Skip to main content

Sulfolobales

  • Reference work entry
  • First Online:
The Prokaryotes

Introduction

Within the crenarchaeotal branch of the Archaea (Woese and Fox, 1977; Woese et al., 1990), three orders have been described so far: the Desulfurococcales (Huber and Stetter, 2001b), the Thermoproteales (Zillig et al., 1981), and the Sulfolobales (Stetter, 1989). Members of the Sulfolobales are well-defined and distinguished from the other orders by morphological, physiological and molecular characters. Cells are regular to irregular cocci, which occur usually singly or in pairs and exhibit cell diameters from about 1.0 up to 5 µm. All members of the order are extreme thermophiles to hyperthermophiles with optimal growth temperatures between 65 and 90°C. An important common property is their pH optimum of around pH 2. They grow aerobically, facultatively anaerobically, or anaerobically. Under autotrophic conditions they gain energy by oxidation of elemental sulfur, thiosulfate, sulfidic ores, or molecular hydrogen. Carbon dioxide (CO2) is used as a carbon source....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aagaard, C., I. Leviev, R. N. Aravalli, P. Forterre, D. Prieur, and R. A. Garrett. 1996 General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid FEMS Microbiol. Rev. 18 93–104

    Article  CAS  PubMed  Google Scholar 

  • Agback, P., H. Baumann, S. Knapp, R. Ladenstein, and T. Hard. 1998 Architecture of non-specific protein-DNA interactions in the Sso7-DNA complex Nature Struct. Biol. 5 579–584

    Article  CAS  PubMed  Google Scholar 

  • Albers, S.-V., M. Elferink, R. L. Charlebois, C. Sensen, A. J. Driessen, and W. Konings. 1999 Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein J. Bacteriol. 181 4285–4291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, M. B. 1959 Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte Arch. Mikrobiol. 32 270–277

    Article  CAS  PubMed  Google Scholar 

  • Anemüller, S., M. Lübben, and G. Schäfer. 1985 The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium FEBS Lett. 193 83–87

    Article  Google Scholar 

  • Anemüller, S., and G. Schäfer. 1989 Cytochrome aa3 from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius FEBS Lett. 244 451–455

    Article  Google Scholar 

  • Aravalli, R. N., and R. A. Garrett. 1997 Shuttle vectors for hyperthermophilic archaea Extremophiles 1 183–191

    Article  CAS  PubMed  Google Scholar 

  • Arnold, H. P., Q. She, H. Phan, K. Stedman, D. Prangishvili, I. Holz, J. K. Kristjansson, R. A. Garrett, and W. Zillig. 1999 The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus Molec. Microbiol. 34 217–226

    Article  CAS  Google Scholar 

  • Arnold, H. P., U. Ziese, and W. Zillig. 2000a SNDV, a novel virus of the extremely thermophilic and acidophilic archaeaon Sulfolobus Virology 272 409–416

    Article  CAS  PubMed  Google Scholar 

  • Arnold, H. P., W. Zillig, U. Ziese, I. Holz, M. Crosby, T. Utterback, J. F. Weidmann, J. Kristjanson, H.-P. Klenk, K. E. Nelson, and C. Fraser. 2000b A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus Virology 267 252–266

    Article  CAS  PubMed  Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: reevaluation of a unique biological group Microbiol. Rev. 43 260–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandeiras, T. M., C. A. Salgueiro, H. Huber, C. M. Gomes, and M. Teixeira. 2003 The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase Biochim. Biophys. Acta 1557 13–19

    Article  CAS  PubMed  Google Scholar 

  • Bartels, M. 1989 Glukoseabbau über einen modifizierten Entner-Doudoroff Weg be idem thermoacidophilen Archaebacterium Sulfolobus acidocaldarius [PhD thesis] Medizinische Fakultät, Universität Lübeck, Lübeck, Germany

    Google Scholar 

  • Bartolucci, S., R. Rella, A. Guagliardi, C. A. Raia, A. Gambacorta, M. DeRosa, and M. Rossi. 1987 Malic enzyme from the archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties J. Biol. Chem. 262 7725–7731

    CAS  PubMed  Google Scholar 

  • Bartolucci, S., M. Rossi, and R. Cannio. 2003 Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus solfataricus J. Bacteriol. 185 3948–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann, H., S. Knapp, T. Lundback, R. Ladenstein, and T. Hart. 1994 Solution structure and DNA-binding properties of a small thermostable protein from the archaeon Sulfolobus solfataricus Nature Struct. Biol. 1 808–819

    Article  CAS  PubMed  Google Scholar 

  • Baumann, C., M. Judex, H. Huber, and R. Wirth. 1998 Estimation of genome sizes of hyperthermophiles Extremophiles 2 101–108

    Article  CAS  PubMed  Google Scholar 

  • Baumeister, W., S. Volker, and U. Santarius. 1991 The three-dimensional structure of the surface protein of Acidianus brierleyi determined by electron crystallography Syst. Appl. Microbiol. 14 103–110

    Article  CAS  Google Scholar 

  • Baumeister, W., and G. Lembcke. 1992 Structural features of archaebacterial cell envelopes J. Bioenerg. Biomembr. 24 567–575

    Article  CAS  PubMed  Google Scholar 

  • Bell, S. D., and S. P. Jackson. 2001 Mechanism and regulation of transcription in archaea Curr. Opin. Microbiol. 4 208–213

    Article  CAS  PubMed  Google Scholar 

  • Bell, S. D., C. H. Botting, B. N. Wardleworth, S. P. Jackson, and M. F. White. 2002 The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation Science 296 148–151

    Article  CAS  PubMed  Google Scholar 

  • Benelli, D., E. Maone, and P. Londei. 2003 Two different mechanisms for ribosome/mRNA interation in archaeal translation initiation Molec. Microbiol. 50 635–643

    Article  CAS  Google Scholar 

  • Bergerat, A., B. De Massy, D. Gadelle, P. C. Varoutas, A. Nicolas, and P. Forterre. 1997 An atypical topoisomerase II from Archaea with implications for meiotic recombination Nature 386 414–417

    Article  CAS  PubMed  Google Scholar 

  • Bernander, R., A. Poplawski, and D. W. Grogan. 1998 Altered patterns of cellular growth, morphology, replication and division in conditional-lethal mutants of the thermophilic archaeaon Sulfolobus acidocaldarius Microbiology 146 749–757

    Article  Google Scholar 

  • Bernander, R. 2000 Chromosome replication, nucleoid segregation and cell division in Archaea Trends Microbiol. 8 278–283

    Article  CAS  PubMed  Google Scholar 

  • Bettstetter, M., X. Peng, R. A. Garrett, and D. Prangishvili. 2003 AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus Virology 315 68–79

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl, R. P., K. Neef, D. Prangishvili, and B. Kemper. 2001 Holliday junction resolving enzymes of archaeal viruses SIRV1 and SIRV2 J. Molec. Biol. 309 1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Blum, H., W. Zillig, S. Mallock, H. Domdey, and D. Prangishvili. 2001 The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses Virology 281 6–9

    Article  CAS  PubMed  Google Scholar 

  • Böhlke, K., F. M. Pisani, M. Rossi, and G. Antranikian. 2002 Archaeal DNA replication Extremophiles 6 1–14

    Article  PubMed  CAS  Google Scholar 

  • Bohlool, B. B. 1975 Occurrence of Sulfolobus acidocaldarius, an extremely thermophilic acidophilic bacterium, in New Zealand hot springs. Isolation and immunofluorescence characterization Arch. Microbiol. 106 171–174

    Article  Google Scholar 

  • Bond, C. S., M. Kvaratskhelia, D. Richard, M. F. White, and W. N. Hunter. 2001 Structure of Hjc, a holliday junction resolvase, from Sulfolobus solfataricus Proc. Natl. Acad. Sci. USA 98 5509–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudsocq, F., S. Iwai, F. Haoka, and R. Woodgate. 2001 Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal Din-B-like DNA polymerase with lesion-bypass properties akin to eukaryotic polη Nucleic Acids Res. 29 4607–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley, J. A. 1966 Contribution of Chemolithoautotrophic Bacteria to the Acid Thermal Waters of the Geysir Springs Group in Yellowstone National Park [PhD thesis] Montana State University, Bozeman, MT 58–60

    Google Scholar 

  • Brierley, C. L., and J. A. Brierley. 1973a A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring Can. J. Microbiol. 19 183–188

    Article  CAS  PubMed  Google Scholar 

  • Brierley, C. L., and L. E. Murr. 1973b Leaching: use of a thermophilic and chemoautotrophic microbe Science 179 488–490

    Article  CAS  PubMed  Google Scholar 

  • Brierley, C. L. 1978 Bacterial leaching CRC Crit. Rev. Microbiol. 6 207–262

    Article  CAS  PubMed  Google Scholar 

  • Brierley, C. L., and J. A. Brierley. 1982 Anaerobic reduction of molybdenum by Sulfolobus species Zbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., Abt. 1 Orig. C3 289–294

    Google Scholar 

  • Brock, T. D., K. M. Brock, R. T. Belly, and R. L. Weiss. 1972 Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature Arch. Mikrobiol. 84 54–68

    Article  CAS  PubMed  Google Scholar 

  • Brock, T. D., and J. Gustafson. 1976a Ferric iron reduction by sulfur-and iron-oxidizing bacteria Appl. Environ. Microbiol. 32 567–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brock, T. D., S. Cook, S. Peterson, and J. L. Mosser. 1976b Biochemistry and bacteriology of ferrous iron oxidation in geothermal habitats Geochim. Cosmochim. Acta 40 493–500

    Article  CAS  Google Scholar 

  • Brock, T. D. 1978a Thermophilic Microorganisms and Life at High Temperatures Springer-Verlag, New York, NY 117–179

    Google Scholar 

  • Brock, T. D. 1978b Thermophilic Microorganisms and Life at High Temperatures Springer-Verlag, New York, NY 386–418

    Google Scholar 

  • Brügger, K., P. Redder, Q. She, F. Confalonieri, Y. Zivanovic, and R. A. Garrett. 2002 Mobile elements in archaeal genomes FEMS Microbiol. Lett. 206 131–141

    Article  PubMed  Google Scholar 

  • Bukhrashvili, I., D. Chinchaladze, A. Levina, G. Nevinsky, O. Lavrik, and D. Prangishvili. 1989 Comparison of initiating abilities of primers of different lengths and composition in polymerization reactions catalyzed by DNA polymerases from extremely thermophilic archaebacteria Biochim. Biophys. Acta 1008 102–107

    Article  CAS  PubMed  Google Scholar 

  • Buonocore, V., O. Sgambati, M. DeRosa, E. Esposito, and A. Gambacorta. 1980 A constitutive β-galactosidase from the extreme thermoacidophilic archaebacterium Caldariella acidophila: properties in the free state and in immobilized cells J. Appl. Biochem. 2 390–397

    CAS  Google Scholar 

  • Cacciapuoti, G., M. Porcelli, M. Carteni-Farina, A. Gambacorta, and V. Zappia. 1986 Purification and characterization of propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium Eur. J. Biochem. 161 263–271

    Article  CAS  PubMed  Google Scholar 

  • Cannio, R., P. Contursi, and S. Bartolucci. 1998 An autonomously transforming vector for Sulfolobus solfataricus J. Bacteriol. 180 3237–3240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannio, R., P. Contursi, W. Rossi, and S. Bartolucci. 2001 Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus Extremophiles 3 153–159

    Article  Google Scholar 

  • Castresana, J., M. Lübben, and M. Saraste. 1995 New archaebacteria genes coding for redox proteins: implications for the evolution of aerobic metabolism J. Molec. Biol. 250 202–210

    Article  CAS  PubMed  Google Scholar 

  • Catapano, G., G. Iorio, E. Drioli, and M. Filosa. 1988 Experimental analysis of a cross-flow membrane bioreactor with entrapped whole cells: influence of transmembrane pressure and substrate feed concentration on reactor performance J. Membr. Sci. 35 325–338

    Article  CAS  Google Scholar 

  • Chen, C.-Y., and D. R. Skidmore. 1988 Attachment of Sulfolobus acidocaldarius cells in coal particles Biotechnol. Prog. 4 25–30

    Article  Google Scholar 

  • Chinchaladze, D., D. Prangishvili, A. Scamrov, R. Beabealashvili, N. Dyatkina, and A. Krayevsky. 1989 Nucleoside 5′-triphosphates modified at sugar residues as substrates for DNA polymerase from the thermoacidophilic archaebacterium Sulfolobus acodocaldarius Biochim. Biophys. Acta 1008 113–115

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D., and T. A. Langworthy. 1983 Respiratory quinone composition of some acidophilic bacteria Syst. Appl. Microbiol. 4 295–304

    Article  CAS  PubMed  Google Scholar 

  • Constantinesco, F., P. Forterre, and C. Elie. 2002 NurA, a novel 5′-3′ nuclease gene linked to rad50 and mre11 homologs of thermophilic archaea EMBO Rep. 3 40–52

    Article  Google Scholar 

  • Constantinesco, F., P. Forterre, E. V. Koonin, L. Aravind, and C. Elie. 2004 A bipolar archaeal helicase, HerA, and its potential functional association with Rad50, Mre11 and Nur11 proteins Nucleic Acids Res. 32 1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contursi, P., R. Cannio, S. Prato, G. Fiorentino, M. Rossi, and S. Bartolucci. 2003 Development of a genetic system for hyperthermophilic Archaea: Expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus FEMS Microbiol. Lett. 218 115–120

    Article  CAS  PubMed  Google Scholar 

  • Danson, M. J., and P. A. Wood. 1984 Isocitrate dehydrogenase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius FEBS Lett. 172 289–293

    Article  CAS  Google Scholar 

  • Deatherage, J. F., K. A. Taylor, and L. A. Amos. 1983 Three-dimensional arrangement of the cell-wall protein of Sulfolobus acidocaldarius J. Molec. Biol. 167 823–852

    Article  CAS  PubMed  Google Scholar 

  • De Felice, M., C. W. Sensen, R. L. Charlebois, M. Rossi, and F. M. Pisani. 1999 Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus J. Molec. Biol. 291 47–57

    Article  PubMed  Google Scholar 

  • DeRosa, M., A. Gambacorta, G. Millonig, and J. D. Bu’Lock. 1974 Convergent characters of extremely thermophilic acidophilic bacteria Experientia 30 866–868

    Article  CAS  Google Scholar 

  • DeRosa, M., A. Gambacorta, and J. D. Bu’Lock. 1975 Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius J. Gen. Microbiol. 86 156–164

    Article  PubMed  Google Scholar 

  • DeRosa, M., S. DeRosa, A. Gambacorta, L. Minale, R. H. Thomson, and R. D. Worthington. 1977 Caldariellaquinone, a unique benzo-b-thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium J. Chem. Soc. Perkin Trans. 1 653–657

    Article  Google Scholar 

  • DeRosa, M., S. DeRosa, A. Gambacorta, and J. D. Bu’Lock. 1980a Structure of calditol, a new branched-chain nonitol, and the derived tetraether lipids in thermoacidophilic archaebacteria of the Caldariella group Phytochemistry 19 249–254

    Article  CAS  Google Scholar 

  • DeRosa, M., E. Esposito, A. Gambacorta, B. Nicolaus, and J. D. Bu’Lock. 1980b Effects of temperature on ether lipid composition of Caldariella acidophila Phytochemistry 19 827–831

    Article  CAS  Google Scholar 

  • DeRosa, M., A. Gambacorta, B. Nicolaus, B. Chappe, and P. Albrecht. 1983 Isoprenoid ethers: backbone of complex lipids of the archaebacterium Sulfolobus solfataricus Biochim. Biophys. Acta 753 249–256

    Article  CAS  Google Scholar 

  • DeRosa, M., A. Gambacorta, B. Nicolaus, P. Giardina, E. Poerio, and V. Buonocore. 1984 Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus Biochem. J. 224 407–414

    Article  CAS  Google Scholar 

  • DeRosa, M., and A. Gambacorta. 1988 The lipids of archaebacteria Prog. Lipid Res. 27 153–157

    Article  CAS  Google Scholar 

  • Dionne, I., R. K. Nookala, S. P. Jackson, A. J. Doherty, and S. D. Bell. 2003 A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus Molec. Cell 11 275–282

    Article  CAS  PubMed  Google Scholar 

  • Drioli, E., G. Iorio, M. DeRosa, A. Gambacorta, and B. Nicolaus. 1982 High-temperature immobilized-cell ultrafiltration reactors J. Membr. Sci. 11 365–370

    Article  CAS  Google Scholar 

  • Drioli, E., G. Iorio, G. Catapano, M. DeRosa, and A. Gambacorta. 1986 Capillary membrane reactors: performances and applications J. Membr. Sci. 27 253–261

    Article  CAS  Google Scholar 

  • Elferink, M., C. Schleper, and W. Zillig. 1996 Transformation of the extremely thermophilic archaeon Sulfolobus solfataricus via a self-spreading vector FEMS Microbiol. Lett. 137 31–35

    Article  CAS  PubMed  Google Scholar 

  • Elferink, M., S.-V. Albers, W. N. Konings, and A. J. Driessen. 2001 Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters Molec. Microbiol. 39 1494–1503

    Article  CAS  Google Scholar 

  • Elie, C., A. M. DeRecondo, and P. Forterre. 1989 Thermostable DNA polymerase from the archaebacterium Sulfolobus acidocaldarius: purification, characteization and immunological properties Eur. J. Biochem. 178 619–626

    Article  CAS  PubMed  Google Scholar 

  • Elie, C., M.-F. Baucher, C. Fondrat, and P. Forterre. 1997 A protein related to eucaryal and bacterial DNA-motor proteins in the hyperthermophilic archaeon Sulfolobus acidocaldarius J. Molec. Evol. 45 107–114

    Article  CAS  PubMed  Google Scholar 

  • Fischer, F., W. Zillig, K. O. Stetter, and G. Schreiber. 1983 Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria Nature (Lond.) 301 511–513

    Article  CAS  Google Scholar 

  • Fliermans, C. B., and T. D. Brock. 1972 Ecology of sulfur-oxidizing bacteria in hot acid soils J. Bacteriol. 111 343–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre, P., A. Bergerat, and P. Garcia-Lopez. 1996 The unique DNA topology and DNA topoisimerases of hyperthermophilic archaea FEMS Microbiol. Lett. 18 237–248

    Article  CAS  Google Scholar 

  • Forterre, P., F. Gonfalonieri, and S. Knapp. 1999 Identification of the gene encoding archaeal-specific DNA-binding proteins of the Sac10b family Molec. Microbiol. 32 669–670

    Article  CAS  Google Scholar 

  • Forterre, P. 2000 A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein Trends Genet. 18 236–238

    Article  Google Scholar 

  • Fuchs, T., H. Huber, K. Teiner, S. Burggraf, and K. O. Stetter. 1995 Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany Syst. Appl. Microbiol. 18 560–566

    Article  Google Scholar 

  • Fuchs, T., H. Huber, S. Burggraf, and K. O. Stetter. 1996 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurococcus ambivalens as Acidianus ambivalens comb. nov Syst. Appl. Microbiol. 19 56–60

    Article  CAS  Google Scholar 

  • Furuya, T., T. Nagumo, T. Itoh, and H. Kaneko. 1977 A thermophilic acidophilic bacterium from hot springs Agric. Biol. Chem. 41 607–612

    Google Scholar 

  • Giardina, P., M.-G. DeBiasi, M. DeRosa, A. Gambacorta, and V. Buonocore. 1986 Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus Biochem. J. 239 517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuffre, A., C. M. Gomes, G. Antonini, E. D’Itri, M. Teixeira, and M. Brunori. 1997 Functional properties of the quinol oxidase from Acidianus ambivalens and the possible role of its electron donor: studies in the membrane integrated and purified enzyme Eur. J. Biochem. 250 383–388

    Article  CAS  PubMed  Google Scholar 

  • Golovacheva, R. S., K. M. Valieho-Roman, and A. V. Troitskii. 1987a Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur Mikrobiologiya 56 100–107

    CAS  Google Scholar 

  • Golovacheva, R. S., I. G. Zhukova, T. P. Nikultseva, and D. N. Ostrovinskii. 1987b Some properties of Sulfurococcus mirabilis, a new thermoacidophilic archaebacterium Mikrobiologiya 56 281–287

    CAS  Google Scholar 

  • Gomes, C. M., A. Faria, J. C. Carita, J. Mendes, M. Refalla, P. Chicau, H. Huber, K. O. Stetter, and M. Teixeira. 1998a Di-cluster, seven-iron ferredoxins from hyperthermophilic Sulfolobales J. Biochem. Inorg. Chem. 3 499–507

    Article  CAS  Google Scholar 

  • Gomes, C. M., H. Huber, K. O. Stetter, and M. Teixeira. 1998b Evidence for a novel type of iron cluster in the respiratory chain of the archaeon Sulfolobus metallicus FEBS Lett. 432 99–102

    Article  CAS  PubMed  Google Scholar 

  • Gomes, C. M., R. S. Lemos, M. Teixeira, A. Kletzin, H. Huber, K. O. Stetter, G. Schäfer, and S. Anemüller. 1999 The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex Biophys. Biochim. Acta 1411 134–141

    Article  CAS  Google Scholar 

  • Gomes, C. M., T. M. Bandeiras, and M. Teixeira. 2001 A new type-II NADH dehydrogenases from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain J. Bioenerg. Biomembr. 33 1–8

    Article  CAS  PubMed  Google Scholar 

  • Görisch, H., T. Hartl, W. Groebüter, and J. J. Stezowski. 1985 Archaebacterial malate dehydrogenases: The enzymes from the thermoacidophilic organisms Sulfolobus acidocaldarius and Thermoplasma acidophilum show A-side stereospecifity for NAD(+) Biochem. J. 226 885–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Grogan, D. W. 1989 Phenotypic characterization of the archaebacterial genus Sulfolobus: Comparison of five wild-type strains J. Bacteriol. 171 6710–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan, D., P. Palm, and W. Zillig. 1990 Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov Arch. Microbiol. 154 594–599

    Article  CAS  PubMed  Google Scholar 

  • Grogan, D. 1991 Selectable mutant phenotypes of the extremely thermophilic archaeabacterium Sulfolobus acidocaldarius J. Bacteriol. 173 7725–7727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan, D., and R. P. Gunsalus. 1993 Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of biochemical-genetic study J. Bacteriol. 175 1500–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan, D., G. T. Carver, and J. W. Drake. 2001 Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius Proc. Natl. Acad. Sci. USA 98 7928–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan, D. 2003a Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon J. Bacteriol. 185 4657–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan, D., and J. E. Hansen. 2003b Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeaon Sulfolobus acidocaldarius J. Bacteriol. 185 1266–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Großebüter, W., and H. Görisch. 1985 Partial purification and properties of citrate synthases from the thermoacidophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius Syst. Appl. Microbiol. 6 119–124

    Article  Google Scholar 

  • Gruz, P., F. Pisani, M. Shimizu, M. Yamada, I. Hayashi, K. Morikawa, and T. Nohmi. 2001 Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C J. Biol. Chem. 276 47394–47401

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi, A., M. Moracci, G. Manco, M. Rossi, and S. Bartolucci. 1988 Oxalacetate decarboxylase and pyruvate carboxylase activities, and effect of sulfhydryl reagents in malic enzyme from Sulfolobus solfataricus Biochim. Biophys. Acta 957 301–311

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi, A., A. Napoli, M. Rossi, and M. Ciaramella. 1997 Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein J. Molec. Biol. 267 841–848

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi, A., L. Cerchia, M. Moracci, and M. Rossi. 2000 The chromosomal protein Sso7d of the crenarchaeon Sulfolobus solfataricus rescues aggregated proteins in an ATP hydrolysis-depenedent manner J. Biol. Chem. 275 31813–31818

    Article  CAS  PubMed  Google Scholar 

  • Hartl, T., W. Großebüter, H. Görisch, and J. J. Stezowski. 1987 Crystalline NAD/NADP-dependent malate dehydrogenase; the enzyme from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius Biol. Chem. Hoppe-Seyler 368 259–267

    Article  CAS  PubMed  Google Scholar 

  • Haseltine, C., R. Montalvo-Rodriguez, E. Bini, A. Carl, and P. Blum. 1999 Coordinate transcriptional control in the hyperthermophilic archaeaon Sulfolobus solfataricus J. Bacteriol. 181 3920–3927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichs, M., G. Schäfer, and S. Anemüller. 1999 Functional characterization of an extremely thermophilic ATPase in membranes of the chrenarchaeon Acidianus ambivalens Biol. Chem. 380 1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Hjort, K., and R. Bernander. 1999 Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments J. Bacteriol. 181 5669–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hjort, K., and R. Bernander. 2001 Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius Molec. Microbiol. 40 225–234

    Article  CAS  Google Scholar 

  • Hochstein, L. I., and H. Stan-Lotter. 1992 Purification and properties of an ATPase from Sulfolobus solfataricus Arch. Biochem. Biophys. 295 153–160

    Article  CAS  PubMed  Google Scholar 

  • Huber, G., H. Huber, and K. O. Stetter. 1986 Isolation and characterization of new metal-mobilizing bacteria Biotech. Bioengin. Symp. 16 239–251

    CAS  Google Scholar 

  • Huber, G., C. Spinnler, A. Gambacorta, and K. O. Stetter. 1989 Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria Syst. Appl. Microbiol. 12 38–47

    Article  Google Scholar 

  • Huber, G., and K. O. Stetter. 1991a Sulfolobus metallicus sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers Syst. Appl. Microbiol. 14 372–378

    Article  CAS  Google Scholar 

  • Huber, G., R. Huber, B. Jones, G. Lauerer, A. Neuner, A. Segerer, K. O. Stetter, and E. T. Degens. 1991b Hyperthermophilic archaea-and eubacteria occurring within Indonesia hydrothermal areas Syst. Appl. Microbiol. 14 397–404

    Article  Google Scholar 

  • Huber, G., E. Drobner, H. Huber, and K. O. Stetter. 1992 Growth by aerobic oxidation of molecular hydrogen in Archaea—a metabolic property so far unknown for this domain Syst. Appl. Microbiol. 15 502–504

    Article  Google Scholar 

  • Huber, R., H. Huber, and Stetter, K. O. 2000 Towards the ecology of hyperthermophiles: Biotopes, new isolation strategies and novel metabolic properties FEMS Microbiol. Rev. 24 615–623

    Article  CAS  PubMed  Google Scholar 

  • Huber, H., and K. O. Stetter. 2001a Order I: Thermoproteales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 170

    Google Scholar 

  • Huber, H., and K. O. Stetter. 2001b Order II: Desulfurococcales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 179–180

    Google Scholar 

  • Huber, H., and K. O. Stetter. 2001c Order III: Sulfolobales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 198

    Google Scholar 

  • Hügler, M., H. Huber, K. O. Stetter, and G. Fuchs. 2003a Autotrophic CO2 fixation pathways in archaea (Crenarchaeota) Arch. Microbiol. 179 160–173

    Article  PubMed  CAS  Google Scholar 

  • Hügler, M., R. S. Krieger, M. Jahn, and G. Fuchs. 2003b Characterization of acetyl-CoA/propionyl.CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation Eur. J. Biochem. 270 736–744

    Article  PubMed  CAS  Google Scholar 

  • Ishii, M., T. Miyake, T. Satoh, H. Sugiyama, Y. Oshima, T. Kodama, and Y. Igarashi. 1997 Autotrophic carbon dioxide fixation in Acidianus brierleyi Arch. Microbiol. 166 368–371

    Article  Google Scholar 

  • Iwasaki, T., K. Matsuura, and T. Oshima. 1995a Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. Strain 7. I: The archaeal therminal oxidase supercomplex is a functional fusion of respiratory complexes III and IV with no c-type cytochromes J. Biol. Chem. 270 30881–30892

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki, T., T. Wakagi, and T. Oshima. 1995b Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. Strain 7. III: The archaeal novel respiratory complex II (succinate:caldariellaquinone oxidoreductase complex) inherently lacks heme group J. Biol. Chem. 270 30902–30908

    Article  CAS  PubMed  Google Scholar 

  • Jan, R.-J., J. Wu, S.-M. Chaw, C.-W. Tsai, and S.-D. Tsen. 1999 A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov Int. J. Syst. Bacteriol. 49 1809–1816

    Article  CAS  PubMed  Google Scholar 

  • Jones, K., C. M. Gomes, H. Huber, M. Teixeira, P. Wittung-Stashede. 2002 Formation of a linear [3Fe-4S] cluster in a seven-iron ferredoxin triggered by polypeptide unfolding J. Biol. Inorg. Chem. 7 357–362

    Article  CAS  PubMed  Google Scholar 

  • Jonuscheit, M., E. Martusewitsch, K. M. Stedman, and C. Schleper. 2003 A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector Molec. Microbiol. 48 1241–1252

    Article  CAS  Google Scholar 

  • Kagawa, H. K., J. Osipiuk, N. Maltsev, R. Overbeek, E. Quaite-Randall, A. Joachimiak, and J. Trent. 1995 The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae J. Molec. Biol. 253 712–725

    Article  CAS  PubMed  Google Scholar 

  • Kandler, O., and K. O. Stetter. 1981 Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway Zbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., Abt. 1 Orig. C2 111–121

    Google Scholar 

  • Karavaiko, G. I., O. V. Golyshina, A. V. Troitskii, K. M. Valieho-Roman, R. S. Golovacheva, and T. A. Pivovarova. 1994 Sulfurococcus yellowstonii sp. nov., a new species of iron-and sulphur-oxidizing thermoacidophilic archaebacteria Microbiology 63 379–387

    Google Scholar 

  • Kargi, F., and J. M. Robinson. 1985 Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius Biotechnol. Bioengin. 27 41–49

    Article  CAS  Google Scholar 

  • Kargi, F. 1987 Biological oxidation of thianthrene, thioxanthene and dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius Biotechnol. Lett. 9 478–482

    Article  CAS  Google Scholar 

  • Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Kato, T. Yoshizawa, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, S. Masuda, M. Yanagii, M. Nishimura, A. Yamagishi, T. Oshima, and H. Kikuchi. 2001 Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7 DNA Res. 8 123–140

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., H.-P. Klenk, R. K. Singh, O. Feeley, C. Schleper, and W. Zillig. 1996 Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1 Plasmid 35 141–144

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J., H.-P. Klenk, R. K. Singh, M. E. Schenk, C. W. Sensen, W. Zillig, and W. F. Doolittle. 1998 Sulfolobus islandicus plasmid pRN1 and pRN2 share distant but common evolutionary distance Extremophiles 2 391–393

    Article  CAS  PubMed  Google Scholar 

  • Kerr, I., D., R. I. M. Wadsworth, L. Cubeddu, W. Blankenfeldt, J. H. Naismith, and M. F. White. 2003 Insights into ssDNA resognition by the OB fold from a structural and thermodynamic study of Sulfolbus SSB protein EMBO J. 22 2561–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerscher, L., S. Nowitzki, and D. Oesterhelt. 1982 Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid:ferredoxin oxidoreductases Eur. J. Biochem. 128 223–230

    Article  CAS  PubMed  Google Scholar 

  • Kletzin, A. 1989 Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: Purification and properties of a sulfur oxigenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens J. Bacteriol. 171 1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kletzin, A., A. Lieke, T. Ulrich, R. L. Cherlebois, and C. W. Sensen. 1999 Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea Genetics 152 1307–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kletzin, A., T. Urich, F. Müller, T. M. Bandeiras, and C. M. Gomes. 2004 Dissimilatory oxidation and reduction of elemental sulfur in thermophilic Archaea J. Bioenerg. Biomembr. 36 77–91

    Article  CAS  PubMed  Google Scholar 

  • Klimczak, L. J., F. Grummt, and K. J. Burger. 1985 Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius Nucleic Acids Res. 13 5269–5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokoshka, R. J., K. Bebenek, F. Boudsocq, R. Woodgate, and T. A. Kunkel. 2002 Low fidelity DNA synthesis by a y family DNA polymerase J. Biol. Chem. 277 19633–19638

    Article  CAS  Google Scholar 

  • Kondo, S., A. Yamagishi, and T. Oshima. 1991 Positive selection for uracyl auxotrophs of the sulfur-dependent thermophilic archaeabacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid J. Bacteriol. 173 7698–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König, H., R. Skorko, W. Zillig, and W.-D. Reiter. 1982 Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus, and Thermococcus Arch. Microbiol. 132 297–303

    Article  Google Scholar 

  • Konishi, J., T. Wakagi, T. Oshima, and M. Yoshida. 1987 Purification and properties of the ATPase solubilized from membranes of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius J. Biochem. 102 1379–1387

    CAS  PubMed  Google Scholar 

  • Kulaeva, O. I., E. V. Koonin, J. P. McDonald, S. K. Randall, N. Rabinovich, J. F. Connaughton, A. S. Levine, and R. Woodgate. 1996 Identification of a DinB/UmuC homolog in the archaeon Sulfolobus solfataricus Mut. Res. 357 245–253

    Article  Google Scholar 

  • Kurosawa, N., Y. H. Itoh, T. Iwai, A, Sugai, I. Uda, N. Kimura, T. Horiuchi, and T. Itoh. 1998 Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales Int. J. Syst. Bacteriol. 48 451–456

    Article  PubMed  Google Scholar 

  • Kurosawa, N., Y. H. Itoh, and T. Itoh. 2003 Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content Int. J. Syst. Evol. Microbiol. 53 1607–1608

    Article  CAS  PubMed  Google Scholar 

  • Kvaratskhelia, M., and M. F. White. 2000 Two holliday junction resolving enzymes in Sulfolobus solfataricus J. Molec. Biol. 297 923–932

    Article  CAS  PubMed  Google Scholar 

  • Kvaratskhelia, M., B. N. Wardleworth, C. S. Bond, J. M. Fogg, D. M. J. Lilley, and M. F. White. 2002 Holliday junction resolution is modulated by archaeal chromatin components in vitro J. Biol. Chem. 277 2992–2996

    Article  CAS  PubMed  Google Scholar 

  • Langworthy, T. A. 1977 Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius J. Bacteriol. 130 1326–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langworthy, T. A. 1985 Lipids of archaebacteria In: C. R. Woese and R. S. Wolfe (Eds.) The Bacteria, Volume 8: Archaebacteria Academic Press, Orlando, FL 459–497

    Google Scholar 

  • Langworthy, T. A., and J. L. Pond. 1986 Archaebacterial ether lipids and chemotaxonomy Syst. Appl. Microbiol. 7 253–257

    Article  CAS  Google Scholar 

  • Lanzotti, V., A. Trincone, A. Gambacorta, M. DeRosa, and E. Breitmaier. 1986 2H and 13C NMR assignment of benzothiophenquinones from the sulfur-oxidizing archaebacterium Sulfolobus solfataricus Eur. J. Biochem. 160 37–40

    Article  CAS  PubMed  Google Scholar 

  • Laska, S., and A. Kletzin. 2000 Improved purification of the membrane-bound hydrogenase and sulfur-reductase complex from thermophilic Archaea using-aminocaroic acid-containing chromatography buffers J. Chromatogr. B 737 151–160

    Article  CAS  Google Scholar 

  • Laska, S., F. Lottspeich, and A. Kletzin. 2003 Membrane-bound hydrogenase and sulfur-reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens Microbiology 149 2357–2371

    Article  CAS  PubMed  Google Scholar 

  • Lembcke, G., R. Dürr, R. Hegerl, and W. Baumeister. 1991 Image analysis and processing of an imperfect two-dimensional cystal: the surface layer of the archaebacterium Sulfolobus acidocaldariusi re-investigated J. Microscopy 161 263–278

    Article  CAS  Google Scholar 

  • Lembcke, G., W. Baumeister, E. Beckmann, and F. Zemlin. 1993 Cyro-electron microscopy of the surface protein of Sulfolobus shibatae Ultramicroscopy 49 397–406

    Article  CAS  Google Scholar 

  • Lemos, R. S., C. M. Gomes, and M. Teixeira. 2001 Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases Biochem. Biophys. Res. Commun. 281 141–150

    Article  CAS  PubMed  Google Scholar 

  • Lindström, E. B., and H. M. Sehlin. 1989 High efficiency plating of the thermophilic sulfur-dependent archaebacterium Sulfolobus acidocaldarius Appl. Environ. Microbiol. 55 3020–3021

    PubMed  PubMed Central  Google Scholar 

  • Ling, H., F. Bousdoucq, R. Woodgate, and W. Young. 2001 Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication Cell 107 91–102

    Article  CAS  PubMed  Google Scholar 

  • Lipps, G., P. Ibanez, T. Stroessenreuther, K. Hekimian, and G. Kraus. 2001a The protein ORF80 from the acidophilic and thermophilic archaeon Sulfolobus islandicus binds highly specifically to double-stranded DNA and represents a novel type of basic leucine zipper protein Nucleic Acids Res. 29 4973–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipps, G., M. Stegert, and G. Krauss. 2001b Thermostable and site-specific DNA binding of the gene produc of ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archaeal plasmid copy control protein Nucleic Acids Res. 29 904–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipps, G., S. Röther, C. Hart, and G. Krauss. 2003 A novel type of replicative enzyme harbouring ATPase, promase and DNA polymerase activities EMBO J. 22 2516–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löhlein-Werhan, G., P. Goepfert, and H. Eggerer. 1988 Purification and properties of an archaebacterial enzyme: citrate synthase from Sulfolobus solfataricus Biol. Chem. Hoppe-Seyler 369 109–113

    Article  Google Scholar 

  • Lopez-Garcia, P., S. Knapp, R. Ladenstein, and P. Forterre. 1998 In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth Nucleic Acids Res. 26 2322–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia, P., and P. Forterre. 1999 Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock Molec. Microbiol. 33 766–777

    Article  CAS  Google Scholar 

  • Lübben, M., S. Anemüller, and G. Schäfer. 1986 Investigations of the bioenergetic system of Sulfolobus acidocaldarius DSM 639 Syst. Appl. Microbiol. 7 425–426

    Google Scholar 

  • Lübben, M., and G. Schäfer. 1987a A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius Eur. J. Biochem. 164 533–540

    Article  PubMed  Google Scholar 

  • Lübben, M., H. Lünsdorf, and G. Schäfer. 1987b The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Purification and immunological relationships to F[1]-ATPases Eur. J. Biochem. 167 211–219

    Article  PubMed  Google Scholar 

  • Lübben, M., and G. Schäfer. 1989 Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N, N′-dicyclohexylcarbodiimide-binding proteolipid J. Bacteriol. 171 6106–6116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lübben, M., B. Kolmerer, and M. Saraste. 1992 An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes EMBO J. 11 805–812

    PubMed  PubMed Central  Google Scholar 

  • Lübben, M., S. Arnaud, J. Castresana, A. Warne, S. P. J. Albracht, and M. Saraste. 1994 A second terminal oxidase in Sulfolobus acidocaldarius Eur. J. Biochem. 224 151–159

    Article  PubMed  Google Scholar 

  • Ludwig, W., and O. Strunk. 2001 ARB: A software environment for sequence data [{http://www.arb-home.de/arb/documentation.html}{www.arb-home.de}]

    Google Scholar 

  • Lurz, R., M. Grote, J. Dijk, R. Reinhardt, and B. Dobrinski. 1986 Electron microscopic study of DNA complexes with proteins from the archaebacterium Sulfolobus acidocaldarius EMBO J. 5 3715–3721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mai, V. Q., X. Chen, R. Hong, and L. Huang. 1998 Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrane negative DNA supercoils J. Bacteriol. 180 2560–2563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marino, G., G. Nitti, M. I. Arnone, G. Sannia, A. Gambacorta, and M. DeRosa. 1988 Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus J. Biol. Chem. 263 12305–12309

    CAS  PubMed  Google Scholar 

  • Marsh, R. M., P. R. Norris, and N. W. LeRoux. 1983 Growth and mineral oxidation studies with Sulfolobus In: G. Rossi and A. E. Torma (Eds.) Recent Progress in Biohydrometallurgy Associazione Mineraria Sarda, Iglesias Italy 71–81

    Google Scholar 

  • Martins, L. O., R. Huber, H. Huber, K. O. Stetter, M. S. DaCosta, and H. Santos. 1997 Organic solutes in hyperthermophilic Archaea Appl. Environ. Microbiol. 63 896–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martusewitsch, E., C. W. Sensen, and C. Schleper. 2000 High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements J Bacteriol. 182 2574–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure, M. L., and R. W. G. Wyckoff. 1982 Ultrastructural characteristics of Sulfolobus acidocaldarius J. Gen. Microbiol. 128 433–437

    Google Scholar 

  • Menendez, C., Z. Bauer, H. Huber, N. Gad’on, K. O. Stetter, and G. Fuchs. 1999 Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation J. Bacteriol. 181 1088–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minami, Y., S. Wakabayashi, K. Wada, H. Matsubara, L. Kerscher, and D. Oesterhelt. 1985 Amino acid sequence of a ferredoxin from the thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N(6)-monomethyllysine and phyletic consideration of archaebacteria J. Biochem. 97 745–753

    CAS  PubMed  Google Scholar 

  • Müller, F., T. Bandeiras, T. Urich, M. Teixeira, C. M. Gomes, and A. Kletzin. 2004 Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase Nucleic Acids Res. 53 1147–1160

    Google Scholar 

  • Muskhelishvili, G., M. Karseladze, and D. Prangishvili. 1990 Incorporation of exogenous precursors into nucleic acids of the extremely thermophilic acidophilic archaebacterium Sulfolobus acidocaldarius Biochemistry (USSR) 55 517–524

    CAS  Google Scholar 

  • Muskhelishvili, G., P. Palm, and W. Zillig. 1993 SSV1-encoded site-specific recombination system in Sulfolobus shibatae Molec. Gen. Genet. 237 334–342

    CAS  PubMed  Google Scholar 

  • Napoli, A., Y. Zivanovic, C. Bocs, C. Buhler, M. Rossi, P. Forterre, and M. Ciaramella. 2002 DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus Nucleic Acids Res. 30 2656–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaus, B., A. DeSimone, L. Del Piano, P. Giardina, and L. Lama. 1986 Production of 2-keto-3-deoxygluconate by immobilized cells of Sulfolobus solfataricus Biotechnol. Lett. 8 497–500

    Article  CAS  Google Scholar 

  • Nicolaus, B., A. Gambacorta, A. L. Basso, R. Riccio, M. DeRosa, and W. D. Grant. 1988 Trehalose in archaebacteria Syst. Appl. Microbiol. 10 215–217

    Article  CAS  Google Scholar 

  • Nicolaus, B., A. Trincone, L. Lama, G. Palmieri, and A. Gambacorta. 1992 Quinone compositionj in Sulfolobus acidocaldarius grown in different conditions Syst. Appl. Microbiol. 15 18–20

    Article  CAS  Google Scholar 

  • Omer, A., S. Ziesche, W. A. Decatur, M. J. Fournier, and P. P. Dennis. 2003 RNA-modifying machines in archaea Molec. Microbiol. 48 617–629

    Article  CAS  Google Scholar 

  • Palm, P., C. Schleper, B. Grampp, S. Yeats, P. McWilliam, W.-D. Reiter, and W. Zillig. 1991 Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae Virology 185 2242–250

    Article  Google Scholar 

  • Peng, X., I. Holz, W. Zillig, R. A. Garrett, and Q. She. 2000 Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus J. Molec. Biol. 303 449–454

    Article  CAS  PubMed  Google Scholar 

  • Peng, X., H. Blum, Q. She, S. Mallok, K. Brügger, R. A. Garrett, W. Zillig, and D. Prangishvili. 2001 Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: Relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses Virology 291 226–234

    Article  CAS  PubMed  Google Scholar 

  • Potapova, O., N. D. F. Grindley, and C. M. Joyce. 2002 The mutation specificity of the Dbh lesion bypass polymerase and its implications J. Biol. Chem. 277 28157–28166

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili, D., R. P. Vashakidze, M. G. Chelidze, and I. Y. Gabriadze. 1985 A restriction endonucelase SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius FEBS Lett. 192 57–60

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili, D. 1986 DNA-dependent DNA polymerases from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius Molec. Biol. (USSR) 20 477–488

    CAS  Google Scholar 

  • Prangishvili, D., H.-P. Klenk, G. Jakobs, A. Schmiechen, C. Hanselman, I. Holz, and W. Zillig. 1998 Biochemical and physiological characterization of the dUTPase from the archaeal virus SIRV J. Biol. Chem. 273 6024–6029

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili, D., S.-V. Albers, I. Holz, H. P. Arnold, K. Stedman, T. Klein, H. Singh, J. Hiort, A. Schweier, J. K. Kristjansson, and W. Zillig. 1999a Conjugation in Archaea: Frequent occurrence of conjugative plasmids in Sulfolobus Plasmid 40 190–202

    Article  Google Scholar 

  • Prangishvili, D., H. P. Arnold, U. Ziese, D. Goetz, I. Holz, and W. Zillig. 1999b A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of Sulfolobus viruses SIRV1 and SIRV2 Genetics 153 1387–1396

    Google Scholar 

  • Prangishvili, D., I. Holz, E. Stieger, S. Nickell, J. Kristjansson, and W. Zillig. 2000 Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaea of the genus Sulfolobus J. Bacteriol. 182 2985–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prangishvili, D., K. M. Stedman, and W. Zillig. 2001 Viruses of the extremely thermophilic archaeon Sulfolobus Trends Microbiol. 9 39–42

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili, D. 2003 Evolutionary insights from studies on viruses from hot habitats Res. Microbiol. 154 289–294

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili, D., and R. A. Garrett. 2004 Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses Biochem. Soc. Trans. 32 204–208

    Article  CAS  PubMed  Google Scholar 

  • Prüschenk, R., and W. Baumeister. 1987 Three-dimensional structure of the surface protein of Sulfolobus solfataricus Eur. J. Cell Biol. 45 185–191

    Google Scholar 

  • Purschke, W., C. L. Schmidt, A. Petersen, S. Anemüller, and G. Schäfer. 1997 The terminal quinol oxidase of the hyperthermophilic archaeon Desulfurolobus ambivalens exhibits unusual subunit structure and gene organization J. Bacteriol. 179 1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redder, P., Q. She, and R. A. Garrett. 2001 Non-autonomous mobile elements in the crenarchaeaon Solfolobus solfataricus J. Molec. Biol. 306 1–6

    Article  CAS  PubMed  Google Scholar 

  • Rella, R., C. A. Raia, M. Pensa, F. M. Pisani, A. Gambacorta, M. DeRosa, and M. Rossi. 1987 A novel archaebacterial NAD+-dependent alcohol dehydrogenase: Purification and properties Eur. J. Biochem. 167 475–479

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J. A., S. D. Bell, and M. F. White. 2003 An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA Molec. Microbiol. 48 361–371

    Article  CAS  Google Scholar 

  • Robinson, H., Y. G. Gao, B. S. McCrary, S. P. Edmondson, J. W. Shriver, and A. H. J. Wang. 1998 The hyperthermophilic chromosomal protein Sac7d sharply kinks DNA Nature 392 202–205

    Article  CAS  PubMed  Google Scholar 

  • Rossi, M., R. Rella, M. Pensa, S. Bartolucci, M. DeRosa, A. Gambacorta, C. A. Raia, and N. Dell’Aversano Orabona. 1986 Structure and properties of a thermophilic and thermostable DNA polymerase isolated from Sulfolobus solfataricus Syst. Appl. Microbiol. 7 337–341

    Article  CAS  Google Scholar 

  • Sandler, S. J., L. H. Satin, H. S. Samra, A. J. Clark. 1996 RecA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae Nucleic Acids Res. 24 2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz, J. L., G. Huber, H. Huber, and R. Amils. 1994 Using protein synthesis inhibitors to establish the phylogenetic relationships of the Sulfolobales order J. Molec. Evol. 39 528–532

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, G., and M. Meyering-Vos. 1992a F-type or V-type? The chimeric nature of archaebacterial ATP synthase Biochim. Biophys. Acta 1101 232–235

    Article  PubMed  Google Scholar 

  • Schäfer, G., and M. Meyering-Vos. 1992b The plasma membrane ATPase of archaebacteria: A chimeric energy converter Ann. NY Acad. Sci. 671 293–309

    Article  PubMed  Google Scholar 

  • Schäfer, G., M. Engelhard, V. Müller, V. 1999 Bioenergetics of the Archaea Microbiol. Molec. Biol. Rev. 63 570–620

    Google Scholar 

  • Schleper, C., K. Kubo, and W. Zillig. 1992 The particle SSVA from the extremely thermophilic archaeon Sulfolobus is a virus: Demonstration of infectivity and of transfection with viral DNA Proc. Natl. Acad. Sci. USA 89 7645–7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleper, C., R. Röder, T. Singer, and W. Zillig. 1994 An insertion element of the extremely thermophilic archaeaon Sulfolobus solfataricus transposes into the endogenous β-galactosidase gene Molec. Gen. Genet. 243 91–96

    Article  CAS  PubMed  Google Scholar 

  • Schleper, C., I. Holz, D. Janekovic, J. Murphy, and W. Zillig. 1995 A multocopy plasmid of the extremely thermophilic archaeaon Sulfolobus effects its transfer to recipients by mating J. Bacteriol. 177 4417–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönheit, P., and T. Schäfer. 1995 Metabolism of hyperthermophiles World J. Microbiol. Biotechnol. 11 26–57

    Article  PubMed  Google Scholar 

  • Segerer, A., K. O. Stetter, and F. Klink. 1985 Two contrary modes of chemolithotrophy in the same archaebacterium Nature (Lond.) 313 787–789

    Article  CAS  Google Scholar 

  • Segerer, A., A. Neuner, J. K. Kristjansson, and K. O. Stetter. 1986 Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria Int. J. Syst. Bacteriol. 36 559–564

    Article  Google Scholar 

  • Segerer, A., T. A. Langworthy, and K. O. Stetter. 1988 Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields Syst. Appl. Microbiol. 10 161–171

    Article  Google Scholar 

  • Segerer, A., A. Trincone, M. Gahrtz, and K. O. Stetter. 1991 Stygiolobus azoricus gen. and sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaea of the order Sulfolobales Int. J. Syst. Bacteriol. 41 495–501

    Article  Google Scholar 

  • Segerer, A. H., and K. O. Stetter. 1992 The order Sulfolobales In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag, New York, NY 684–701

    Google Scholar 

  • Seitz, E. M., and S. C. Kowalczykowski. 2000 The DNA binding and pairing preferences of the archaeal RadA protein demonstrate a universal characteristic of DNA strand exchange proteins Molec. Microbiol. 37 555–560

    Article  CAS  Google Scholar 

  • Selig, M., K. B. Xavier, H. Santos, and P. Schönheit. 1997 Comperative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga Arch. Microbiol. 167 217–232

    Article  CAS  PubMed  Google Scholar 

  • She, Q., H. Phan, R. A. Garrett, S.-V. Albers, K. M. Stedman, and W. Zillig. 1998 Genetic profile of pNOB8 from Sulfolobus: The first conjugative plasmid from an archaeon Extremophiles 2 417–425

    Article  CAS  PubMed  Google Scholar 

  • She, Q., X. Peng, W. Zillig, and R. A. Garrett. 2001a Gene capture events in archaeal chromosomes Nature 409 478

    Article  CAS  PubMed  Google Scholar 

  • She, Q., R. K. Singh, F. Confalonieri, Y. Zivanovic, G. Allard, M. J. Awayez, C. C.-Y. Chan-Weiher, I. G. Clausen, B. A. Curtis, A. De Moors, G. Erauso, C. Fletcher, P. M. K. Gordon, I. Heikamp-de Jong, A. C. Jeffries, C. J. Kozera, N. Medina, X. Peng, H. P. Thi-Ngoc, P. Redder, M. E. Schenk, C. Theriault, N. Tolstrup, R. Charlebois, W. F. Doolittle, M. Duguet, T. Gaasterland, R. A. Garrett, M. A. Ragan, C. W. Sensen, and J. van der Oost. 2001b The complete genome of the crenarchaeon Sulfolobus solfataricus P2 Proc. Natl. Acad. Sci. USA 98 7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She, Q., K. Brügger, and L. Chen. 2002 Archaeal integrative genetic elements and their impact on genome evolution Res. Microbiol. 153 325–332

    Article  CAS  PubMed  Google Scholar 

  • Shivvers, D. W., and T. D. Brock. 1973 Oxidation of elemental sulfur by Sulfolobus acidocaldarius J. Bacteriol. 114 706–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvian, L. F., E. A. Toth, P. Pham, M. F. Goodman, and T. Ellenberger. 2001 Crystal structure of a DinB family DNA polymerase from Sulfolobus solfataricus Nature Struct. Biol. 8 984–989

    Article  CAS  PubMed  Google Scholar 

  • Stedman, K. M., C. Schleper, E. Rumpf, and W. Zillig. 1999 Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of virual shuttle vectors Genetics 152 1397–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stedman, K. M., Q. She, H. Phan, I. Holz, H. Singh, D. Prangishvili, R. A. Garrett, and W. Zillig. 2000 The pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus demonstrates modes of genomic variation and conjugation in crenarchaeota J. Bacteriol. 182 7014–7020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stedman, K. M., Q. She, H. Phan, H. P. Arnold, I. Holz, R. A. Garrett, and W. Zillig. 2003 Biological and genetic relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2 Res. Microbiol. 154 295–302

    Article  CAS  PubMed  Google Scholar 

  • Stetter, K. O., and W. Zillig. 1985 Thermoplasma and the thermophilic sulfur-dependent archaebacteria In: C. R. Woese and R. S. Wolfe (Eds.) The Bacteria, Volume 8: Archaebacteria Academic Press, Orlando, FL 85–170

    Google Scholar 

  • Stetter, K. O., A. Segerer, W. Zillig, G. Huber, G. Fiala, R. Huber, and H. König. 1986 Extremely thermophilic sulfur-metabolizing archaebacteria Syst. Appl. Microbiol. 7 393–397

    Article  CAS  Google Scholar 

  • Stetter, K. O. 1989 Order III: Sulfolobales ord. nov In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins, Baltimore, MD 3 2250

    Google Scholar 

  • Suzuki, T., T. Iwasaki, T. Uzawa, K. Hara, N. Nemoto, T. Ueki, A. Yamagishi, and T. Oshima. 2002 Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan Extremophiles 6 39–44

    Article  PubMed  Google Scholar 

  • Takayanagi, S., H. Kawasaki, K. Sugimori, T. Yamada, A. Sugai, T. Ito, K. Yamasato, and M. Shioda. 1996 Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon Int. J. Syst. Bacteroil. 46 377–382

    Article  CAS  Google Scholar 

  • Tang, T. H., T. S. Rozdenstvensky, B. Clouet d’Orval, M.-L. Bortolin, H. Huber, B. Charpentier, C. Branlant, J.-P. Bachellerie, J. Brosius, and A. Hüttenhofer. 2002 RNomics in Archaea reveals a further link between splicing of archaeal introns and RNA processing Nucleic Acids Res. 30 921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, K. A., J. F. Deatherage, and L. A. Amos. 1982 Structure of the S-layer of Sulfolobus acidocaldarius Nature (Lond.) 299 840–842

    Article  CAS  Google Scholar 

  • Teixeira, M., R. Batista, A. P. Campos, C. Gomes, J. Mendes, I. Pacheco, S. Anemüller, and W. R. Hagen. 1995 A seven-iron ferredoxin from the thermoacidophilic archaeon Desulfurococcus ambivalens Eur. J. Biochem. 227 322–327

    Article  CAS  PubMed  Google Scholar 

  • Thurl, S., W. Witke, I. Buhrow, and W. Schäfer. 1986 Quinones from archaebacteria. II. Different types of quinones from sulphur-dependent archaebacteria Biol. Chem. Hoppe-Seyler 367, pp 191–197

    Article  Google Scholar 

  • Tolstrup, N., C. W. Sensen, R. A. Garrett, and I. G. Clausen. 2000 Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus Extremophiles 4 175–179

    Article  CAS  PubMed  Google Scholar 

  • Trent, J. D., J. Osipiuk, and T. Pinkau. 1990 Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. B12 J. Bacteriol. 172 1478–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent, J. D., E. Nimmesgern, J. S. Wall, F.-U. Hartl, and A. L. Horwich. 1991 A moleculare chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 Nature 354 490–493

    Article  CAS  PubMed  Google Scholar 

  • Trent, J. D., M. Gabrielsen, B. Jensen, J. Neuhard, and J. Olsen. 1994 Acquired thermotolerance and heat-shock proteins in thermophiles from the three domains J. Bacteriol. 176 6148–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent, J. D., H. K. Kagawa, T. Yaoi, E. Olle, and N. J. Zaluzec. 1997 Chaperonine filaments: the archaeal cytoskeleton? Proc. Natl. Acad. Sci. USA 94 5383–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent, J. D., H. K. Kagawa, C. D. Paavola, R. A. McMillan, J. Howard, L. Janke, C. Lavin, T. Embaye, and C. E. Henze. 2003 Intracellular localization of a group II chaperonin indicates a membrane-related function Proc. Natl. Acad. Sci. USA 100 15589–15594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevisanato, S. I., N. Larsen, A. H. Segerer, K. O. Stetter, and R. A. Garrett. 1996 Phylogenetic analysis of the archaeal order of Sulfolobales based on sequences of 23S rRNA genes and 16S/23S rDNA spacers Syst. Appl. Microbiol. 19 61–65

    Article  CAS  Google Scholar 

  • Typke, D., M. Nitsch, A. Möhrle, R. Hegerl, M. Alam, D. Grogan, and J. Trent. 1988 Image analysis and processing of an imperfect two-dimensional cystal: the surface layer of the archaebacterium Sulfolobus acidocaldariusi re-investigated Inst. Phys. Conf. Ser. 93(3) 379–380

    Google Scholar 

  • Urich, T., T. Bandeiras, S. S. Leal, R. Rachel, T. Albrecht, P. Zimmermann, C. Scholz, M. Teixeira, C. M. Gomes, and A. Kletzin. 2004 The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre Biochem. J. 381 137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadsworth, R. I. M., and M. F. White. 2001 Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus Nucleic Acids Res. 29 914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakagi, T., and T. Oshima. 1985 Membrane-bound ATPase of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius Biochim. Biophys. Acta 817 33–41

    Article  CAS  PubMed  Google Scholar 

  • Wakagi, T., and T. Oshima. 1987 Energy metabolism of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius Orig. Life 17 391–399

    Article  CAS  Google Scholar 

  • Wardleworth, B. N., R. J. Russel, S. D. Bell, G. L. Taylor, and M. F. White. 2002 Structure of Alba: Aarchaeal chromatin protein modulated by acetylation EMBO J. 17 4654–4662

    Article  Google Scholar 

  • Weiss, R. L. 1973 Attachment of bacteria to sulphur in extreme environments J. Gen. Microbiol. 77 501–507

    Article  CAS  Google Scholar 

  • Weiss, R. L. 1974 Subunit cell wall of Sulfolobus acidocaldarius J. Bacteriol. 118 275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker, R. J., D. W. Grogan, and J. W. Taylor. 2003 Geographic barriers isolate endemic populations of hyperthermophilic Archaea Science 301 976–978

    Article  CAS  PubMed  Google Scholar 

  • White, M. F., and S. D. Bell. 2002 Holding together: chromatin in the Archaea Trends Genet. 18 621–626

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R., and G. E. Fox. 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms Proc. Natl. Acad. Sci. USA 74 5088–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C. R., O. Kandler, and M. L. Wheelis. 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya Proc. Natl. Acad. Sci. USA 87 4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, A. P., D. P. Kelly, and P. R. Norris. 1987 Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients Arch. Microbiol. 146 382–389

    Article  CAS  Google Scholar 

  • Worthington, P., V. Hoang, F. Perez-Pomares, and P. Blum. 2003 Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeaon Sulfolobus solfataricus J. Bacteriol. 185 482–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, X., X. Dong, and L. Huang. 2003 Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China Extremophiles 7 493–498

    Article  CAS  PubMed  Google Scholar 

  • Xue, H., R. Guo, Y. Wen, D. Liu, and L. Huang. 2000 An abundant DNA binding protein from the hyperthermophilic archaeaon Sulfolobus shibatae affects DNA supercoiling in a temperature-dependent fashion J. Bacteriol. 182 3929–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats, S., P. McWilliam, and W. Zillig. 1982 A plasmid in the archaebacterium Sulfolobus acidocaldarius EMBO J. 1 1035–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, B. L., J. D. Pata, and T. A. Steitz. 2001 Crystal structure of a DinB family error-prone DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain Molec. Cell 8 427–437

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., K. O. Stetter, and D. Janekovic. 1979 DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius Eur. J. Biochem. 96 597–604

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., K. O. Stetter, W. Schulz, H. Priess, and I. Scholz. 1980 The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases Arch. Microbiol. 125 259–260

    Article  CAS  Google Scholar 

  • Zillig, W., K. O. Stetter, W. Schäfer, D. Janekovic, S. Wunderl, I. Holz, and P. Palm. 1981 Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras Zbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., Abt. 1 Orig. C2 200–227

    Google Scholar 

  • Zillig, W., S. Yeats, I. Holz, A. Böck, F. Gropp, M. Rettenberger, and S. Lutz. 1985 Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens Nature (Lond.) 313 789–791

    Article  CAS  Google Scholar 

  • illig, W., S. Yeats, I. Holz, A. Böck, M. Rettenberger, F. Gropp, and G. Simon. 1986 Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur Syst. Appl. Microbiol. 8 197–203

    Article  Google Scholar 

  • Zillig, W., H. P. Arnold, I. Holz, D. Prangishvili, A. Schweier, K. M. Stedman, Q. She, H. Phan, R. A. Garrett, and J. K. Kristjansson. 1998 Genetic elements in the extremely thermophilic archaeon Sulfolobus Extremophiles 2 131–140

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, P., S. Laska, and A. Kletzin. 1999 Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens Arch. Microbiol. 172 76–82

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Huber, H., Prangishvili, D. (2006). Sulfolobales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30743-5_3

Download citation

Publish with us

Policies and ethics