methoxy-1-phenazinol 5,10-dioxide, cupric complex in experimentally induced local microbial infections of dogs Am. J. Vet. Res. 35 281–284

    CAS  PubMed  Google Scholar 

  • McDonald, D. V. M., J. L. Richard, A. J. Anderson, R. E. Fichtner. 1980 In vitro antimycotic sensitivity of yeasts isolated from infected bovine mammary glands Am. J. Vet. Res. 41 1987–1990

    CAS  PubMed  Google Scholar 

  • McLachlan, A. D., D. M. Shotton. 1971 Structural similarities between α-lytic protease of myxobacter 495 and elastase Nature New Biol. 229 202–205

    CAS  PubMed  Google Scholar 

  • Meyers, E., R. Cooper, L. Dean, J. H. Johnson, D. S. Slusarchyk, W. H. Trejo, P. D. Singh. 1985 Catacandins, novel anticandidal antibiotics of bacterial origin J. Antibiot. 38 1642–1648

    CAS  Google Scholar 

  • Mitchell, T. G., M. S. Hendrie, J. M. Shewan. 1969 The taxonomy, differentiation and identification of Cytophaga species J. Appl. Bacteriol. 32 40–50

    CAS  PubMed  Google Scholar 

  • Monahan, R. M., D. R. Whitaker. 1976 Isolation and chemical aspects of myxosidin Proceed. Can. Fed. Biol. Soc. 19 33

    Google Scholar 

  • Nozaki, Y., N. Katayama, S. Harada, H. Ono, H. Okazaki. 1989 Lactivicin, a naturally occurring non-β-lactam antibiotic having β-lactam-like action: Biological activities and mode of action J. Antibiot. 42 84–93

    CAS  Google Scholar 

  • Nozaki, Y., N. Katayama, H. Ono, S. Tsubotani, S. Harada, H. Okazaki, Y. Nakao. 1987 Binding of a non-β-lactam antibiotic to penicillin-binding proteins Nature 325 179–180

    CAS  PubMed  Google Scholar 

  • Olson, M. O. J., N. Nagabhushan, M. Dzwiniel, L. B. Smillie, D. R. Whitaker. 1970 Primary structure of α-lytic protease: a bacterial homologue of the pancreatic serine proteases Nature 228 438–442

    CAS  PubMed  Google Scholar 

  • Ono, H., Y. Nozaki, N. Katayama, H. Okazaki. 1984 Cephabacins, new cephem antibiotics of bacterial origin I. Discovery and taxonomy of the producing organisms and fermentation J. Antibiot. 37 1528–1535

    CAS  Google Scholar 

  • O’Sullivan, J., J. E. McCullough, A. A. Tymiak, D. R. Kirsch, W. H. Trejo, P. A. Principe. 1988 Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization J. Antibiot. 41 1740–1744

    Google Scholar 

  • Oza, N. B. 1973 β-Lytic protease, a neutral sorangiopeptidase Int. J. Peptide Protein Res. 5 365–369

    CAS  Google Scholar 

  • Pate, J. L., J. L. Johnson, E. J. Ordal. 1967 The fine structure of Chondrococcus columnaris II. Structure and formation of rhapidosomes J. Cell Biol. 35 15–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pate, J. L., E. J. Ordal. 1967 The fine structure of Chondrococcus columnaris III. The surface layers of Chondrococcus columnaris J. Cell Biol. 35 37–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson, G. M., D. R. Whitaker. 1969 Some features of the optical rotatory dispersion spectrum of the α-lytic protease of Sorangium sp Can. J. Biochem. 47 317–321

    CAS  PubMed  Google Scholar 

  • Peterson, E. A., D. C. Gillespie, F. D. Cook. 1966 A wide-spectrum antibiotic produced by a species of Sorangium Can. J. Microbiol. 12 221–230

    CAS  PubMed  Google Scholar 

  • Reichenbach, H. 1967 Die wahre Natur der Myxobakterien-“Rhapidosomen.” Arch. Mikrobiol. 56 371–383

    CAS  PubMed  Google Scholar 

  • Reichenbach, H. 1981 Taxonomy of the gliding bacteria Annu. Rev. Microbiol. 35 339–364

    CAS  PubMed  Google Scholar 

  • Sendecki, W., K. Mikulik, A. T. Matheson. 1971 Some properties of the ribosomes from myxobacter 495 Can. J. Biochem. 49 1333–1339

    CAS  PubMed  Google Scholar 

  • Shilo, Miriam. 1970 Lysis of blue green algae by myxobacter J. Bacteriol. 104 453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shilo, Moshe. 1967 Formation and mode of action of algal toxins Bacteriol. Rev. 31 180–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigg, H. P., A. Toth. 1967 über die Struktur der Phenazin-N-oxide Helv. Chim. Acta 50 716–719

    CAS  PubMed  Google Scholar 

  • Silen, J. L., D. A. Agard. 1989 The α-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo Nature 341 462–464

    CAS  PubMed  Google Scholar 

  • Silen, J. L., D. Frank, A. Fujishige, R. Bone, D. A. Agard. 1989 Analysis of prepro-α-lytic protease expression in Escherichia coli reveals that the pro region is required for activity J. Bacteriol. 171 1320–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silen, J. L., C. N. McGrath, K. R. Smith, D. A. Agard. 1988 Molecular analysis of the gene encoding α-lytic protease: Evidence for a preproenzyme Gene 69 237–244

    CAS  PubMed  Google Scholar 

  • Snyder, W. E., R. K. Imhoff. 1975 Cuprimyxin, a new topical antibiotic Vet. Med./Small Anim. Clin. 70 1421–1423

    CAS  Google Scholar 

  • Soriano, S. 1945 El nuevo orden Flexibacteriales y la clasificación de los órdenes de las bacterias Rev. Argent. Agron. (Buenos Aires). 12 120–140

    Google Scholar 

  • Soriano, S. 1947 The Flexibacteriales and their systematic position Antonie van Leeuwenhoek 12 215–222

    CAS  PubMed  Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38 321–325

    Google Scholar 

  • Stewart, J. R., R. M. Brown. 1969 Cytophaga that kills or lyses algae Science 164 1523–1524

    CAS  PubMed  Google Scholar 

  • Stewart, J. R., R. M. Brown. 1970 Killing of green and blue-green algae by a nonfruiting myxobacterium, Cytophaga N-5 Bacteriol. Proceed.p. 18

    Google Scholar 

  • Stewart, J. R., R. M. Brown. 1971 Algicidal nonfruiting myxobacteria with high G+C ratios Arch. Mikrobiol. 80 176–190

    CAS  PubMed  Google Scholar 

  • Stewart, W. D. P., M. J. Daft. 1976 Algal lysing agents of freshwater habitats 63–90 F. A. Skinner, and J. G. Carr (ed.) Microbiology in agriculture, fisheries and food Academic Press London

    Google Scholar 

  • Stewart, W. D. P., M. J. Daft. 1977 Microbial pathogens of cyanophycean blooms Adv. Aquat. Microbiol. 1 177–218

    CAS  Google Scholar 

  • Tan, I., W. Hartmann, U. Guntermann, A. Hüttermann, H. Kühlwein. 1974 Studies on the cell cycle of Myxobacter AL-1 I. Size fractionation of exponentially growing cells by zonal centrifugation Arch. Microbiol. 100 389–396

    CAS  PubMed  Google Scholar 

  • Tipper, D. J. 1969 Structures of the cell wall peptidoglycans of Staphylococcus epidermis Texas 26 and Staphylococcus aureus Copenhagen Biochem. 8 2192–2202

    CAS  Google Scholar 

  • Tsai, C. S., D. R. Whitaker, L. Juráek. 1965 Lytic enzymes of Sorangium sp. Action of the α-and β-lytic proteases on two bacterial mucopeptides Can. J. Biochem. 43 1971–1983

    CAS  PubMed  Google Scholar 

  • Tymiak, A. A., T. J. McCormick, S. E. Unger. 1989 Structure determination of lysobactin, a macrocyclic peptide lactone antibiotic J. Organ. Chem. 54 1149–1157

    CAS  Google Scholar 

  • Veldkamp, H. 1955 A study of the aerobic decomposition of chitin by microorganisms Mededelingen van de Landbouwhogeschool Wageningen (Nederland). 55(3) 127–174

    CAS  Google Scholar 

  • von Tigerstrom, R. G. 1980 Extracellular nucleases of Lysobacter enzymogenes: production of the enzymes and purification and characterization of an endonuclease Can. J. Microbiol. 26 1029–1037

    Google Scholar 

  • von Tigerstrom, R. G. 1981 Extracellular nucleases of Lysobacter enzymogenes: purification and characterization of a ribonuclease Can. J. Microbiol. 27 1080–1086

    Google Scholar 

  • von Tigerstrom, R. G. 1983 The effect of magnesium and manganese ion concentrations and medium composition on the production of extracellular enzymes by Lysobacter enzymogenes J. Gen. Microbiol. 129 2293–2299

    Google Scholar 

  • von Tigerstrom, R. G. 1984 Production of two phosphatases by Lysobacter enzymogenes and purification and characterization of the extracellular enzyme Appl. Environm. Microbiol. 47 693–698

    Google Scholar 

  • von Tigerstrom, R. G., S. Stelmaschuk. 1985 Localization of the cell-associated phosphatase in Lysobacter enzymogenes J. Gen. Microbiol. 131 1611–1618

    Google Scholar 

  • von Tigerstrom, R. G., S. Stelmaschuk. 1986 Purification and characterization of the outer membrane associated alkaline phosphatase of Lysobacter enzymogenes J. Gen. Microbiol. 132 1379–1387

    Google Scholar 

  • von Tigerstrom, R. G., S. Stelmaschuk. 1987a Comparison of the phosphatases of Lysobacter enzymogenes with those of related bacteria J. Gen. Microbiol. 133 3121–3127

    Google Scholar 

  • von Tigerstrom, R. G., S. Stelmaschuk. 1987b Purification and partial characterization of an amylase from Lysobacter brunescens J. Gen. Microbiol. 133 3437–3443

    Google Scholar 

  • von Tigerstrom, R. G., S. Stelmaschuk. 1989 Localization and characterization of lipolytic enzymes produced by Lysobacter enzymogenes J. Gen. Microbiol. 135 1027–1035

    Google Scholar 

  • Wah-On, H. C., R. M. R. Branion, G. A. Strasdine. 1980 Protease production by fermentation of fish solubles from salmon canning processes Can. J. Microbiol. 26 1049–1056

    CAS  PubMed  Google Scholar 

  • Weigele, M., W. Leimgruber. 1967 The structure of myxin Tetrahedr. Lett. No. 8 715–718

    CAS  Google Scholar 

  • Weigele, M., G. Maestrone, M. Mitrovic, W. Leimgruber. 1971 Antimicrobial agents structurally related to myxin Antimicrob. Agents Chemother. 1970 46–49

    Google Scholar 

  • Westler, W. M., J. L. Markley, W. W. Bachovkin. 1982 Proton NMR spectroscopy of the active site histidine of α-lytic proteinase FEBS Lett. 138 233–235

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R. 1965 Lytic enzymes of Sorangium sp. Isolation and enzymatic properties of the α-and β-lytic proteases Can. J. Biochem. 43 1935–1954

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R. 1967a Simplified procedures for production and isolation of the bacteriolytic proteases of Sorangium sp Can. J. Biochem. 45 991–993

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R. 1967b The cause of the bi-component electrophoretic pattern of Sorangium β-lytic protease in acetate buffer containing 7 M urea Can. J. Biochem. 45 994–995

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R. 1970 The α-lytic protease of a myxobacterium 599–613 G. E. Perlmann, and L. Lorand (ed.) Methods in enzymology, vol. 19 Proteolytic enzymes. Academic Press New York

    Google Scholar 

  • Whitaker, D. R., F. D. Cook, D. C. Gillespie. 1965a Lytic enzymes of Sorangium sp. Some aspects of enzyme production in submerged culture Can. J. Biochem. 43 1927–1933

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R., L. Juráek, C. Roy. 1966 The nature of the bacteriolytic proteases of Sorangium sp Biochem. Biophys. Res. Commun. 24 173–178

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R., C. Roy. 1967 Concerning the nature of the α-and β-lytic proteases of Sorangium sp Can. J. Biochem. 45 911–916

    CAS  PubMed  Google Scholar 

  • Whitaker, D. R., C. Roy, C. S. Tsai, L. Juráek. 1965b Lytic enzymes of Sorangium sp. A comparison of the proteolytic properties of the α-and β-lytic proteases Can. J. Biochem. 43 1961–1970

    CAS  PubMed  Google Scholar 

  • Wingard, M., G. Matsueda, R. S. Wolfe. 1972 Myxobacter AL-1 protease II: Specific peptide bond cleavage on the amino side of lysine J. Bacteriol. 112 940–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reichenbach, H. (2006). The Genus Lysobacter. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30746-X_37

Download citation

Publish with us

Policies and ethics