Skip to main content

The Order Halobacteriales

  • Reference work entry
  • First Online:
Book cover The Prokaryotes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aitken, D. M., and A. D. Brown. 1969 Citrate and glyoxylate cycles in the halophil, Halobacterium salinarum Biochim. Biophys. Acta 177 351–354

    Article  CAS  PubMed  Google Scholar 

  • Alam, M., and D. Oesterhelt. 1984 Morphology, function and isolation of halobacterial flagella J. Mol. Biol. 176 459–475

    Article  CAS  PubMed  Google Scholar 

  • Alam, M., M. Claviez, D. Oesterhelt, and M. Kessel. 1984 Flagella and motility behaviour of square bacteria EMBO J. 3 2899–2903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altekar, W., and R. Rajagopalan. 1990 Ribulose bisphosphate carboxylase activity in halophilic Archaebacteria Arch. Microbiol. 153 169–174

    Article  CAS  Google Scholar 

  • Altekar, W., and V. Rangaswamy. 1990 Induction of a modified EMP pathway for fructose breakdown in a halophilic archaebacterium FEMS Microbiol. Lett. 69 139–144

    Article  CAS  Google Scholar 

  • Antón, J., I. Meseguer, and F. Rodriguez-Valera. 1988 Production of an extracellular polysaccharide by Haloferax mediterranei Appl. Env. Microbiol. 54 2381–2386

    Google Scholar 

  • Arahal, D. E., F. E. Dewhirst, B. J. Paster, B. E. Volcani, and A. Ventosa. 1996 Phylogenetic analyses of some extremely halophilic Archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences Appl. Environ. Microbiol. 62 3779–3786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baas-Becking, L. G. M. 1931 Historical notes on salt and salt manufacture Sci. Monthly 32 434–446

    Google Scholar 

  • Basinger, G. W., and J. D. Oliver. 1979 Inhibition of Halobacterium cutirubrum lipid biosynthesis by bacitracin J. Gen. Microbiol. 111 423–427

    Article  CAS  Google Scholar 

  • Bath, C., and M. L. Dyall-Smith. 1998 His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica J. Virol. 72 9392–9395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayley, S. T., and R. A. Morton. 1978 Recent developments in the molecular biology of extremely halophilic bacteria Crit. Rev. Microbiol. 6 151–205

    Article  CAS  Google Scholar 

  • Beard, S. J., P. K. Hayes, and A. E. Walsby. 1997 Growth competition between Halobacterium salinarium strain PHH1 and mutants affected in gas vesicle synthesis Microbiology UK 143 467–473

    Article  CAS  Google Scholar 

  • Benlloch, S., A. J. Martínez-Murcia, and F. Rodríguez-Valera. 1995 Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment Syst. Appl. Microbiol. 18 574–581

    Article  Google Scholar 

  • Benlloch, S., S. G. Acinas, A. J. Martínez-Murcia, and F. Rodríguez-Valera. 1996 Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA Hydrobiologia 329 19–31

    Article  CAS  Google Scholar 

  • Ben-Mahrez, K., D. Thierry, I. Sorokine, A. Danna-Muller, and M. Kohiyama. 1988 Detection of circulating antibodies against c-myc protein in cancer patient sera Br. J. Cancer 57 529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Mahrez, K., I. Sorokine, D. Thierry, T. Kawasumi, S. Ishii, R. Salmon, and M. Kohiyama. 1991 An archaebacterial antigen used to study immunological human response to c-myc oncogen product In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 367–372

    Chapter  Google Scholar 

  • Bertrand, J. C., M. Almallah, M. Aquaviva, and G. Mille. 1990 Biodegradation of hydrocarbons by an extremely halophilic archaebacterium Lett. Appl. Microbiol. 11 260–263

    Article  CAS  Google Scholar 

  • Betlach, M. C., D. Leong, and H. W. Boyer. 1986 Bacterio-opsin gene expression in Halobacterium halobium Syst. Appl. Microbiol. 7 83–89

    Article  CAS  Google Scholar 

  • Bickel-Sandkötter, S., W. Gärtner, and M. Dane. 1996 Conversion of energy in halobacteria: ATP synthesis and phototaxis Arch. Microbiol. 166 1–11

    Article  PubMed  Google Scholar 

  • Birge, R. R. 1995 Protein-based computers Sci. Am. March 66–71

    Google Scholar 

  • Bogomolni, R. A., and J. L. Spudich. 1982 Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium Proc. Natl. Acad. Sci. USA 79 6250–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonelo, G., A. Ventosa, M. Megias, and F. Ruiz-Berraquero. 1984a The sensitivity of halobacteria to antibiotics FEMS Microbiol. Lett. 21 341–345

    Article  CAS  Google Scholar 

  • Bonelo, G., M. Megias, A. Ventosa, J. J. Nieto, and F. Ruiz-Berraquero. 1984b Lethality and mutagenicity in Halobacterium mediterranei caused by N-methyl-N’-nitro-N-nitrosoguanidine Curr. Microbiol. 11 165–170

    Article  CAS  Google Scholar 

  • Borowitzka, L. J. 1981 The microflora: Adaptations to life in extremely saline lakes Hydrobiologia 81 33–46

    Article  Google Scholar 

  • Bivin, D., and W. Stoeckenius. 1986 Photoactive retinal pigments in haloalkaliphilic archaebacteria J. Gen. Microbiol. 132 2167–2177

    CAS  PubMed  Google Scholar 

  • Brock, T. D., and S. Petersen. 1976 Some effects of light on the viability of rhodopsin-containing halobacteria Arch. Microbiol. 109 199–200

    Article  CAS  PubMed  Google Scholar 

  • Brown, H. J., and N. E. Gibbons. 1995 The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria Can. J. Microbiol. 1 486–494

    Article  Google Scholar 

  • Browne, W. W. 1922 Halophilic bacteria Proc. Exper. Biol. Med. 19 321–322

    Article  Google Scholar 

  • Calo, P., T. de Miguel, C. Sieiro, J. B. Velazquez, and T. G. Villa. 1995 Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin J. Appl. Bacteriol. 79 282–285

    Article  CAS  Google Scholar 

  • Carteni-Farina, M., M. Porcelli, G. Cacciapouti, M. De Rosa, A. Gambacorta, W. D. Grant, and H. N. M. Ross. 1985 Polyamines in halophilic archaebacteria FEMS Microbiol. Lett. 28 323–327

    Article  CAS  Google Scholar 

  • Chaga, G., J. Porath, and T. Illíni. 1993 Isolation and purification of amyloglucosidase from Halobacterium sodomense Biomed. Chromatogr. 7 256–261

    Article  CAS  PubMed  Google Scholar 

  • Charlebois, R. L., W. L. Lam, S. W. Cline, and W. F. Doolittle. 1987 Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium Proc. Natl. Acad. Sci. USA 84 8530–8534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlebois, R. L., J. D. Hofman, L. C. Schalkwyk, W. L. Lam, and W. F. Doolittle. 1989 Genome mapping in halobacteria Can. J. Microbiol. 35 21–29

    Article  CAS  PubMed  Google Scholar 

  • Charlebois, R. L., L. C. Schalkwyk, J. D. Hofman, and W. F. Doolittle. 1991 Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2 J. Mol. Biol. 222 509–524

    Article  CAS  PubMed  Google Scholar 

  • Charlebois, R. L. 1995a Appendix 3. Physical and genetic map of the genome of Halobacterium volcanii DS2 In: S. DasSarma and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 231–235

    Google Scholar 

  • Charlebois, R. L. 1995b Appendix 4: Physical and genetic map of the genome of Halobacterium sp. GRB In: S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 237–239

    Google Scholar 

  • Charlebois, R. L., and S. DasSarma. 1995 Appendix 7: Insertion elements of halophiles In: S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 253–255

    Google Scholar 

  • Charlebois, R. L. 1999 Evolutionary origins of the haloarchaeal genome In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 309–317

    Google Scholar 

  • Cheah, K. S. 1970 The membrane-bound ascorbate oxidase system of Halobacterium halobium Biochim. Biophys. Acta 205 148–160

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., and R. R. Birge. 1993 Protein-based artificial retinas Trends Biotechnol. 11 292–300

    Article  CAS  PubMed  Google Scholar 

  • Cho, K. Y., C. H. Doy, and E. H. Mercer. 1967 Ultrastructure of the obligate halophilic bacterium Halobacterium halobium J. Bacteriol. 94 196–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow, K.-C., and K.-K. Mark. 1980 Antibiotic susceptibility of Halobacterium cutirubrum Microbios Lett. 15 117–122

    CAS  Google Scholar 

  • Christian, J. H. B., and J. A. Waltho. 1962 Solute concentrations within cells of halophilic and non-halophilic bacteria Biochim. Biophys. Acta 65 506–508

    Article  CAS  PubMed  Google Scholar 

  • Clayton, W., and W. E. Gibbs. 1927 Examination for halophilic microorganisms Analyst 52 395–397

    Article  CAS  Google Scholar 

  • Cline, S. W., and W. F. Doolittle. 1987 Efficient transfection of the archaebacterium Halobacterium halobium J. Bacteriol. 169 1341–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline, S. W., W. L. Lam, R. L. Charlebois, L. C. Schalkwyk, and W. F. Doolittle. 1989a Transformation methods for halophilic archaebacteria Can. J. Microbiol. 35 148–152

    Article  CAS  PubMed  Google Scholar 

  • Cline, S. W., L. C. Schalkwyk, and W. F. Doolittle. 1989b Transformation of the archaebacterium Halobacterium volcanii with genomic DNA J. Bacteriol. 171 4987–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline, S. W., and W. F. Doolittle. 1992 Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons J. Bacteriol. 174 1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline, S. W., F. Pfeifer, and W. F. Doolittle. 1995 Transformation of halophilic Archaea In: S. DasSarma and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 197–204

    Google Scholar 

  • Cohen, S., A. Oren, and M. Shilo. 1983 The divalent cation requirement of Dead Sea halobacteria Arch. Microbiol. 136 184–190

    Article  CAS  Google Scholar 

  • Cohen, A., W. L. Lam, R. L. Charlebois, W. F. Doolitte, and L. C. Schalkwyk. 1992 Localizing genes on the map of the genome of Haloferax volcanii, one of the archaea Proc. Natl. Acad. Sci. USA 89 1602–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, N. F. 1977 A preliminary investigation of the lipid of halophilic bacteria as a food additive M. Sc. Thesis Utah State University Logan, UT

    Google Scholar 

  • Collins, M. D., H. N. M. Ross, B. J. Tindall, and W. D. Grant. 1981 Distribution of isoprenoid quinones in halophilic bacteria J. Appl. Bacteriol. 50 559–565

    Article  CAS  Google Scholar 

  • Collins, M. D., and B. J. Tindall. 1987 Occurrence of menaquinones and some novel methylated menaquinones in the alkaliphilic, extremely halophilic archaebacterium Natronobacterium gregoryi FEMS Microbiol. Lett. 43 307–312

    Article  CAS  Google Scholar 

  • Colwell, R. R., C. D. Litchfield, R. H. Vreeland, L. A. Kiefer, and N. E. Gibbons. 1979 Taxonomic study of red halophilic bacteria Int. J. Syst. Bacteriol. 29 379–399

    Article  Google Scholar 

  • Conway de Macario, E., H. König, and A. J. L. Macario. 1986 Immunologic distinctiveness of archaebacteria that grow in high salt J. Bacteriol. 168 425–427

    Article  Google Scholar 

  • Daniels, L. L., and A. C. Wais. 1990 Ecophysiology of bacteriophage S5100 infecting Halobacterium cutirubrum Appl. Environ. Microbiol. 56 3605–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danon, A., and W. Stoeckenius. 1974 Photophosphorylation in Halobacterium halobium Proc. Natl. Acad. Sci. USA 71 1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danon, A., and S. R. Caplan. 1977 CO2 fixation by Halobacterium halobium FEBS Lett. 74 255–258

    Article  CAS  PubMed  Google Scholar 

  • DasSarma, S. 1993 Identification and analysis of the gas vesicle cluster on an unstable plasmid of Halobacterium halobium Experientia 49 482–486

    Article  CAS  PubMed  Google Scholar 

  • DasSarma, S. 1995 Natural plasmids and plasmid vectors of halophiles In: S. DasSarma and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 241–250

    Google Scholar 

  • DasSarma, S., E. M. Fleischmann, and F. Rodriguez-Valera. 1995 Appendix 2: Media for halophiles In: S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 225–230

    Google Scholar 

  • DasSarma, S., and P. Arora. 1997 Genetic analysis of the gas vesicle gene cluster in haloarchaea FEMS Microbiol. Lett. 153 1–10

    Article  CAS  Google Scholar 

  • Davis, J. S. 1974 Importance of microorganisms in solar salt production In: A. L. Coogan (Ed.) Proceedings of the 4th symposium on salt Northern Ohio Geological Society Cleveland, OH 1 369–372

    Google Scholar 

  • Dees, C., and J. D. Oliver. 1977 Growth inhibition of Halobacterium cutirubrum by cerulenin, a potent inhibitor of fatty acid synthesis Biochem. Biophys. Res. Commun. 78 36–44

    Article  CAS  PubMed  Google Scholar 

  • Denner, E. B. M., T. J. McGenity, H.-J. Busse, W. D. Grant, G. Wanner, and H. Stan-Lotter. 1994 Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine Int. J. Syst. Bacteriol. 44 774–780

    Article  Google Scholar 

  • Dennis, P. P., and L. C. Shimmin. 1997 Evolutionary divergence and salinity-mediated selection in halophilic archaea Microbiol. Mol. Biol. Rev. 61 90–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Rosa, M., A. Gambacorta, B. Nicolaus, H. N. M. Ross, W. D. Grant, and J. D. Bu’lock. 1982 An asymmetric archaebacterial diether lipid from alkaliphilic halophiles J. Gen. Microbiol. 128 344–348

    Google Scholar 

  • De Rosa, M., A. Gambacorta, B. Nicolaus, N. M. Ross, and W. D. Grant. 1983 A C25:25 diether core lipid from archaebacterial haloalkaliphiles J. Gen. Microbiol. 129 2333–2337

    Google Scholar 

  • De Rosa, M., A. Gambacorta, W. D. Grant, V. Lanzotti, and B. Nicolaus. 1988 Polar lipids and glycine betaine from haloalkaliphilic archaeobacteria J. Gen. Microbiol. 134 205–211

    Google Scholar 

  • Desmarais, D., P. E. Jablonski, N. S. Fedarko, and M. F. Roberts. 1997 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea J. Bacteriol. 179 3146–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle, W. F., W. L. Lam, L. C. Schalkwyk, R. L. Charlebois, S. W. Cline, and A. Cohen. 1992 Progress in developing the genetics of the halobacteria In: M. J. Danson, D. W. Hough, and G. G. Lunt (Eds.) Archaebacteria: biochemistry and biotechnology: Biochemical Society Symposium no. 58 Biochemical Society High Holburn, London 73–78

    Google Scholar 

  • D’Souza, S. E., W. Altekar, and S. F. D’Souza. 1997 Adaptive response of Haloferax mediterranei to low concentrations of NaCl (less than 20%) in the growth medium Arch. Microbiol. 168 68–71

    Article  PubMed  Google Scholar 

  • Dundas, I. D., and H. Larsen. 1962 The physiological role of the carotenoid pigments of Halobacterium salinarium Arch. Mikrobiol. 44 233–239

    Article  CAS  Google Scholar 

  • Dundas, I. D., V. R. Srinivasan, and H. O. Halvorson. 1963 A chemically defined medium for Halobacterium salinarium strain 1 Can. J. Microbiol. 9 619–624

    Article  CAS  Google Scholar 

  • Dundas, I. E. D. 1977 Physiology of Halobacteriaceae Adv. Microb. Physiol. 15 85–120

    Article  CAS  PubMed  Google Scholar 

  • Dussault, H. P. 1955 An improved technique for staining red halophilic bacteria J. Bacteriol. 70 484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dussault, H. P. 1956a Study of red halophilic bacteria in solar salt and salted fish: I. Effect of Bacto-oxgall J. Fish. Res. Bd. Canada 13 183–194

    Article  Google Scholar 

  • Dussault, H. P. 1956b Study of red halophilic bacteria in solar salt and salted fish: II. Bacto-oxgall as a selective agent for differentiation J. Fish. Res. Bd. Canada 13 195–199

    Article  Google Scholar 

  • Dussault, H. P. 1958 The fate of red halophilic bacteria in solar salt during storage In: B. P. Eddy (Ed.) The microbiology of fish and meat curing brines: Proceedings of the 2nd international symposium on food microbiology Her Majesty’s Stationery Office London 13–19

    Google Scholar 

  • Dyall-Smith, M. L., and W. F. Doolittle. 1994 Construction of composite transposons for halophilic archaebacteria (Archaea) Can. J. Microbiol. 40 922–929

    Article  CAS  PubMed  Google Scholar 

  • Dyall-Smith, M. L. 1999 The Halohandbook: Protocols for halobacterial genetics. Version 2.9

    Google Scholar 

  • Ebel, C., P. Faou, B. Franzetti, B. Kernel, D. Madern, M. Pascu, C. Pfister, S. Richard, and G. Zaccai. 1999 Molecular interactions in extreme halophiles—the solvation–stabilization hypothesis for halophilic proteins In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 227–237

    Google Scholar 

  • Edgerton, M. E., and P. Brimblecombe. 1981 Thermodynamics of halobacterial environments Can. J. Microbiol. 27 899–909

    Article  CAS  PubMed  Google Scholar 

  • Eimhjellen, K. 1965 Isolation of extremely halophilic bacteria In: H. G. Schlegel (Ed.) Anreicherungskultur und Mutantenauslese: Supplementsheft 1. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. I Abt Fischer Verlag Stuttgart 126–137

    Google Scholar 

  • Eisenberg, H., and E. J. Wachtel. 1987 Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations Ann. Rev. Biophys. Biophys. Chem. 16 69–92

    Article  CAS  Google Scholar 

  • Eisenberg, H., M. Mevarech, and G. Zaccai. 1992 Biochemical, structural, and molecular genetic aspects of halophilism Adv. Prot. Chem. 43 1–62

    Article  CAS  Google Scholar 

  • Eisenberg, H. 1995 Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria Arch. Biochem. Biophys. 318 1–5

    Article  CAS  PubMed  Google Scholar 

  • Elazari-Volcani, B. 1957 Genus XII. Halobacterium In: R. S. Breed, E. G. D. Murray, and N. R. Smith (Eds.) Bergey’s manual of determinative bacteriology, 7th ed. Williams & Wilkins Baltimore, MD 207–212

    Google Scholar 

  • Emerson, D., S. Chauhan, P. Oriel, and J. A. Breznak. 1994 Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds Arch. Microbiol. 161 445–452

    Article  CAS  Google Scholar 

  • Englert, C., M. Horne, and F. Pfeifer. 1990 Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt Mol. Gen. Genet. 222 225–232

    Article  CAS  PubMed  Google Scholar 

  • Evans, R. W., S. C. Kushwaha, and M. Kates. 1980 The lipids of Halobacterium marismortui, an extremely halophilic bacterium in the Dead Sea Biochim. Biophys. Acta 619 533–544

    Article  CAS  PubMed  Google Scholar 

  • Ewersmeyer-Wenk, B., H. Zähner, B. Krone, and A. Zeeck. 1981 Metabolic products of microorganisms: 207. Haloquinone, a new antibiotic active against halobacteria. I. Isolation, characterization and biological properties J. Antibiot. 34 1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Castillo, R. F., F. Rodriguez-Valera, J. Gonzalez-Ramos, and F. Ruiz-Berraquero. 1986 Accumulation of poly (β-hydroxybutyrate) by halobacteria Appl. Env. Microbiol. 51 214–216

    Google Scholar 

  • Fitch, W. M., and E. Margoliash. 1967 Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability Science 155 279–284

    Article  CAS  PubMed  Google Scholar 

  • Forterre, P., C. Elie, and M. Kohiyama. 1984 Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria J. Bacteriol. 159 800–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franzmann, P. D., E. Stackebrandt, K. Sanderson, J. K. Volkman, D. E. Cameron, P. L. Stevenson, T. A. McMeekin, and H. R. Burton 1988 Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica Syst. Appl. Microbiol. 11 20–27

    Article  CAS  Google Scholar 

  • Fredrickson, H. L., J. W. de Leeuw, A. C. Tas, J. van der Greef, G. F. LaVos, and J. J. Boon. 1989a Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutirubrum Biomed. Environ. Mass Spectrom. 18 96–105

    Article  CAS  Google Scholar 

  • Fredrickson, H. L., W. I. C. Rijpstra, A. C. Tas, J. van der Greef, G. F. LaVos, and J. W. de Leeuw. 1989b Chemical characterization of benthic microbial assemblages In: Y. Cohen, and E. Rosenberg (Eds.) Microbial mats: Physiological ecology of benthic microbial communities American Society for Microbiology Washington DC 455–468

    Google Scholar 

  • Fu, W., and P. Oriel. 1998 Gentisate 1,2-dioxygenase from Haloferax sp. D1227 Extremophiles 3 45–53

    Article  Google Scholar 

  • Fu, W., and P. Oriel. 1999 Degradation of 3-phenylpropionic acid by Haloferax sp. D1227 Extremophiles 2 439–446

    Article  Google Scholar 

  • Galinski, E. A., and B. J. Tindall. 1992 Biotechnological prospects for halophiles and halotolerant microorganisms In: R. A. Herbert, and R. J. Sharp (Eds.) Molecular biology and biotechnology of extremophiles Chapman and Hall New York, NY 76–114

    Chapter  Google Scholar 

  • Ghosh, M., and H. M. Sonawat. 1998 Kreb’s cycle in Halobacterium salinarum investigated by 13C nuclear magnetic resonance spectroscopy Extremophiles 2 427–433

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, N. E. 1969 Isolation, growth and requirements of halophilic bacteria Methods Microbiol. 3B 169–184

    Article  CAS  Google Scholar 

  • Gilboa-Garber, N., H. Mymon, and A. Oren. 1998 Typing of halophilic Archaea and characterization of their cell surface carbohydrate by use of lectins FEMS Microbiol. Lett. 163 91–97

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg, M., L. Sachs, and B. Z. Ginzburg. 1970 Ion metabolism in a Halobacterium: Part I. Influence of age of culture on the intracellular concentrations J. Gen. Physiol. 55 187–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gochnauer, M. B., S. C. Kushwaha, M. Kates, and D. J. Kushner. 1972 Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria Arch. Mikrobiol. 84 339–349

    Article  CAS  Google Scholar 

  • Gonzalez, C., C. Gutierrez, and C. Ramirez. 1978 Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate metabolizing extremely halophilic bacterium Can. J. Microbiol. 24 710–715

    Article  CAS  PubMed  Google Scholar 

  • Grant, W. D., and H. Larsen. 1989 Extremely halophilic archaeobacteria. Order Halobacteriales ord. nov In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s manual of systematic bacteriology 3 Williams & Wilkins Baltimore, MD 2216–2233

    Google Scholar 

  • Grant, W. D., and H. N. M. Ross. 1986 The ecology and taxonomy of halobacteria FEMS Microbiol. Rev. 39 9–15

    Article  CAS  Google Scholar 

  • Grant, W. D., and B. J. Tindall. 1986 The alkaline saline environment In: R. A. Herbert, and G. A. Codd (Eds.) Microbes in extreme environments Academic Press London 25–54

    Google Scholar 

  • Grant, W. D., A. Oren, and A. Ventosa. 1998a Proposal of strain NCIMB 13488 as neotype of Halorubrum trapanicum: request for an opinion Int. J. Syst. Bacteriol. 48 1077–1078

    Article  Google Scholar 

  • Grant, W. D., R. T. Gemmell, and T. J. McGenity. 1998b Halobacteria: The evidence for longevity Extremophiles 2 279–287

    Article  CAS  PubMed  Google Scholar 

  • Grey, V. L., and P. S. Fitt. 1976 An improved synthetic growth medium for Halobacterium cutirubrum Can. J. Microbiol. 22 440–442

    Article  CAS  PubMed  Google Scholar 

  • Guixa-Boixareu, N., J. I. Caldéron-Paz, M. Heldal, G. Bratbak, and C. Pedrós-Alío. 1996 Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient Aquat. Microb. Ecol. 11 215–227

    Article  Google Scholar 

  • Gutiérrez, M. C., M. T. García, A. Ventosa, J. J. Nieto, and F. Ruiz-Berraquero. 1986 Occurrence of megaplasmids in halobacteria J. Appl. Bacteriol. 61 67–71

    Article  Google Scholar 

  • Hallberg, C., and H. Baltscheffsky. 1979 Partial purification of membrane-bound b-type cytochrome from Halobacterium halobium Acta Chem. Scand. B 33 600–601

    Article  Google Scholar 

  • Hallberg, C., and H. Baltscheffsky. 1981 Solubilization and separation of two b-type cytochromes from a carotenoid mutant of Halobacterium halobium FEBS Lett. 125 201–204

    Article  CAS  PubMed  Google Scholar 

  • Hallberg-Gradin, C., and A. Colmsjö. 1989 Four different b-type cytochromes in the halophilic archaebacterium, Halobacterium halobium Arch. Biochem. Biophys. 272 130–136

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto, T., T. Takashina, W. D. Grant, and K. Horikoshi. 1988 Asymmetric cell division of a triangular halophilic archaebacterium FEMS Microbiol. Lett. 56 221–224

    Article  Google Scholar 

  • Hamana, K., M. Kamekura, H. Onishi, T. Akazawa, and S. Matsuzaki. 1985 Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria J. Biochem. 97 1653–1658

    CAS  PubMed  Google Scholar 

  • Hamana, K., H. Hamana, and T. Itoh. 1995 Ubiquitous occurrence of agmatine as the major polyamine within extremely halophilic archaebacteria J. Gen. Appl. Microbiol. 41 153–158

    Article  CAS  Google Scholar 

  • Hancock, A. J., and M. Kates. 1973 Structure determination of the phosphatidylglycerosulfate (diether analog) from Halobacterium cutirubrum J. Lipid Res. 14 422–429

    CAS  PubMed  Google Scholar 

  • Harrison, F. C., and M. E. Kennedy. 1922 The red discoloration of cured codfish Trans. Roy. Soc. Canad. Sct. III 16 101–152

    Google Scholar 

  • Hartmann, R., H.-D. Sickinger, and D. Oesterhelt. 1980 Anaerobic growth of halobacteria Proc. Natl. Acad. Sci. USA 77 3821–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesselberg, M., and R. H. Vreeland. 1995 Utilization of protein profiles for the characterization of halophilic bacteria Curr. Microbiol. 31 158–162

    Article  CAS  Google Scholar 

  • Hilpert, R., J. Winter, W. Hammes, and O. Kandler. 1981 The sensitivity of archaebacteria to antibiotics Zbl. Bakt. Hyg. I. Abt. Orig. C. 2 11–20

    CAS  Google Scholar 

  • Hirayama, J., Y. Imamoto, Y. Shichida, N. Kamo, H. Tomioka, and T. Yoshizawa. 1992 Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry Biochemistry 31 2093–2098

    Article  CAS  PubMed  Google Scholar 

  • Hochstein, L. I., B. P. Dalton, and G. Pollock. 1976 The metabolism of carbohydrates by extremely halophilic bacteria: identification of galactonic acid as a product of galactose metabolism Can. J. Microbiol. 22 1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Hochstein, L. I. 1978 Carbohydrate metabolism in the extremely halophilic bacteria: The role of glucose in the regulation of citrate synthase activity In: S. R. Caplan, and M. Ginzburg (Eds.) Energetics and structure of halophilic microorganisms Elsevier Amsterdam 397–412

    Google Scholar 

  • Hochstein, L. I., and G. A. Tomlinson. 1985 Denitrification by extremely halophilic bacteria FEMS Microbiol. Lett. 27 329–331

    Article  CAS  PubMed  Google Scholar 

  • Hochstein, L. I. 1988 The physiology and metabolism of the extremely halophilic bacteria In: F. Rodriguez–Valera (Ed.) Halophilic bacteria CRC Press Boca Raton, FL II 67–83

    Google Scholar 

  • Hochstein, L. I. 1991 Nitrate reduction in the extremely halophilic bacteria In: F. Rodriguez–Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 129–137

    Chapter  Google Scholar 

  • Hof, T. 1935 Investigations concerning bacterial life in strong brines Rec. Trav. Bot. Néerl. 32 92–171

    Google Scholar 

  • Holmes, M. L., and M. L. Dyall-Smith. 1990 A plasmid vector with a selectable marker for halophilic archaebacteria J. Bacteriol. 172 756–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, M. L., and M. L. Dyall-Smith. 1991 Mutations in DNA gyrase results in novobiocin resistance in halophilic archaebacteria J. Bacteriol. 173 642–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, M. L., S. D. Nuttall, and M. L. Dyall-Smith. 1991 Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase J. Bacteriol. 173 3807–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, M., F. Pfeifer, and M. Dyall-Smith. 1994 Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid Gene 146 117–121

    Article  CAS  PubMed  Google Scholar 

  • Holmes, M. L., R. K. Scopes, R. L. Moritz, R. J. Simpson, C. Englert, F. Pfeifer, and M. L. Dyall-Smith. 1997 Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei Biochim. Biophys. Acta 1337 276–286

    Article  CAS  PubMed  Google Scholar 

  • Holmes, M. L., and M. L. Dyall-Smith. 1999 Cloning, sequence and heterologous expression of bgaH, a beta-galactosidase gene of “Haloferax alicantei.” In: A. Oren (Ed.) Microbiology and biogeochemistry of halophilic microorganisms CRC Press Boca Raton, FL 265–271

    Google Scholar 

  • Hong, F. T. 1986 The bacteriorhodopsin model membrane system as a prototype molecular computing element Biosystems 19 223–236

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi, K., R. Aono, and S. Nakamura. 1993 The triangular halophilic archaebacterium Haloarcula japonica strain TR-1 Experientia 49 497–502

    Article  Google Scholar 

  • Horne, M., and F. Pfeifer. 1989 Expression of two gas vacuole protein genes in Halobacterium halobium and other related species Mol. Gen. Genet. 218 437–444

    Article  CAS  PubMed  Google Scholar 

  • Houwink, A. L. 1956 Flagella, gas vacuoles, and cell-wall structure in Halobacterium halobium: An electron microscope study J. Gen. Microbiol. 15 146–150

    Article  CAS  PubMed  Google Scholar 

  • Hunter, M. I. S., and S. J. W. Millar. 1980 Effect of wall antibiotics on the growth of the extremely halophilic coccus, Sarcina marina NCMB 778 J. Gen. Microbiol. 120 255–258

    CAS  Google Scholar 

  • Hunter, M. I. S., T. L. Olawoye, and D. A. Saynor. 1981 The effect of temperature on the growth and lipid composition of the extremely halophilic coccus, Sarcina marina Ant. v. Leeuwenhoek 47 25–40

    Article  CAS  Google Scholar 

  • Ihara, K., S. Watanabe, and T. Tamura. 1997 Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina Int. J. Syst. Bacteriol. 47 73–77

    Article  CAS  PubMed  Google Scholar 

  • Javor, B., C. Requadt, and W. Stoeckenius. 1982 Box-shaped halophilic bacteria J. Bacteriol. 151 1532–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Javor, B. J. 1983 Planktonic standing crop and nutrients in a saltern ecosystem Limnol. Oceanogr. 28 153–159

    Article  CAS  Google Scholar 

  • Javor, B. 1984 Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements Appl. Env. Microbiol. 48 353–360

    Google Scholar 

  • Javor, B. 1988 CO2 fixation in halobacteria Arch. Microbiol. 149 433–440

    Article  CAS  Google Scholar 

  • Javor, B. 1989 Hypersaline environments, microbiology and biogeochemistry Springer-Verlag Berlin 362–369

    Book  Google Scholar 

  • Jones, A. G., C. M. Ewing, and M. V. Melvin. 1981 Biotechnology of solar saltfields Hydrobiologia 82 391–406

    Article  Google Scholar 

  • Jones, D., P. A. Pell, and P. H. A. Sneath. 1984 Maintenance of bacteria on glass beads at −60°C to −70°C In: B. E. Kirsop, and J. J. S. Snell (Eds.) Maintenance of microorganisms: A manual of laboratory methods Academic Press London 35–40

    Google Scholar 

  • Joshi, J. G., W. R. Guild, and P. Handler. 1963 The presence of two species of DNA in some halobacteria J. Mol. Biol. 6 34–38

    Article  CAS  PubMed  Google Scholar 

  • Juez, G., F., Rodriguez-Valera, A. Ventosa, and D. J. Kushner. 1986 Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria Syst. Appl. Microbiol. 8 75–79

    Article  Google Scholar 

  • Jukes, T. H., and C. R. Cantor. 1969 Evolution of protein molecules In: H. N. Munro (Ed.) Mammalian protein metabolism III Academic Press New York, NY 21–132

    Chapter  Google Scholar 

  • Kamekura, M., S. Bardocz, P. Anderson, R. Wallace, and D. J. Kushner. 1986 Polyamines in moderately and extremely halophilic bacteria Biochim. Biophys. Acta 880 204–208

    Article  CAS  Google Scholar 

  • Kamekura, M., and M. Kates. 1988 Lipids of halophilic archaebacteria In: F. Rodriguez–Valera (Ed.) Halophilic bacteria. Vol. II CRC Press Boca Raton, FL 25–54

    Google Scholar 

  • Kamekura, M., D. Oesterhelt, R. Wallace, P. Anderson, and D. J. Kushner. 1988 Lysis of halobacteria in bacto-peptone by bile acids Appl. Env. Microbiol. 54 990–995

    CAS  Google Scholar 

  • Kamekura, M., and Y. Seno. 1991 Lysis of halobacteria with bile acids and proteolytic enzymes of halophilic archaeobacteria In: F. Rodriguez–Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 359–365

    Chapter  Google Scholar 

  • Kamekura, M. 1993 Lipids of extreme halophiles In: R. H. Vreeland, and L. I. Hochstein (Eds.) The biology of halophilic bacteria CRC Press Boca Raton, FL 135–161

    Google Scholar 

  • Kamekura, M., and Y. Seno. 1993 Partial sequence of the gene for a serine protease from a halophilic archaeum Haloferax mediterranei R4, and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea Experientia 49 503–513

    Article  CAS  PubMed  Google Scholar 

  • Kamekura, M., and M. L. Dyall-Smith. 1995 Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba J. Gen. Appl. Microbiol. 41 333–350

    Article  CAS  Google Scholar 

  • Kamekura, M., M. L. Dyall-Smith, V. Upasani, A. Ventosa, and M. Kates. 1997 Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively Int. J. Syst. Bacteriol. 47 853–857

    Article  CAS  PubMed  Google Scholar 

  • Kamekura, M. 1998 Diversity of extremely halophilic bacteria Extremophiles 2 289–295

    Article  CAS  PubMed  Google Scholar 

  • Kamekura, M., Y. Seno, and H. Tomioka. 1998 Detection and expression of a gene encoding a new bacteriorhodopsin from an extreme halophile strain HT (JCM 9743) which does not possess bacteriorhodopsin activity Extremophiles 2 33–39

    Article  CAS  PubMed  Google Scholar 

  • Kamekura, M. 1999 Diversity of members of the family Halobacteriaceae In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 13–25

    Google Scholar 

  • Kanai, H., T. Kobayashi, R. Aono, and T. Kudo. 1995 Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon Int. J. Syst. Bacteriol. 45 762–766

    Article  CAS  Google Scholar 

  • Kandler, O., and K. König. 1993 Cell envelopes of archaea: structure and chemistry In: M. Kates, D. J. Kushner, and A. T. Matheson (Eds.) The biochemistry of Archaea Elsevier Amsterdam 223–259

    Chapter  Google Scholar 

  • Kaplan, I. R., and A. Friedmann. 1970 Biological productivity in the Dead Sea: Part 1. Microorganisms in the water column Israel J. Chem. 8 513–528

    Article  CAS  Google Scholar 

  • Kates, M., and P. W. Deroo. 1973 Structure determination of the glycolipid sulphate from the extreme halophile Halobacterium cutirubrum J. Lipid Res. 14 438–445

    CAS  PubMed  Google Scholar 

  • Kates, M. 1978 The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria Prog. Chem. Fats Lipids 15 301–342

    Article  CAS  Google Scholar 

  • Kates, M., and N. Moldoveanu. 1991 Polar lipid structure, composition and biosynthesis in extremely halophilic bacteria In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 191–198

    Chapter  Google Scholar 

  • Kates, M. 1993 Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance Experientia 49 1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Kates, M., N. Moldoveanu, and L. C. Stewart. 1993 On the revised structure of the major phospholipid of Halobacterium salinarium Biochim. Biophys. Acta 1169 46–53

    Article  CAS  PubMed  Google Scholar 

  • Kates, M., and S. C. Kushwaha. 1995 Isoprenoids and polar lipids of extreme halophiles In: S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 35–54

    Google Scholar 

  • Kates, M. 1996 Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria J. Microbiol. Meth. 25 113–128

    Article  CAS  Google Scholar 

  • Kauri, T., R. Wallace, and D. J. Kushner. 1990 Nutrition of the halophilic archaebacterium, Haloferax volcanii Syst. Appl. Microbiol. 13 14–18

    Article  CAS  Google Scholar 

  • Kelly, M., S. Norgård, and S. Liaaen-Jensen. 1970 Bacterial carotenoids: Part XXXI. C50 carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin Acta Chem. Scand. 24 2169–2182

    Article  CAS  PubMed  Google Scholar 

  • Kessel, M., and Y. Cohen. 1982 Ultrastructure of square bacteria from a brine pool in southern Sinai J. Bacteriol. 150 851–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessel, M., E. L. Buhle, Jr., S. Cohen, and U. Aebi. 1988a The cell wall structure of a magnesium-dependent halobacterium, Halobacterium volcanii CD-2, from the Dead Sea J. Ultrastruct. Mol. Struct. Res. 100 94–106

    Article  CAS  PubMed  Google Scholar 

  • Kessel, M., I. Wildhaber, S. Cohen, and W. Baumeister. 1988b Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea EMBO J. 7 1549–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevbrina, M. V., and V. K. Plakunov. 1992 Acetate metabolism in Natronococcus occultus Microbiology 61 534–538

    Google Scholar 

  • Kirk, R. G., and M. Ginzburg. 1972 Ultrastructure of two species of Halobacterium J. Ultrastr. Res. 41 80–94

    Article  CAS  Google Scholar 

  • Kitajima, T., J. Hirayama, K. Ihara, Y. Sugiyama, N. Kamo, and Y. Mukohata. 1996 Novel bacterial rhodopsins from Haloarcula vallismortis Biochem. Biophys. Res. Commun. 220 341–345

    Article  CAS  PubMed  Google Scholar 

  • Klebahn, H. 1919 Die Schädlinge des Klippfisches Mitt. Inst. Allg. Botanik Hamburg 4 11–69

    Google Scholar 

  • Klöppel, K.-D., and H. L. Fredrickson. 1991 Fast atom bombardment mass spectrometry as a rapid means of screening mixtures of ether-linked polar lipids from extremely halophilic archaebacteria for the presence of novel chemical structures J. Chromatogr. 562 369–376

    Article  PubMed  Google Scholar 

  • Kneifel, H., K. O. Stetter, J. R. Andreesen, J. Weigel, H. König, and S. M. Schoberth. 1986 Distribution of polyamines in representative species of archaebacteria Syst. Appl. Microbiol. 7 241–245

    Article  CAS  Google Scholar 

  • Kobayashi, T., M. Kanai, T. Hayashi, R. Akiba, R. Akaboshi, and K. Horikoshi. 1992 Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus strain Ah-3b J. Bacteriol. 174 3439–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocur, M., and W. Hogkiss. 1973 Taxonomic status of the genus Halococcus Schoop Int. J. Syst. Bacteriol. 23 151–156

    Article  Google Scholar 

  • König, H. 1988 Archaeobacteria In: H. J. Rehm, and G. Reed (Eds.) Biotechnology Verlag Chemie Weinheim 6B 699–728

    Google Scholar 

  • Kostrikina, N. A., I. S. Zvyagintseva, and V. I. Duda. 1991 Cytological pecularities of some extremely halophilic soil archaeobacteria Arch. Microbiol. 156 344–349

    Article  Google Scholar 

  • Krishnan, G., and W. Altekar. 1991 An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis Eur. J. Biochem. 195 343–350

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya, I. S., E. I. Milekhina, I. A. Borezinkov, I. S. Zvyagintseva, and S. S. Belyaev. 1991 Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria Microbiology 60 596–601

    Google Scholar 

  • Kulichevskaya, I. S., I. S. Zvyagintseva, A. L. Tarasov, and V. K. Plakunov. 1992 The extremely halophilic archaeobacteria from some hypersaline ecotops Microbiology 46 51–56

    Google Scholar 

  • Kushner, D. J. 1964 Lysis and dissolution of cells and envelopes of an extremely halophilic bacterium J. Bacteriol. 87 1147–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushner, D. J., G. Mason, and N. E. Gibbons. 1965 Simple method for killing halophilic bacteria in contaminated solar salt Appl. Microbiol. 13 288–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushner, D. J. 1966 Mass-culture of red halophilic bacteria Biotechnol. Bioeng. 8 237–245

    Article  Google Scholar 

  • Kushner, D. J. 1985 The Halobacteriaceae In: C. R. Woese, and R. S. Wolfe (Eds.) The bacteria-a treatise on structure and function Archaebacteria Academic Press Orlando, FL VIII 171–214

    Google Scholar 

  • Kushwaha, S. C., E. L. Pugh, J. K. G. Kramer, and M. Kates. 1972 Isolation and identification of dehydrosqualene and C40 carotenoid pigments in Halobacterium cutirubrum Biochim. Biophys. Acta 260 492–506

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, S. C., M. B. Gochnauer, D. J. Kushner, and M. Kates. 1974 Pigments and isoprenoid compounds in extremely and moderately halophilic bacteria Can. J. Microbiol. 20 241–245

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, S. C., J. K. G. Kramer, and M. Kates. 1975 Isolation and characterization of C50 carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum Biochim. Biophys. Acta 398 303–313

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, S. C., M. Kates, and J. K. G. Kramer. 1977 Occurrence of indole in cells of extremely halophilic bacteria Can. J. Microbiol. 23 826–828

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, S. C., and M. Kates. 1978 2,3-Di-O-phytanyl-sn-glycerol and prenols from extremely halophilic bacteria Phytochemistry 17 2029–2030

    Article  CAS  Google Scholar 

  • Kushwaha, S. C., and M. Kates. 1979 Effect of glycerol on carotenogenesis in the extreme halophile, Halobacterium cutirubrum Can. J. Microbiol. 25 1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha, S. C., G. Juez-Pérez, F. Rodriguez-Valera, M. Kates, and D. J. Kushner. 1982a Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain Can. J. Microbiol 28 1365–1372

    Article  CAS  Google Scholar 

  • Kushwaha, S. C., M. Kates, G. Juez, F. Rodriguez-Valera, and D. J. Kushner. 1982b Polar lipids of an extremely halophilic bacterial strain (R-4) isolated from salt ponds in Spain Biochim. Biophys. Acta 711 19–25

    Article  CAS  Google Scholar 

  • Lam, W. L., and W. F. Doolittle. 1989 Shuttle vector for the archaebacterium Halobacterium volcanii Proc. Natl. Acad. Sci. USA 86 5478–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi, J. K. 1974 Salt-dependent properties of proteins from extremely halophilic bacteria Bacteriol. Rev. 38 272–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi, J. K. 1986 Halorhodopsin: a light-driven chloride ion pump Ann. Rev. Biophys. Biophys. Chem. 15 11–28

    Article  CAS  Google Scholar 

  • Lanyi, J. K. 1990 Halorhodopsin, a light-driven electrogenic chloride-transport system Physiol. Rev. 70 319–330

    CAS  PubMed  Google Scholar 

  • Lanyi, J. K., A. Duschl, G. W. Hatfield, K. May, and D. Oesterhelt. 1990 The primary structure of a halorhodopsin from Natronobacterium pharaonis J. Biol. Chem. 265 1253–1260

    CAS  PubMed  Google Scholar 

  • Lanyi, J. K. 1993a Ion transport rhodopsins (bacteriorhodopsin and halorhodopsin): structure and function In: M. Kates, D. J. Kushner, and A. T. Matheson (Eds.) The biochemistry of Archaea (Archaebacteria) Elsevier Amsterdam 189–207

    Chapter  Google Scholar 

  • Lanyi, J. K. 1993b Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin Biochim. Biophys. Acta 1183 241–261

    Article  CAS  PubMed  Google Scholar 

  • Lanyi, J. K., and G. Váró. 1995 The photocycles of bacteriorhodopsin Israel J. Chem. 35 365–385

    Article  CAS  Google Scholar 

  • Lanyi, J. K. 1997 Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps J. Biol. Chem. 272 31209–31212

    Article  CAS  PubMed  Google Scholar 

  • Lanzotti, V., B. Nicolaus, A. Trincone, and W. D. Grant. 1988 The glycolipid of Halobacterium saccharovorum FEMS Microbiol. Lett. 55 223–228

    Article  CAS  Google Scholar 

  • Lanzotti, V., B. Nicolaus, A. Trincone, M. De Rosa, W. D. Grant, and A. Gambacorta 1989 A complex lipid with a cyclic phosphate from the archaebacterium Natronococcus occultus Biochim. Biophys. Acta 1001 31–34

    Article  CAS  Google Scholar 

  • Larsen, H. 1962 Halophilism In: I. C. Gunsalus, and R. Y. Stanier (Eds.) The bacteria. A treatise on structure and function IV Academic Press New York, NY 297–342

    Google Scholar 

  • Larsen, H. 1973 The halobacteria’s confusion to biology Ant. v. Leeuwenhoek 39 383–396

    Article  CAS  Google Scholar 

  • Larsen, H. 1981 The family Halobacteriaceae In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes: A handbook on habitats, isolation, and identification of bacteria I Springer-Verlag Berlin 985–994

    Chapter  Google Scholar 

  • Lechner, J., F. Wieland, and M. Sumper. 1985 Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose J. Biol. Chem. 260 860–866

    CAS  PubMed  Google Scholar 

  • Lechner, J., and M. Sumper. 1987 The primary structure of a procaryotic glycoprotein: Cloning and sequencing of the cell surface glycoprotein gene of halobacteria J. Biol. Chem. 262 9724–9729

    CAS  PubMed  Google Scholar 

  • Lechner, J., and F. Wieland. 1989 Structure and biosynthesis of prokaryotic glycoproteins Ann. Rev. Biochem. 58 173–194

    Article  CAS  PubMed  Google Scholar 

  • Lillo, J. G., and F. Rodriguez-Valera. 1990 Effects of culture conditions on poly-β-hydroxybutyric acid production by Haloferax mediterranei Appl. Environ. Microbiol. 56 2517–2521

    PubMed  PubMed Central  Google Scholar 

  • Lin, X., and R. H. White. 1987 Structure of sulfohalopterin-2 from Halobacterium marismortui Biochemistry 26 6211–6217

    Article  CAS  Google Scholar 

  • Lin, X., and R. H. White. 1988 Distribution of charged pterins in nonmethanogenic archaebacteria Arch. Microbiol. 150 541–546

    Article  CAS  Google Scholar 

  • Lochhead, A. G. 1934 Bacteriological studies on the red discoloration of salted hides Canad. J. Res. 10 275–286

    Article  CAS  Google Scholar 

  • Lodwick, D., T. J. McGenity, and W. D. Grant. 1994 The phylogenetic position of the haloalkaliphilic archaeon Natronobacterium magadii, determined from its 23S ribosomal RNA sequence Syst. Appl. Microbiol. 17 402–404

    Article  Google Scholar 

  • López-García, P., A. St. Jean, R. Amils, and R. L. Charlebois. 1995 Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei J. Bacteriol. 177 1405–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Luecke, H., H.-T. Richter, and J. K. Lanyi. 1998 Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution Science 280 1934–1937

    Article  CAS  PubMed  Google Scholar 

  • Luehrsen, K. R., D. E. Nicholson, D. C. Eubanks, and G. E. Fox. 1981 An archaebacterial 5S rRNA contains a long insertion sequence Nature 293 755–756

    Article  CAS  PubMed  Google Scholar 

  • Magrum, L. J., K. R. Luehrsen, and C. R. Woese. 1978 Are extreme halophiles actually “bacteria”? J. Mol. Evolut. 11 1–8

    Article  CAS  Google Scholar 

  • Mancinelli, R., and L. I. Hochstein. 1986 The occurrence of denitrification in extremely halophilic bacteria FEMS Microbiol. Lett. 35 55–58

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Murcia, A. J., and F. Rodriguez-Valera. 1994 Random amplified polymorphic DNA of a group of halophilic archaeal isolates Syst. Appl. Microbiol. 17 395–401

    Article  CAS  Google Scholar 

  • Martínez-Murcia, A. J., I. F. Boán, and F. Rodríguez-Valera. 1995a Evaluation of the authenticity of haloarchaeal strains by random-amplified polymorphic DNA Lett. Appl. Microbiol. 21 106–108

    Article  Google Scholar 

  • Martínez-Murcia, A. J., S. C. Acinas, and F. Rodríguez-Valera. 1995b Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments FEMS Microbiol. Ecol. 17 247–256

    Article  Google Scholar 

  • Marwan, W., M. Alam, and D. Oesterhelt. 1987 Die Geißelbewegung halophiler Bakterien Naturwissenschaften 74 585–590

    Article  CAS  Google Scholar 

  • Marwan, W., M. Alam, and D. Oesterhelt. 1991 Rotation and switching of the flagellar motor assembly in Halobacterium halobium J. Bacteriol. 173 1971–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson, A. T., G. D. Sprott, I. J. McDonald, and H. Tessier. 1976 Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology Can. J. Microbiol. 22 780–786

    Article  CAS  PubMed  Google Scholar 

  • Matsubara, T., N. Iida-Tanaka, M. Kamekura, N. Moldoveanu, I. Ishizuka, H. Onishi, A. Hayashi, and M. Kates. 1994 Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid Biochim. Biophys. Acta 1214 97–108

    Article  CAS  PubMed  Google Scholar 

  • McGenity, T. J., and W. D. Grant. 1993 The haloalkaliphilic archaeon (archaebacterium) Natronococcus occultus represents a distant lineage within the Halobacteriales, most closely related to the other haloalkaliphilic lineage (Natronobacterium) Syst. Appl. Microbiol. 16 239–243

    Article  CAS  Google Scholar 

  • McGenity, T. J., and W. D. Grant. 1995 Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov. as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov Syst. Appl. Microbiol. 18 237–243

    Article  Google Scholar 

  • McGenity, T. J., R. T. Gemmell, and W. D. Grant. 1998 Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov Int. J. Syst. Bacteriol. 48 1187–1196

    Article  PubMed  Google Scholar 

  • Mengele, R., and M. Sumper. 1992 Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles J. Biol. Chem. 267 8182–8185

    CAS  PubMed  Google Scholar 

  • Mescher, M. F., J. L. Strominger, and S. W. Watson. 1974 Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium J. Bacteriol. 120 945–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mescher, M. F., and J. L. Strominger. 1976a Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium J. Biol. Chem. 251 2005–2014

    CAS  PubMed  Google Scholar 

  • Mescher, M. F., and J. L. Strominger. 1976b Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium Proc. Natl. Acad. Sci. USA 73 2687–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mescher, M. 1981 Glycoproteins as cell-surface structural components Trends Biochem. Sci. 6 97–99

    Article  CAS  Google Scholar 

  • Meseguer, I., and F. Rodriguez-Valera. 1986 Effect of halocin H4 on cells of Halobacterium halobium J. Gen. Microbiol. 132 3061–3068

    CAS  Google Scholar 

  • Meseguer, I., F. Rodriguez-Valera, and A. Ventosa. 1986 Antagonistic interactions among halobacteria due to halocin production FEMS Microbiol. Lett. 36 177–182

    Article  CAS  Google Scholar 

  • Meseguer, I., M. Torreblanca, and F. Rodriguez-Valera. 1991 Mode of action of halocins H4 and H6: are they effective against the adaptation to high salt environments? In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 157–164

    Chapter  Google Scholar 

  • Mevarech, M., and R. Werczberger. 1985 Genetic transfer in Halobacterium volcanii J. Bacteriol. 162 461–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr, V., and H. Larsen. 1963 On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions J. Gen. Microbiol. 31 267–280

    Article  CAS  Google Scholar 

  • Moldoveanu, N., and M. Kates. 1988 Biosynthetic studies of the polar lipids of Halobacterium cutirurbum Biochim. Biophys. Acta 960 161–182

    Article  Google Scholar 

  • Moldoveanu, M., M. Kates, C. G. Montero, and A. Ventosa. 1990 Polar lipids of non-alkaliphilic Halococci Biochim. Biophys. Acta 1046 127–135

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Rodríguez, R., R. H. Vreeland, A. Oren, M. Kessel, C. Betancourt, and J. López-Garriga. 1998 Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic Archaeon from Puerto Rico Int. J. Syst. Bacteriol. 48 1305–1312

    Article  PubMed  Google Scholar 

  • Montero, C. G., A. Ventosa, F. Rodriguez-Valera, and F. Ruiz-Berraquero. 1988 Taxonomic study of non-alkaliphilic halococci J. Gen. Microbiol. 134 725–732

    Google Scholar 

  • Montero, C. G., A. Ventosa, F. Rodriguez-Valera, M. Kates, N. Moldoveanu, and F. Ruiz-Berraquero. 1989 Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci Syst. Appl. Microbiol. 12 167–171

    Article  Google Scholar 

  • Moore, R. L., and B. J. McCarthy. 1969 Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria J. Bacteriol. 99 248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita, M., N. Yamaguchi, T. Eguchi, and K. Kakinuma. 1998 Structural diversity of the membrane core lipids of extreme halophiles Biosci. Biotechnol. Biochem. 62 596–598

    Article  CAS  PubMed  Google Scholar 

  • Moritz, A., and W. Goebel. 1985 Characterization of the 7S RNA and its gene from halobacteria Nucl. Acid Res. 13 6969–6979

    Article  CAS  Google Scholar 

  • Moritz, A., B. Lankat-Buttgereit, H. J. Gross, and W. Goebel. 1985 Common structural features of the genes for two stable RNAs from Halobacterium halobium Nucl. Acid Res. 13 31–43

    Article  CAS  Google Scholar 

  • Morth, S., and B. J. Tindall. 1985a Variation of polar lipid composition within haloalkaliphilic archaebacteria Syst. Appl. Microbiol. 6 247–250

    Article  CAS  Google Scholar 

  • Morth, S., and B. J. Tindall. 1985b Evidence that changes in the growth conditions affect the relative distribution of diether lipids in haloalkaliphilic archaebacteria FEMS Microbiol. Lett. 29 285–288

    Article  CAS  Google Scholar 

  • Mukohata, Y., Y. Sugiyama, K. Ihara, and M. Yoshida. 1988 An Australian halobacterium contains a novel proton pump retinal protein: Archaerhodopsin Biochem. Biophys. Res. Commun. 151 1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Mukohata, Y., K. Ihara, K. Uegaki, Y. Miyashita, and Y. Sugiyama. 1991 Australian halobacteria and their retinal-protein ion pumps Photochem. Photobiol. 54 1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Mukohata, Y. 1994 Comparative studies on ion pumps of the bacterial rhodopsin family Biophys. Chem. 50 191–201

    Article  CAS  PubMed  Google Scholar 

  • Mullakhanbhai, M. F., and G. W. Francis. 1972 Bacterial lipids: I. Lipid composition of a moderately halophilic bacterium Acta Chem. Scand. 26 1399–1410

    Article  CAS  PubMed  Google Scholar 

  • Mullakhanbhai, M. F., and H. Larsen. 1975 Halobacterium volcanii sp. nov., a Dead Sea halobacterium with a moderate salt requirement Arch. Microbiol. 104 207–214

    Article  CAS  PubMed  Google Scholar 

  • Mwatha, W. E., and W. D. Grant. 1993 Natronobacterium vacuolata, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya Int. J. Syst. Bacteriol. 43 401–404

    Article  Google Scholar 

  • Mylvaganam, S., and P. P. Dennis. 1992 Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui Genetics 130 399–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, S., R. Aono, S. Mizutani, T. Takashina, W. D. Grant, and K. Horikoshi. 1992 The cell surface glycoprotein of Haloarcula japonica TR-1 Biosci. Biotechnol. Biochem. 56 996–998

    Article  CAS  PubMed  Google Scholar 

  • Newton, G. L., and B. Javor. 1985 γ-glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria J. Bacteriol. 161 438–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, W. V., S. A. Ciufo, T. M. Smith, R. E. Bumgarner, D. Baskin, J. Faust, B. Hall, C. Loretz, J. Seto, J. Slagel, L. Hood, and S. DasSarma. 1998 Snapshot of a large dynamic replicon in a halophilic archaeon: Megaplasmid or minichromosome? Genome Res. 8 1131–1141

    CAS  PubMed  Google Scholar 

  • Nicolaus, B., V. Lanzotti, A. Tricone, M. De Rosa, W. D. Grant, and A. Gambacorta. 1989 Glycine betaine and polar lipid composition in halophilic archaebacteria in response to growth in different salt concentrations FEMS Microbiol. Lett. 59 157–160

    Article  CAS  Google Scholar 

  • Niemetz, R., U. Kärcher, O. Kandler, B. J. Tindall, and H. König. 1997 The cell wall polymer of the extremely halphilic archaeon Natronococcus occultus Eur. J. Biochem. 249 905–911

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, Y., T. Takashina, W. D. Grant, and K. Horikoshi. 1992 Ultrastructure of the cell wall of the triangular halophilic archaebacterium Haloarcula japonica strain TR-1 FEMS Microbiol. Lett. 99 43–48

    Article  CAS  Google Scholar 

  • Norton, C. F., and W. D. Grant. 1988 Survival of halobacteria within fluid inclusions in salt crystals J. Gen. Microbiol. 134 1365–1373

    Google Scholar 

  • Norton, C. F., T. J. McGenity, and W. D. Grant. 1993 Archaeal halophiles (halobacteria) from two British salt mines J. Gen. Microbiol. 139 1077–1081

    Article  CAS  Google Scholar 

  • Nuttall, S. D., and M. L. Dyall-Smith. 1993a Ch2, a novel archaeon from an Australian solar saltern Int. J. Syst. Bacteriol. 43 729–734

    Article  CAS  PubMed  Google Scholar 

  • Nuttall, S. D., and M. L. Dyall-Smith. 1993b HF1 and HF2: novel bacteriophages of halophilic archaea Virology 197 678–684

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt, D., and W. Stoeckenius. 1971 Rhodopsin-like protein from the purple membrane of Halobacterium halobium Nature 233 149–152

    CAS  Google Scholar 

  • Oesterhelt, D. 1982 Anaerobic growth of halobacteria Meth. Enzymol. 88 417–420

    Article  Google Scholar 

  • Oesterhelt, D., and G. Krippahl. 1983 Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants Ann. Microbiol. (Inst. Pasteur) 134B 137–150

    Article  CAS  Google Scholar 

  • Oesterhelt, D., C. Bräuchle, and A. Hampp. 1991 Bacteriorhodopsin: A biological material for information processing Quart. Rev. Biophys. 24 425–478

    Article  CAS  Google Scholar 

  • Oesterhelt, D. 1995 Structure and function of halorhodopsin Israel J. Chem. 35 475–494

    Article  CAS  Google Scholar 

  • Offner, S., U. Ziese, G. Wanner, D. Typke, and F. Pfeifer. 1998 Structural characteristics of halobacterial gas vesicles Microbiology UK 144 1331–1342

    Article  CAS  Google Scholar 

  • Onishi, H., M. E. McCance, and N. E. Gibbons. 1965 A synthetic medium for extremely halophilic bacteria Can. J. Microbiol. 11 365–373

    Article  CAS  PubMed  Google Scholar 

  • Onishi, H., T. Kobayashi, S. Iwao, and M. Kamekura. 1985 Archaebacterial diether lipids in a non-alkalophilic, non-pigmented extremely halophilic bacterium Agric. Biol. Chem. 49 3053–3055

    CAS  Google Scholar 

  • Oren, A., and M. Shilo. 1981 Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea Arch. Microbiol. 130 185–187

    Article  CAS  Google Scholar 

  • Oren, A. 1983a Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement Int. J. Syst. Bacteriol. 33 381–386

    Article  Google Scholar 

  • Oren, A. 1983b Bacteriorhodopsin mediated CO2 photoassimilation in the Dead Sea Limnol. Oceanogr. 28 33–41

    Article  CAS  Google Scholar 

  • Oren, A. 1983c Population dynamics of halobacteria in the Dead Sea water column Limnol. Oceanogr. 28 1094–1103

    Article  Google Scholar 

  • Oren, A., and M. Shilo. 1985 Factors determining the development of algal and bacterial blooms in the Dead Sea: a study of simulation experiments in outdoor ponds FEMS Microbiol. Ecol. 31 229–237

    Article  CAS  Google Scholar 

  • Oren, A., P. P. Lau, and G. E. Fox. 1988 The taxonomic status of “Halobacterium marismortui” from the Dead Sea: a comparison with Halobacterium vallismortis Syst. Appl. Microbiol. 10 251–258

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 1990a Starch counteracts the inhibitory action of Bacto-peptone and bile salts in media for the growth of halobacteria Can. J. Microbiol. 36 299–301

    Article  CAS  Google Scholar 

  • Oren, A. 1990b The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments FEMS Microbiol. Ecol. 73 187–192

    Article  CAS  Google Scholar 

  • Oren, A., and H. G. Trüper. 1990 Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide FEMS Microbiol. Lett. 70 33–36

    Article  CAS  Google Scholar 

  • Oren, A., M., Ginzburg, B. Z. Ginzburg, L. I. Hochstein, and B. E. Volcani. 1990 Haloarcula marismortui (Volcani) sp. nov., nom., rev., an extremely halophilic bacterium from the Dead Sea Int. J. Syst. Bacteriol. 40 209–210

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 1991 Anaerobic growth of halophilic archaeobacteria by reduction of fumarate J. Gen. Microbiol. 137 1387–1390

    Article  CAS  Google Scholar 

  • Oren, A., N. Stambler, and Z. Dubinsky. 1992 On the red coloration of saltern crystallizer ponds Int. J. Salt Lake Res. 1 77–89

    Article  Google Scholar 

  • Oren, A. 1993a Ecology of extremely halophilic microorganisms In: R. H. Vreeland. and L. I. Hochstein (Eds.) The biology of halophilic bacteria CRC Press Boca Raton, FL 25–53

    Google Scholar 

  • Oren, A., and P. Gurevich. 1993 Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea FEMS Microbiol. Ecol. 12 249–256

    Article  CAS  Google Scholar 

  • Oren, A. 1994a The ecology of the extremely halophilic archaea FEMS Microbiol. Rev. 13 415–440

    Article  CAS  Google Scholar 

  • Oren, A. 1994b Enzyme diversity in halophilic archaea Microbiología SEM 10 217–228

    CAS  Google Scholar 

  • Oren, A. 1994cCharacterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis Int. J. Salt Lake Res. 3 15–29

    Article  Google Scholar 

  • Oren, A., and Z. Dubinsky. 1994 On the red coloration of saltern crystallizer ponds: II. Additional evidence for the contribution of halobacterial pigments Int. J. Salt Lake Res. 3 9–13

    Article  Google Scholar 

  • Oren, A., and P. Gurevich. 1994 Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds FEMS Microbiol. Ecol. 14 147–156

    CAS  Google Scholar 

  • Oren, A. 1995a The role of glycerol in the nutrition of halophilic archaeal communities: A study of respiratory electron transport FEMS Microbiol. Ecol. 16 281–290

    Article  CAS  Google Scholar 

  • Oren, A. 1995b Uptake and turnover of acetate in hypersaline environments FEMS Microbiol. Ecol. 18 75–84

    Article  CAS  Google Scholar 

  • Oren, A., and P. Gurevich. 1995 Occurrence of the methylglyoxal bypass in halophilic Archaea FEMS Microbiol. Lett. 125 83–88

    Article  CAS  Google Scholar 

  • Oren, A., P. Gurevich, R. T. Gemmell, and A. Teske. 1995 Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea Int. J. Syst. Bacteriol. 45 747–754

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 1996a Sensitivity of selected members of the Halobacteriaceae to quinolone antimicrobial compounds Arch. Microbiol. 165 354–358

    Article  CAS  PubMed  Google Scholar 

  • Oren, A., and A. Ventosa. 1996b A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively Int. J. Syst. Bacteriol. 46 1180–1180

    Article  Google Scholar 

  • Oren, A., S. Duker, and S. Ritter. 1996 The polar lipid composition of Walsby’s square bacterium FEMS Microbiol. Lett. 138 135–140

    Article  CAS  Google Scholar 

  • Oren, A., A. Ventosa, and W. D. Grant. 1997a Proposed minimal standards for description of new taxa in the order Halobacteriales Int. J. Syst. Bacteriol. 47 233–238

    Article  Google Scholar 

  • Oren, A., M. Kamekura, and A. Ventosa. 1997b Confirmation of strain VKM B-1733 as the type strain of Halorubrum distributum Int. J. Syst. Bacteriol. 47 231–232

    Article  Google Scholar 

  • Oren, A., G. Bratbak, and M. Heldal. 1997cOccurrence of virus-like particles in the Dead Sea Extremophiles 1 143–149

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 1999a Prokaryotic life at high salt concentrations In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (Eds.) The Prokaryotes Springer-Verlag New York, NY

    Google Scholar 

  • Oren, A. 1999b The enigma of square and triangular halophilic archaea In: J. Seckbach (Ed.) Enigmatic microorganisms and life in extreme environmental habitats Kluwer Academic Publishers Dordrecht 337–355

    Chapter  Google Scholar 

  • Oren, A., and C. D. Litchfield. 1999 A procedure for the enrichment and isolation of Halobacterium FEMS Microbiol. Lett. 173 353–358

    Article  CAS  Google Scholar 

  • Oren, A., A. Ventosa, M. C. Gutiérrez, and M. Kamekura. 1999 Haloarcula quadrata sp. nov., a square, motile Haloarcula species from a brine pool in Sinai (Egypt) Int. J. Syst. Bacteriol. 49 1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. 2000 Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts FEMS Microbiol. Ecol. 73 41–48

    Article  Google Scholar 

  • Ortenberg, R., R. Tchelet, and M. Mevarech. 1999 A model for the genetic exchange system of the extremely halophilic archaeon Haloferax volcanii In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 331–338

    Google Scholar 

  • Paramonov, N. A., L. A. S. Parolis, H. Parolis, I. F. Boán, J. Antón, and F. Rodríguez-Valera. 1998 The structure of the exocellular polysaccharide produced by the archaeon Haloferax gibbonsii (ATCC 33959) Carbohydr. Res. 309 89–94

    Article  CAS  PubMed  Google Scholar 

  • Parkes, K., and A. E. Walsby. 1981 Ultrastructure of a gas-vacuolate square bacterium J. Gen. Microbiol 126 503–506

    Google Scholar 

  • Parolis, H., L. A. S. Parolis, I. F. Boán, F. Rodríguez-Valera, G. Widmalm, M. C. Manca, P.-E. Jansson, and I. W. Sutherland. 1996 The structure of the exopolysaccharide produced by the halophilic archaeon Haloferax mediterranei strain R4 (ATCC 33500) Carbohydr. Res. 295 147–156

    Article  CAS  PubMed  Google Scholar 

  • Paul, G., F. Lottspeich, and F. Wieland. 1986 Asparaginyl-N-acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan J. Biol. Chem. 261 1020–1024

    CAS  PubMed  Google Scholar 

  • Paul, G., and F. Wieland. 1987 Sequence of the halobacterial glycosaminoglycan J. Biol. Chem. 262 9587–9593

    CAS  PubMed  Google Scholar 

  • Payne, J. I., S. N. Sehgal, and N. E. Gibbons. 1960 Immersion refractometry of some halophilic bacteria Can. J. Microbiol. 6 9–15

    Article  CAS  Google Scholar 

  • Pecher, T., and A. Böck. 1981 In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors FEMS Microbiol. Lett. 10 295–297

    Article  CAS  Google Scholar 

  • Peijin, Z., X. Yi, X. Changsong, M. Yunqing, and L. Hongdi. 1994 New species of Haloarcula Acta Microbiol. Sin. (in Chinese) 34 89–95

    Google Scholar 

  • Peijin, Z., and X. Yi. 1996 Phylogenetic position of a halophilic archaeon Haloarcula aidinensis B-2, determined from its 16S rRNA sequence Japan Collection of Microorganisms

    Google Scholar 

  • Pérez-Fillol, M., and F. Rodriguez-Valera. 1986 Potassium ion accumulation in cells of different halobacteria Microbiología SEM 2 73–80

    Google Scholar 

  • Petter, H. F. M. 1931 On bacteria of salted fish Proc. Konink. Akad. Wet. Amsterdam. Ser. B 34 1417–1423

    CAS  Google Scholar 

  • Pfeifer, F., G. Weidinger, and W. Goebel. 1981 Genetic variability in Halobacterium halobium J. Bacteriol. 145 375–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer, F. 1986 Insertion elements and genome organization of Halobacterium halobium Syst. Appl. Microbiol. 7 36–40

    Article  CAS  Google Scholar 

  • Pfeifer, F. 1988 Genetics of halobacteria In: F. Rodriguez-Valera (Ed.) Halophilic bacteria CRC Press Boca Raton, FL II 105–133

    Google Scholar 

  • Pfeifer, F., and C. Englert. 1992 Function and biosynthesis of gas vesicles in halophilic Archaea J. Bioenerg. Biomembr. 24 577–585

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, F., K. Krüger, R. Röder, A. Mayr, S. Ziesche, and S. Offner. 1997 Gas vesicle formation in halophilic archaea Arch. Microbiol. 167 257–268

    Article  Google Scholar 

  • Post, F. J. 1977 The microbial ecology of the Great Salt Lake Microbial. Ecol. 3 143–165

    Article  CAS  Google Scholar 

  • Post, F. J. 1981 Microbiology of the Great Salt Lake north arm Hydrobiologia 81 59–69

    Article  Google Scholar 

  • Post, F. J., and N. F. Collins. 1982 A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive J. Food Biochem. 6 25–38

    Article  CAS  Google Scholar 

  • Post, F. J., and F. A. Al-Harjan. 1988 Surface activity of halobacteria and potential use in microbially enhanced oil recovery Syst. Appl. Microbiol. 11 97–101

    Article  CAS  Google Scholar 

  • Pugh, E. L., M. K. Wassef, and M. Kates. 1971 Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations Can. J. Biochem. 49 953–958

    Article  CAS  PubMed  Google Scholar 

  • Pugh, E. L., and M. Kates. 1994 Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum Biochim. Biophys. Acta 1196 38–44

    Article  CAS  PubMed  Google Scholar 

  • Quesada, E., A. Ventosa, F. Rodriguez-Valera, and A. Ramos-Cormenzana. 1982 Types and properties of some bacteria isolated from hypersaline soils J. Appl. Bacteriol. 53 155–161

    Article  Google Scholar 

  • Rajagopalan, R., and W. Altekar. 1991 Products of non-reductive CO2 assimilation in the halophilic archaebacterium Haloferax mediterranei Indian J. Biochem. Biophys. 28 65–67

    CAS  PubMed  Google Scholar 

  • Rajagopalan, R., and W. Altekar. 1994 Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei Eur. J. Biochem. 221 863–869

    Article  CAS  PubMed  Google Scholar 

  • Rawal, N., S. M. Kelkar, and W. Altekar. 1988a Alternative routes of carbohydrate metabolism in halophilic archaebacteria Indian J. Biochem. Biophys. 25 674–686

    CAS  PubMed  Google Scholar 

  • Rawal, N., S. M. Kelkar, and W. Altekar. 1988b Ribulose 1,5-bisphosphate dependent CO2 fixation in the halophilic archaebacterium, Halobacterium mediterranei Biochem. Biophys. Res. Commun. 156 451–456

    Article  CAS  PubMed  Google Scholar 

  • Röder, R., and F. Pfeifer. 1996 Influence of salt on the transcription of the gas-vesicle gene of Haloferax mediterranei and identification of the endogenous transcriptional activator Microbiology UK 142 1715–1723

    Article  Google Scholar 

  • Rodriguez-Valera, F., F. Ruiz-Berraquero, and A. Ramos-Cormenzana. 1979 Isolation of extreme halophiles from seawater Appl. Env. Microbiol. 38 164–165

    CAS  Google Scholar 

  • Rodriguez-Valera, F., F. Ruiz-Berraquero, and A. Ramos-Cormenzana. 1980a Isolation of extremely halophilic bacteria able to grow in defined organic media with single carbon sources J. Gen. Microbiol. 119 535–538

    Google Scholar 

  • Rodriguez-Valera, F., F. Ruiz-Berraquero, and A. Ramos-Cormenzana. 1980b Behaviour of mixed populations of halophilic bacteria in continuous cultures Can. J. Microbiol. 26 1259–1263

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera, F., G. Juez, and D. J. Kushner. 1982 Halocins: Salt dependent bacteriocins produced by extremely halophilic rods Can. J. Microbiol. 28 151–154

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F., G. Juez, and D. J. Kushner. 1983a Halobacterium mediterranei spec. nov., a new carbohydrate-utilising extreme halophile Syst. Appl. Microbiol. 4 369–381

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera, F., J. J. Nieto, and F. Ruiz-Berraquero. 1983b Light as an energy source in continuous cultures of bacteriorhodopsin-containing halobacteria Appl. Env. Microbiol. 45 868–871

    CAS  Google Scholar 

  • Rodriguez-Valera, F., A. Ventosa, G. Juez, and J. F. Imhoff. 1985 Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern Microb. Ecol. 11 107–115

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera, F., J. A. G. Lillo, J. Antón, and I. Meseguer. 1991 Biopolymer production by Haloferax mediterranei In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 373–380

    Chapter  Google Scholar 

  • Rodriguez-Valera, F. 1992 Biotechnological potential of halobacteria In: M. J. Danson, D. W. Hough, and G. G. Lunt (Eds.) Archaebacteria: biochemistry and biotechnology: Biochemical Society Symposium no. 58 Biochemical Society High Holburn, London 135–147

    Google Scholar 

  • Rodriguez-Valera, F., and J. A. G. Lillo. 1992 Halobacteria as producers of polyhydroxyalkanoates FEMS Microbiol. Rev. 103 181–186

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F. 1995 Cultivation of halophilic Archaea In: S. DasSarma, and E. M. Fleischmann (Eds.) Archaea: A laboratory manual. Halophiles Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY 13–16

    Google Scholar 

  • Rodríguez-Valera, F., S. Acinas, and J. Antón. 1999 Contribution of molecular techniques to the study of microbial diversity in hypersaline environments In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 27–38

    Google Scholar 

  • Rogers, P. J., and C. A. Morris. 1978 Regulation of bacteriorhodopsin synthesis by growth rate in continuous cultures of Halobacterium halobium Arch. Microbiol. 119 323–325

    Article  CAS  Google Scholar 

  • Romanenko, V. I. 1981 Square microcolonies in the surface water film of the Saxkoye lake Mikrobiologiya (in Russian) 50 571–574

    Google Scholar 

  • Rønnekleiv, M., M. Lenes, S. Norgård, and S. Liaaen-Jensen. 1995 Three dodecaene C50-carotenoids from halophilic bacteria Phytochemistry 39 631–634

    Article  Google Scholar 

  • Rosenshine, I., R. Tchelet, and M. Mevarech. 1989 The mechanism of DNA transfer in the mating system of an archaebacterium Science 245 1387–1389

    Article  CAS  PubMed  Google Scholar 

  • Rosenshine, I., and M. Mevarech. 1991 The kinetic of the genetic exchange process in Halobacterium volcanii mating In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 265–270

    Chapter  Google Scholar 

  • Ross, H. N. M., M. D. Collins, B. J. Tindall, and W. D. Grant. 1981 A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria J. Gen. Microbiol. 123 75–80

    CAS  Google Scholar 

  • Ross, H. N. M., and W. D. Grant. 1985 Nucleic acid studies on halophilic archaebacteria J. Gen. Microbiol. 131 165–173

    CAS  PubMed  Google Scholar 

  • Ruepp, A., and J. Soppa. 1996 Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): Genes, gene products, and transcripts of the arcRACB gene cluster J. Bacteriol. 178 4942–4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakane, T., I. Fukuda, T. Itoh, and A. Yokota. 1992 Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying J. Microbiol. 16 281–287

    Google Scholar 

  • Sapienza, C., and W. F. Doolittle. 1982 Unusual physical organization of the Halobacterium genome Nature 295 384–389

    Article  CAS  PubMed  Google Scholar 

  • Schalkwyk, L. C. 1993 Halobacterial genes and genomes In: M. Kates, D. J. Kushner, and A. T. Matheson (Eds.) The biochemistry of Archaea (Archaebacteria) Elsevier Amsterdam 467–496

    Chapter  Google Scholar 

  • Scharf, B., and M. Engelhard. 1993 Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis Biochemistry 32 12894–12900

    Article  CAS  PubMed  Google Scholar 

  • Scharf, B., R. Wittenberg, and M. Engelhard. 1997 Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: Possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba3 Biochemistry 36 4471–4479

    Article  CAS  PubMed  Google Scholar 

  • Schinzel, R., and K. J. Burger. 1984 Sensitivity of halobacteria to aphidicolin, an inhibitor of eukaryotic α-type DNA polymerases FEMS Microbiol. Lett. 25 187–190

    CAS  Google Scholar 

  • Schinzel, R., and K. J. Burger. 1986 A site-specific endonuclease activity in Halobacterium halobium FEMS Microbiol. Lett. 37 325–329

    Article  CAS  Google Scholar 

  • Schleifer, K. H., J. Steber, and H. Mayer. 1982 Chemical composition and structure of the cell wall of Halococcus morrhuae Zbl. Bakt. Hyg. I. Abt. Orig. C. 3 171–178

    CAS  Google Scholar 

  • Schobert, B., and J. K. Lanyi. 1982 Halorhodopsin is a light-driven chloride pump J. Biol. Chem. 257 10306–10313

    CAS  PubMed  Google Scholar 

  • Seidel, R., B. Scharf, M. Gautel, K. Kleine, D. Oesterhelt, and M. Engelhard. 1995 The primary structure of sensory rhodopsin II: A member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II Proc. Natl. Acad. Sci. USA 92 3036–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano, J. A., M. Camacho, and M. J. Bonete. 1998 Operation of glyoxylate cycle in halophilic archaea: Presence of malate synthase and isocitrate lyase in Haloferax volcanii FEBS Lett. 434 13–16

    Article  CAS  PubMed  Google Scholar 

  • Severina, L. O., I. A. Usenko, and V. K. Plakunov. 1989 Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium, Halobacterium mediterranei Microbiology 58 441–445

    Google Scholar 

  • Severina, L. O., I. A. Usenko, and V. K. Plakunov. 1990 Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium, Halobacterium volcanii Microbiology 59 292–295

    Google Scholar 

  • Shand, R. F., and M. C. Betlach. 1991 Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light J. Bacteriol. 173 4692–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shand, R. F., and A. M. Perez. 1999 Haloarchaeal growth physiology In: J. Seckbach (Ed.) Enigmatic microorganisms and life in extreme environments Kluwer Academic Publishers Dordrecht 414–424

    Google Scholar 

  • Shand, R. F., L. B. Price, and E. M. O’Connor. 1999 Halocins: Protein antibiotics from hypersaline environments In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 295–306

    Google Scholar 

  • Shewan, J. M. 1971 The microbiology of fish and fishery products—a progress report J. Appl. Bacteriol. 34 299–315

    Article  CAS  PubMed  Google Scholar 

  • Simon, R. D. 1978 Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles Nature 273 314–317

    Article  CAS  PubMed  Google Scholar 

  • Simon, R. D. 1980 Interactions between light and gas vacuoles in Halobacterium salinarium strain 5: Effect of ultraviolet light Appl. Environ. Microbiol. 40 984–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sioud, M., G. Baldacci, P. Forterre, and A.-M. de Recondo. 1987 Antitumor drugs inhibit the growth of halophilic archaebacteria Eur. J. Biochem. 169 231–236

    Article  CAS  PubMed  Google Scholar 

  • Sioud, M., O. Possot, C. Elie, L. Sibold, and P. Forterre. 1988 Coumarin and quinolone action in archaebacteria: Evidence for the presence of a DNA gyrase-like enzyme J. Bacteriol. 170 946–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev, V. P. 1993 Bioenergetics of extreme halophiles In: M. Kates, D. J. Kushner, and A. T. Matheson (Eds.) The biochemistry of Archaea (Archaebacteria) Elsevier Amsterdam 25–40

    Chapter  Google Scholar 

  • Smallbone, B. W., and M. Kates. 1981 Structural identification of minor glycolipids in Halobacterium cutirubrum Biochim. Biophys. Acta. 665 551–558

    Article  CAS  Google Scholar 

  • Soliman, G. S. H., and H. G. Trüper. 1982 Halobacterium pharaonis sp. nov., a new extremely halophilic bacterium with a low magnesium requirement Zbl. Bakt. Hyg., I. Abt. Orig. C. 3 318–329

    CAS  Google Scholar 

  • Sonawat, H. M., R. Srivasta, S. Swaminathan, and G. Govit. 1990 Glycolytic and Entner-Doudoroff pathways in Halobacterium halobium: Some new observations based on 13C NMR spectroscopy Biochem. Biophys. Res. Commun. 173 358–362

    Article  CAS  PubMed  Google Scholar 

  • Spudich, J. L., and R. A. Bogomolni. 1988 Sensory rhodopsins of halobacteria Ann. Rev. Biophys. Biophys. Chem. 17 193–215

    Article  CAS  Google Scholar 

  • Spudich, J. L., D. N. Zacks, and R. A. Bogomolni. 1995 Microbial sensory rhodopsins: photochemistry and function Israel J. Chem. 35 495–513

    Article  CAS  Google Scholar 

  • Steber, J., and K. H. Schleifer. 1975 Halococcus morrhuae: A sulfated heteropolysaccharide as the structural component of the bacterial cell wall Arch. Microbiol. 105 173–177

    Article  CAS  PubMed  Google Scholar 

  • Steber, J., and K. H. Schleifer. 1979 N-glycyl-glucosamine, a novel constituent in the cell wall of Halococcus morrhuae Arch. Microbiol. 123 209–212

    Article  CAS  Google Scholar 

  • Steensland, H., and H. Larsen. 1971 The fine structure of the extremely halophilic cocci Kong. Norske Vidensk. Selsk. Skr. 8 1–5

    Google Scholar 

  • Stoeckenius, W. 1981 Walsby’s square bacterium: Fine structure of an orthogonal procaryote J. Bacteriol. 148 352–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckenius, W., and R. A. Bogomolni. 1982 Bacteriorhodopsin and related pigments of halobacteria Ann. Rev. Biochem. 51 587–616

    Article  CAS  PubMed  Google Scholar 

  • Stoeckenius, W., D. Bivin, and K. McGinnis. 1985 Photoactive pigments in halobacteria from the Gavish Sabkha In: G. M. Friedman and W. E. Krumbein (Eds.) Hypersaline ecosystems: The Gavish Sabkha Springer-Verlag Berlin 288–295

    Chapter  Google Scholar 

  • Sugiyama, Y., N. Yamada, and Y. Mukohata. 1994 The light-driven pump, cruxrhodopsin-2 in Haloarcula sp. arg-2 (bR+, hR-), and its coupled ATP formation Biochim. Biophys. Acta 1188 287–292

    Article  PubMed  Google Scholar 

  • Sumper, M. 1987 Halobacterial glycoprotein biosynthesis Biochim. Biophys. Acta 906 69–79

    Article  CAS  PubMed  Google Scholar 

  • Sumper, M., E. Berg, R. Mengele, and I. Strobel. 1990 Primary structure and glycosylation of the S-layer protein of Haloferax volcanii J. Bacteriol. 172 7111–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takashina, T., T. Hamamoto, K. Otozai, W. D. Grant, and K. Horikoshi. 1990 Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium Syst. Appl. Microbiol. 13 177–181

    Article  CAS  Google Scholar 

  • Tasch, P., and B. Todd. 1973 Halophilic bacteria susceptibility to peracetic acid vapor and ethylene oxide Appl. Microbiol. 25 205–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasch, P., and B. Todd. 1974 Halophile bacteria: Experimental control and its ecological significance In: A. L. Coogan (Ed.) 4th Symposium on salt 1 Northern Ohio Geological Society Cleveland, OH 373–376

    Google Scholar 

  • Tateno, M., K. Ihara, and Y. Mukohata. 1994 The novel ion pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes Arch. Biochem. Biophys. 315 127–132

    Article  CAS  PubMed  Google Scholar 

  • Tchelet, R., and M. Mevarech. 1994 Interspecies genetic transfer in halophilic archaebacteria Syst. Appl. Microbiol. 16 578–581

    Article  CAS  Google Scholar 

  • Thongthai, C., and M. Siriwongpairat. 1990 The sequential quantitation of microorganisms in traditionally fermented fish sauce (nam pla) In: P. J. A. Reilly, R. W. H. Parry, and L. E. Barile (Eds.) Post-harvest technology, preservation and quality of fish in southeast Asia International Foundation for Science Stockholm 51–59

    Google Scholar 

  • Thongthai, C., and P. Suntinanalert. 1991 Halophiles in Thai fish sauce (nam pla) In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 381–388

    Chapter  Google Scholar 

  • Thongthai, C., T. J. McGenity, P. Suntinanalert, and W. D. Grant. 1992 Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla) Lett. Appl. Microbiol. 14 111–114

    Article  Google Scholar 

  • Tian, X., X. Yu, H. Liu, and P. Zhou. 1997 New species of Natronobacterium Acta Microbiol. Sin. (in Chinese) 37 1–6

    CAS  Google Scholar 

  • Tindall, B. J., A. A. Mills, and W. D. Grant. 1980 An alkalophilic red halophilic bacterium with a low magnesium requirement J. Gen. Microbiol. 116 257–260

    Google Scholar 

  • Tindall, B. J., H. N. M. Ross, and W. D. Grant. 1984 Natronobacterium gen. nov. and Natronococcus gen. nov. two new genera of haloalkaliphilic archaebacteria Syst. Appl. Microbiol. 5 41–57

    Article  Google Scholar 

  • Tindall, B. J. 1985 Qualitative and quantitative distribution of diether lipids in haloalkaliphilic archaebacteria Syst. Appl. Microbiol. 6 243–246

    Article  CAS  Google Scholar 

  • Tindall, B. J., and M. D. Collins. 1986 Structure of 2-methyl-3-VIII-dihydrooctaprenyl-1,4-naphthoquinone from Halococcus morrhuae FEMS Microbiol. Lett. 37 117–119

    Article  CAS  Google Scholar 

  • Tindall, B. J., and H. G. Trüper. 1986 Ecophysiology of the aerobic halophilic archaebacteria Syst. Appl. Microbiol 7 202–212

    Article  CAS  Google Scholar 

  • Tindall, B. J., G. A. Tomlinson, and L. I. Hochstein. 1987 Polar lipid composition of a new halobacterium Syst. Appl. Microbiol. 9 6–8

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B. J., G. A. Tomlinson, and L. I. Hochstein. 1989 Transfer of Halobacterium denitrificans (Tomlinson, Jahnke, and Hochstein) to the genus Haloferax as Haloferax denitrificans comb. nov Int. J. Syst. Bacteriol. 39 359–360

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B. J. 1990a Lipid composition of Halobacterium lacusprofundi FEMS Microbiol. Lett. 66 199–202

    Article  CAS  Google Scholar 

  • Tindall, B. J. 1990b A comparative study of the lipid composition of Halobacterium saccharovorum from various sources Syst. Appl. Microbiol. 13 128–130

    Article  CAS  Google Scholar 

  • Tindall, B. J. 1991 Cultivation and preservation of members of the family Halobacteriaceae World J. Microbiol. Biotechnol. 7 95–98

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B. J., B. Amendt, and C. Dahl. 1991 Variations in the lipid composition of aerobic, halophilic archaeobacteria In: F. Rodriguez-Valera (Ed.) General and applied aspects of halophilic microorganisms Plenum Press New York, NY 199–205

    Chapter  Google Scholar 

  • Tindall, B. J. 1992 The family Halobacteriaceae In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The prokaryotes: A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications I Springer-Verlag New York, NY 768–808

    Google Scholar 

  • Tomioka, H., and H. Sasabe. 1995 Isolation of photochemically active archaebacteria photoreceptors, pharaonis phoborhodopsin from Natronobacterium pharaonis Biochim. Biophys. Acta 1234 261–267

    Article  PubMed  Google Scholar 

  • Tomlinson, G. A., and L. I. Hochstein. 1972a Isolation of carbohydrate metabolizing, extremely halophilic bacteria Can. J. Microbiol. 18 698–701

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, G. A., and L. I. Hochstein. 1972b Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria Can. J. Microbiol. 18 1973–1976

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, G. A., T. K. Koch, and L. I. Hochstein. 1974 The metabolism of carbohydrates by extremely halophilic bacteria: Glucose metabolism via a modified Entner-Doudoroff pathway Can. J. Microbiol. 20 1085–1091

    Article  CAS  Google Scholar 

  • Tomlinson, G. A., and L. I. Hochstein. 1976 Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium Can. J. Microbiol. 22 587–591

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, G. A., M. P. Strohm, and L. I. Hochstein. 1978 The metabolism of carbohydrates by extremely halophilic bacteria: The identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum Can. J. Microbiol. 24 898–903

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, G. A., L. L. Jahnke, and L. I. Hochstein. 1986 Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium Int. J. Syst. Bacteriol. 36 66–70

    Article  CAS  PubMed  Google Scholar 

  • Torreblanca, M., F. Rodriguez-Valera, G. Juez, A. Ventosa, M. Kamekura, and M. Kates. 1986 Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov., and Haloferax gen. nov Syst. Appl. Microbiol. 8 89–99

    Article  Google Scholar 

  • Torreblanca, M., I. Meseguer, and A. Ventosa. 1994 Production of halocin is a practically universal feature of archaeal halophilic rods Lett. Appl. Microbiol. 19 201–205

    Article  CAS  Google Scholar 

  • Torrella, F. 1986 Isolation and adaptive strategies of haloarculae to extreme hypersaline habitats Abstracts of the fourth international symposium on microbial ecology, Ljubljana 59

    Google Scholar 

  • Torsvik, T., and I. D. Dundas. 1974 Bacteriophage of Halobacterium salinarium Nature 248 680–681

    Article  CAS  PubMed  Google Scholar 

  • Trincone, A., B. Nicolaus, L. Lama, M. De Rosa, A. Gambacorta, and W. D. Grant. 1990 The glycolipid of Halobacterium sodomense J. Gen. Microbiol. 136 2327–2331

    Article  Google Scholar 

  • Trincone, A., E. Trivellone, B. Nicolaus, L. Lama, E. Pagnotta, W. D. Grant, and A. Gambacorta. 1993 The glycolipid of Halobacterium trapanicum Biochim. Biophys. Acta 1210 35–40

    Article  CAS  PubMed  Google Scholar 

  • Trüper, H. G., and E. A. Galinski. 1986 Concentrated brines as habitats for microorganisms Experientia 42 1182–1187

    Article  Google Scholar 

  • Upasani, V., and S. Desai. 1990 Sambar Salt Lake: Chemical composition of the brines and studies on haloalkaliphilic archaebacteria Arch. Microbiol. 154 589–593

    Article  CAS  Google Scholar 

  • Upasani, V. N., S. G. Desai, N. Moldoveanu, and M. Kates. 1994 Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains Microbiology UK 140 1959–1966

    Article  CAS  Google Scholar 

  • Usukura, J., E. Yamada, F. Tokunaga, and T. Yoshizawa. 1980 Ultrastructure of purple membrane and cell wall of Halobacterium halobium J. Ultrastr. Res. 70 204–219

    Article  CAS  Google Scholar 

  • Ventosa, A., and J. J. Nieto. 1995 Biotechnological applications and potentialities of halophilic microorganisms World J. Microbiol. Biotechnol. 11 85–94

    Article  CAS  PubMed  Google Scholar 

  • Ventosa, A., and A. Oren. 1996 Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum Int. J. Syst. Bacteriol. 46 347–347

    Article  Google Scholar 

  • Ventosa, A., M. C. Gutiérrez, M. Kamekura, and M. L. Dyall-Smith. 1999 Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 131–136

    Article  PubMed  Google Scholar 

  • Vreeland, R. H., S. Angelini, and D. G. Bailey. 1998a Anatomy of halophile induced damage to brine cured cattle hides J. Am. Leather Chem. Assoc. 93 121–131

    CAS  Google Scholar 

  • Vreeland, R. H., A. F. Piselli, Jr., S. McDonnough, and S. S. Meyers. 1998b Distribution and diversity of halophilic bacteria in a subsurface salt formation Extremophiles 2 321–331

    Article  CAS  PubMed  Google Scholar 

  • Vreeland, R. H., and D. Powers. 1999 Considerations for microbial sampling of crystals from ancient salt formations In: A. Oren (Ed.) Microbiology and biogeochemistry of hypersaline environments CRC Press Boca Raton, FL 53–73

    Google Scholar 

  • Vreeland, R. H., and W. D. Rosenzweig. 1999 Survival of halophilic bacteria in ancient salts: Possibilities and potentials In: J. Seckbach (Ed.) Enigmatic microorganisms and life in extreme environments Kluwer Academic Publishers Dordrecht 389–398

    Google Scholar 

  • Wagner, G., and R. Linhardt. 1988 The retinal proteins of halobacteria In: F. Rodriguez-Valera (Ed.) Halophilic bacteria II CRC Press Boca Raton, FL 85–104

    Google Scholar 

  • Wais, A. C., M. Kon, R. E. MacDonald, and B. D. Stollar. 1975 Salt-dependent bacteriophage infecting Halobacterium cutirubrum and Halobacterium halobium Nature 256 314–315

    Article  CAS  PubMed  Google Scholar 

  • Wais, A. C., and L. L. Daniels. 1985 Populations of bacteriophage infecting Halobacterium in a transient brine pool FEMS Microbiol. Ecol. 31 323–326

    Article  Google Scholar 

  • Wais, A. C. 1988 Recovery of halophilic archaebacteria from natural environments FEMS Microbiol. Ecol. 53 211–216

    Article  Google Scholar 

  • Walsby, A. E. 1980 A square bacterium Nature 283 69–71

    Article  Google Scholar 

  • Wang, D., and Tang, Q. 1989 Natronobacterium from soda lakes of China In: T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida (Eds.) Recent advances in microbial ecology Japan Scientific Societies Press Tokyo 68–72

    Google Scholar 

  • Weber, H. J., S. Sarma, and T. Leighton. 1982 The Halobacterium group: microbiological methods Meth. Enzymol. 88 369–373

    Article  CAS  Google Scholar 

  • Weidinger, G., G. Klotz, and W. Goebel. 1979 A large plasmid from Halobacterium halobium carrying information for gas vacuole formation Plasmid 2 377–386

    Article  CAS  PubMed  Google Scholar 

  • Wieland, F., W. Dompert, G. Bernhardt, and M. Sumper. 1980 Halobacterial glycoprotein saccharides contain covalently linked sulphate FEBS Lett. 120 110–114

    Article  CAS  PubMed  Google Scholar 

  • Wieland, F., J. Lechner, and M. Sumper. 1982 The cell wall glycoprotein of Halobacterium: structural, functional and biosynthetic aspects Zbl. Bakt. Hyg. I Abt. Orig. C 3 161–170

    Google Scholar 

  • Wieland, F., G. Paul, and M. Sumper. 1985 Halobacterial flagellins are sulfated glycoproteins J. Biol. Chem. 260 15180–15185

    CAS  PubMed  Google Scholar 

  • Wieland, F. 1988 The cell surfaces of halobacteria In: F. Rodriguez-Valera (Ed.) Halophilic bacteria CRC Press Boca Raton, FL II 55–65

    Google Scholar 

  • Witte, A., U. Baranyi, R. Klein, M. Sulzner, C. Luo, G. Wanner, D. H. Krüger, and W. Lubitz. 1997 Characterization of Natronobacterium magadii phage ΦCh1, a unique archaeal phage containing DNA and RNA Mol. Microbiol. 23 603–616

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., K. Chow, and K. Mark. 1983 The role of pigments in Halobacterium cutirubrum against UV irradiation Microbios Lett. 24 85–90

    CAS  Google Scholar 

  • Xu, Y., P. Zhou, and X. Tian. 1999 Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov Int. J. Syst. Bacteriol. 49 261–266

    Article  CAS  PubMed  Google Scholar 

  • Yi, X., L. Hongdi, and Z. Peijin. 1995 Nucleotide sequence of the 16S rRNA from an Archaea, Haloarcula aidinensis strain B2 Acta Microbiol. Sin. (in Chinese) 35 77–85

    Google Scholar 

  • Zhang, W., A. Brooun, M. M. Mueller, and M. Alam. 1996 The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein Proc. Natl. Acad. Sci. USA 93 8230–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvyagintseva, I. S., and A. L. Tarasov. 1988 Extreme halophilic bacteria from saline soils Microbiology 56 664–668

    Google Scholar 

  • Zvyagintseva, I. S., L. M. Gerasimenko, N. A. Kostrikina, E. S. Bulygina, and G. A. Zavarzin. 1995a Interaction of halobacteria and cyanobacteria in a halophilic cyanobacterial community Microbiology 64 209–214

    Google Scholar 

  • Zvyagintseva, I. S., S. S. Belyaev, I. A. Borzenkov, N. A. Kostrikina, E. I. Milechina, and M. V. Ivanov. 1995b Halophilic archaebacteria from the Kalamkass oilfield Microbiology 64 83–87

    Google Scholar 

  • Zvyagintseva, I. S., E. B. Kudryashova, and E. S. Bulygina. 1996 Proposal of a new type strain of Halobacterium distributum Microbiology 65 352–354

    Google Scholar 

  • Zvyagintseva, I. S., N. A. Kostrikina, and S. S. Belyaev. 1998 Detection of halophilic archaea in an Upper Devonian oil field in Tatarstan Microbiology 67 688–691

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Oren, A. (2006). The Order Halobacteriales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30743-5_8

Download citation

Publish with us

Policies and ethics