Skip to main content

The Manganese-Oxidizing Bacteria

  • Reference work entry
The Prokaryotes

Abstract

The “manganese-oxidizing group” is a phylogenetically diverse assemblage, which is characterized by the ability to catalyze the oxidation of divalent, soluble Mn(II) to insoluble manganese oxides of the general formula MnOx (where X is some number between 1 and 2). This results in the accumulation of conspicuous and easily detectable extracellular deposits of insoluble brown or black manganese oxides. Many different organisms have the ability to catalyze Mn oxidation, including a diverse array of bacteria, fungi, algae, and even eukaryotes (Ghiorse, 1984b). Among the prokaryotes, the ability to oxidize Mn is also quite widespread (Ehrlich, 1981; Ghiorse, 1984b, 1988; Marshall, 1979; Nealson, 1983); included are members of many phylogenetic and physiological groups: e.g., cyanobacteria, a diversity of heterotrophic rods and cocci, the sheathed (Leptothrix-like) and budding (Hyphomicrobium-like) bacteria, some purported autotrophic strains related to Pseudomonas species and the still-controversial Metallogenium group. The anaerobic lactobacilli, which utilize the Mn oxidation reaction as a protection against oxygen toxicity (Archibald and Fridovich, 1981, 1982) are not included, as they do not precipitate extracellular Mn oxides, but rather accumulate millimolar levels of protein-associated Mn in the cytoplasm. This chapter focuses on the process of Mn oxidation and also considers why so many bacteria have been identified as Mn oxidizers. It also offers suggestions that may help to clarify this complex area.

Since there is no evidence of any advantage that Mn oxidation confers on bacteria, one might well ask the reason for the widespread distribution of this trait. The answer may lie in the Mn oxidation reaction itself. Under the conditions characteristic of most of the environments in which microbes are abundant, Mn is a very active element. Some critical features of Mn chemistry are summarized in Fig. 1 and are also discussed in more detail elsewhere (Ghiorse, 1988; Mulder and Dienema, 1981; Nealson et al., 1988, 1989; Pankow and Morgan, 1981).

Manganese chemistry and biochemistry. The top of the figure presents the major features of manganese cycling, including some of the well-known reactions leading to Mn(II) oxidation, the forms of Mn found in nature, and the general properties of these forms. The lower part of the figure shows the effect of pH on reaction kinetics and a thermodynamic phase-stability diagram for manganese (based on Stumm and Morgan, 1981).

The oxidation of Mn(II) to Mn(IV) is thermodynamically favored under aerobic conditions, with a negative free energy of approximately 16 kcal/mol (Stumm and Morgan, 1981; Ehrlich, 1981; Nealson et al., 1988). However, the large activation energy of Mn(II) oxidation renders Mn(II) very stable in most aquatic environments (Stumm and Morgan, 1981). The activation energy barrier can be overcome by raising the pH (see Fig. 1) or by the addition of Mn-binding components, including Mn oxides themselves, which are excellent chelators of Mn(II) (Stumm and Morgan, 1981). The catalysis of Mn(II) oxidation by Mn oxides (autooxidation) makes it difficult to distinguish between chemically and microbially catalyzed Mn oxidation, especially in natural environments where organic chelators and Mn oxide particles may be abundant.

Mn is, therefore, an element whose distribution and chemical speciation is kinetically controlled, thus allowing for the intervention of microbes and microbial products into the system. Some of the ways in which microbes might oxidize Mn(II) are shown in Table 1. If the pH or Eh of the environment is raised, if oxidants are produced by cells, or if binding of Mn(II) occurs so as to lower the activation energy, Mn(II) oxidation can rapidly proceed. With this in mind, it is not surprising that so many different bacteria have been identified as Mn(II) oxidizers, since the mechanisms of Mn oxidation are quite diverse (Ghiorse, 1988; Nealson et al., 1988, 1989). A true understanding of the “Mn-oxidizing bacteria” will likely await the time when it is possible to identify those reactions that confer some advantage to the bacteria and to disregard those that occur simply because of the dynamic chemistry of Mn(II). With regard to this, some of the recent studies of the mechanism of Mn(II) oxidation by cells, which include the isolation of Mn(II)-binding proteins (both intra- and extracellular) and polysaccharides, are particularly encouraging (Ghiorse, 1988; Nealson et al., 1989).

Table 1. Possible mechanisms of Mn(II) oxidation by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Adams, L. F., W. C. Ghiorse. 1985 Influence of manganese on growth of a sheathless strain of Leptothrix discophora Appl. Environ. Microbiol. 49 556–562

    PubMed  CAS  Google Scholar 

  • Archibald, F. S., I. Fridovich. 1981 Manganese and defenses against oxygen toxicity in Lactobacillus plantarum J. Bacteriol. 145 442–451

    PubMed  CAS  Google Scholar 

  • Archibald, F. S., I. Fridovich. 1982 The scavenging of superoxide radical by manganous complexes: in vitro Arch. Biochem. Biophys. 214 452–463

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck, M. W. 1913 Oxidation des Mangankarbonates durch Bakterien und Schimmelpilze Folia Microbiol. 2 123–124

    Google Scholar 

  • Brewer, P., D. Spencer. 1971 Colorimetric determination of manganese in anoxic waters Limnol. Oceanog. 16 107–112

    Article  CAS  Google Scholar 

  • Bromfield, S. M. 1978 The oxidation of manganous ions under acidic conditions by an acidophilous actinomycete from acid soil Aust. J. Soil. Res. 16 91–100

    Article  CAS  Google Scholar 

  • Chapnick, S. D., W. S. Moore, K. H. Nealson. 1982 Microbially mediated manganese oxidation in a freshwater lake Limnol. Oceanogr. 27 1004–1014

    Article  CAS  Google Scholar 

  • Czekalla, C., W. Mevius, H. Hanert. 1985 Quantitative removal of iron and manganese by microorganisms in rapid sand filters Wat. Suppl. 3 111–123

    CAS  Google Scholar 

  • Dubinina, C. E. 1970 Unterschungen über die Morphologie von Metallogenium und die Beziehungen zu Mycoplasma Z. Allg. Mikrobiol. 10 309–320

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H. L. 1976 Manganese as an energy source for bacteria 633–644 J. O. Nriagu (ed.) Environmental biogeochemistry, vol. 2. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Ehrlich, H. L. 1981 Geomicrobiology Dekker New York

    Google Scholar 

  • Ehrlich, H. L., W. C. Ghiorse, G. L. Johnson II. 1972 Distribution of microbes in manganese nodules from the Atlantic and Pacific Oceans Dev. Indust. Microbiol. 13 57–65

    Google Scholar 

  • Emerson, D., R. E. Garen, W. C. Ghiorse. 1989 Formation of Metallogenium-like structures by a manganese-oxidizing fungus Arch. Microbiol. 151 223–231

    Article  CAS  Google Scholar 

  • Feigl, F. 1958 Spot Tests in Inorganic Analyses Elsevier

    Google Scholar 

  • Ghiorse, W. C. 1984a Bacterial transformations of manganese in wetland environments 615–622 M. J. Klug and C. A. Reddy (ed.) Current perspectives in microbial ecology Amer. Soc. Microbiol. Washington, D.C.

    Google Scholar 

  • Ghiorse, W. C. 1984b Biology of iron-and manganese-depositing bacteria Ann. Rev. Microbiol. 38 515–550

    Article  CAS  Google Scholar 

  • Ghiorse, W. C. 1988 The biology of manganese transforming micro-organisms in soil 75–84 D. Graham et al. (ed.) Manganese in soils and plants Kluyver Academic Pub. Delft The Netherlands

    Chapter  Google Scholar 

  • Ghiorse, W. C., P. Hirsch. 1979 An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria Arch. Microbiol. 123 213–226

    Article  CAS  Google Scholar 

  • Gottfreund, J., R. Schweisfurth. 1983 Mikrobiologische Oxidation und Reduktion von Manganspecies. Fresenius Z Anal. Chem. 316 634–638

    Article  CAS  Google Scholar 

  • Gregory, E., J. T. Staley. 1982 Widespread distribution of ability to oxidize manganese among freshwater bacteria Appl. Environ. Microbiol. 44 509–511

    PubMed  CAS  Google Scholar 

  • Hungate, B., A. Danin, N. Pellerin, J. Stemmler, P. Kjellander, J. Adams, J. T. Staley. 1987 Characterization of manganese-oxidizing bacteria from Negev desert rock varnish: implications in desert varnish formation Can. J. Microbiol. 33 939–943

    Article  CAS  Google Scholar 

  • Kepkay, P., K. H. Nealson. 1987 Growth of a manganese oxidizing Pseudomonas sp. in continuous culture Arch. Microbiol. 148 6367

    Article  Google Scholar 

  • Krumbein, W., H. J. Altmann. 1973 A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms Helgoland. Wiss. Meeres. 25 347–356

    Article  CAS  Google Scholar 

  • Kuznetsov, S. I. 1975 The role of microorganisms in the formation of lake bottom deposits and their diagenesis Soil Sci. 119 81–88

    Article  CAS  Google Scholar 

  • Maki, J. S., B. M. Tebo, F. E. Palmer, K. H. Nealson, J. T. Staley. 1987 The abundance and biological activity of Mn-oxidizing bacteria and Metallogenium-like morphotypes in Lake Washington, USA FEMS Microbiol Ecol. 45 21–29

    Article  CAS  Google Scholar 

  • Marshall, K. C. 1979 Biogeochemistry of manganese minerals 252–292 P. A. Trudinger and D. J. Swaine (ed.) Biogeochemistry of mineral forming elements Elsevier Amsterdam

    Google Scholar 

  • Moore, W. S., D. F. Reid. 1973 Extraction of radium from natural waters using manganese-impregnated acrylic fibers J. Geophys. Res. 78 8880–8886

    Article  CAS  Google Scholar 

  • Mulder, E. G., M. H. Dienema. 1981 The sheathed bacteria 425–440 M. P. Starr, H. Stolp, H. B. Trueper, A. Balows, and H. G. Schlegel (ed.) The prokaryotes. vol. 1 Springer-Verlag Berlin

    Google Scholar 

  • Nealson, K. H. 1978 Isolation and characterization of marine bacteria that catalyze manganese oxidation 847–858 W. Krumbein (ed.) Environmental biogeochemistry and geomicrobiology Ann Arbor Science Ann Arbor.

    Google Scholar 

  • Nealson, K. H. 1983 Microbial oxidation and reduction of manganese and iron 459–479 P. Westbroek and E. W. de Jong (ed.) Biomineralization and biological metal accumulation Reidel Pub. Co Amsterdam

    Chapter  Google Scholar 

  • Nealson, K. H., R. A. Rosson, C. R. Myers. 1989 Mechanisms of oxidation and reduction of manganese 383–411 T. Beveridge and R. Doyle (ed.) Metal ions and bacteria John Wiley and Sons N. Y.

    Google Scholar 

  • Nealson, K. H., B. M. Tebo. 1980 Structural features of manganese precipitating bacteria Origins Life 10 117–126

    Article  CAS  Google Scholar 

  • Nealson, K. H., B. M. Tebo, R. A. Rosson. 1988 Occurrence and mechanisms of microbial oxidation of manganese Adv. Appl. Microbiol 33 279–318

    Article  CAS  Google Scholar 

  • Pankow, J. F., J. J. Morgan. 1981 Kinetics for the aquatic environment Env. Sci. Technol. 15 1306–1313

    Article  CAS  Google Scholar 

  • Schuett, C., J. C. G. Ottow. 1977 Mesophilic and psychrophilic manganese-precipitating bacteria in manganese nodules of the Pacific Ocean Z. Allg. Mikrobiol. 17 611–616

    Article  Google Scholar 

  • Schweisfurth, R. 1978 Microbial manganese oxidation Verhandl. der Gesselschaft fur Okologie, Kiel. 7 281–283

    Google Scholar 

  • Schweisfurth, R., G. V. Hehn. 1972 Licht-und Felektronenmikroskopische Untersuchungen. sowie Kulturversuche zum Metallogenium-Problem Zentralbl. Bakteriol. Hyg. I. Abt. Orig. A. 220 357–361

    CAS  Google Scholar 

  • Stumm, W., J. J. Morgan. 1981 Aquatic chemistry 2nd ed. Wiley New York

    Google Scholar 

  • Tebo, B. M. 1983 The ecology and ultrastructure of marine manganese-oxidizing bacteria Ph.D. Thesis, Univ. of California, San Diego San Diego.

    Google Scholar 

  • Tebo, B. M. Haygood, M. G. 1989 Some Mn(II)-oxidizing bacteria have ribulose-1, 5-bisphosphate carboxylase genes 233 Abstracts of the Ann. Meeting of Amer. Soc. for Microbiol. #1–97 Amer. Soc. Microbiol Washington, D. C.

    Google Scholar 

  • Tebo, B. M., K. H. Nealson, S. Emerson, L. Jacobs. 1984 Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in two anoxic fjords Limnol. Oceanogr. 29 1247–1258

    Article  CAS  Google Scholar 

  • Tyler, P. A., K. C. Marshall. 1967a Microbial oxidation of manganese in hydro-electric pipelines Ant. van Leeuwen. 33 171–183

    Article  CAS  Google Scholar 

  • Tyler, P. A., K. C. Marshall. 1967b Form and function in manganese-oxidizing bacteria Archiv Mikrobiol. 56 344–353

    Article  CAS  Google Scholar 

  • Zavarzin, G. A. 1968 Bacteria in relation to manganese metabolism 612–622 T. R. Gray and D. Parkinson (ed.) The ecology of soil bacteria Liverpool Univ. Press Liverpool

    Google Scholar 

  • Zavarzin, G. A. 1981 The genus Metallogenium 524–528 M. P. Starr, H. Stolp, H. B. Trueper, A. Balows, H. G. Schlegel (ed.) The prokaryotes, vol. I Springer Berlin

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Nealson, K.H. (2006). The Manganese-Oxidizing Bacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_11

Download citation

Publish with us

Policies and ethics