Skip to main content

The Colorless Sulfur Bacteria

  • Reference work entry
The Prokaryotes

Footnote 1

The name “the colorless sulfur bacteria” has been used since the time of Winogradsky to designate prokaryotes that are either able, or believed to be able, to use reduced sulfur compounds (e.g., sulfide, sulfur, and organic sulfides) as sources of energy for growth. Today, it is known that this group comprises a very heterogeneous collection of bacteria, many of which have little or no taxonomic relationship to each other. The colorless sulfur bacteria play an essential role in the oxidative side of the sulfur cycle (Fig. 1). Like all of the element cycles, the sulfur cycle has an oxidative and a reductive side, which, in most ecosystems, are in balance. However, this balance does not always exist, and accumulations of intermediates such as sulfur, iron sulfides, and hydrogen sulfide are often found. On the reductive side, sulfate (and sometimes elemental sulfur) functions as an electron acceptor in the metabolic pathways used by a wide range of anaerobic bacteria, leading...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter was taken unchanged from the second edition

Literature Cited

  • Agate, A. D., Vishniac, W. V. 1973 Characterization of thiobacillus species by gas-liquid chromatography of cellular fatty acids Archives of Microbiology 89 257–267

    CAS  Google Scholar 

  • Aminuddin, N., Nicholas, D. J. D. 1973 Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans Biochimica Biophysica Acta 325 81–93

    Article  CAS  Google Scholar 

  • Andreae, M. C., Barnard, W. R. 1984 The marine chemistry of dimethylsulfide Marine Chemistry 14 267–279

    Article  CAS  Google Scholar 

  • Arkestein, G. J. M. W. 1980 Contribution of microorganisms to the oxidation of pyrite PhD. Thesis Agricultural University of Wageningen The Netherlands

    Google Scholar 

  • Bak, F., Pfennig, N. 1987 Chemolithotrophic growth of Desulfovibrio sulfodismutans sp.nov. by disproportionation of inorganic sulfur compounds Archives of Microbiology 147 184–189

    Article  CAS  Google Scholar 

  • Beijerinck, A. M. 1904 Phéenomenes de réduction produits par les microbes Archives Neerlandaises Sciences Exactes et Naturelles (Sect. 2) 9 131–157

    Google Scholar 

  • Beudeker, R. F., Cannon, G. C., Kuenen, J. G., Shively, J. M. 1980 Relations between D-ribulose-1, 5-bisphosphate carboxylase, carboxysomes, and CO2-fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat Archives of Microbiology 124 185–189

    Article  CAS  Google Scholar 

  • Beudeker, R. F., de Boer, W., Kuenen, J. G. 1981 Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions FEMS Microbiology Letters 12 337–342

    Article  CAS  Google Scholar 

  • Bonnet-Smits, E. M., Robertson, L. A., Van Dijken, J. P., Senior, E., Kuenen, J. G. 1988 Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha Journal of General Microbiology 134 2281–2289

    CAS  Google Scholar 

  • Bos, P., Huber, T. F., Luyben, K., Ch, A. M., Kuenen, J. G. 1988 Feasibility of a Dutch Process for microbial Desulphurization of Coal Resources, Conservation and Recycling 1 279–291

    Article  CAS  Google Scholar 

  • Bos, P., Kuenen, J. G. 1983 Microbiology of sulphur oxidizing bacteria 18–27 Microbial corrosion The Metals Society London

    Google Scholar 

  • Bos, P., Kuenen, J. G. 1990 Microbial treatment of coal 344–377 Ehrlich, H., and Brierley, C. (ed) Microbial mineral recovery McGraw-Hill Book Company New York

    Google Scholar 

  • Brannan, D. K., Caldwell, D. E. 1980 Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds Applied and Environmental Microbiology 40 211–216

    PubMed  CAS  Google Scholar 

  • Brierley, C. L. 1982 Microbiological Mining Scientific American 247 42–51

    Article  Google Scholar 

  • Brierley, J. A., Lockwood, S. J. 1977 The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system FEMS Microbiology Letters 2 163–165

    Article  CAS  Google Scholar 

  • Brock, T. D., Gustafson, J. 1976 Ferric iron reduction by sulfur and iron oxidizing bacteria Applied and Environmental Microbiology 32 567–571

    PubMed  CAS  Google Scholar 

  • Buisman, C. J. N. 1989 Biotechnological sulphide removal with oxygen PhD Thesis, Agricultural University of Wageningen The Netherlands

    Google Scholar 

  • Caldwell, D. E., Brannan, D. K., Kieft, T. L. 1983 Thermothrix thiopara: Selection and adaption of a filamentous sulfur-oxidizing bacterium colonizing hot spring tufa at pH 7.0 and 74 C Environmental Geochemistry Ecological Bulletin. Stockholm 35 129–134

    Google Scholar 

  • Caldwell, D. E., Caldwell, S. J., Laycock, P. J. 1976 Thermothrix thiopara gen. et sp. nov A facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature Canadian Journal of Microbiology 22 1509–1517

    CAS  Google Scholar 

  • Cavanaugh, C. M. 1983aChemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats: a new symbiosis 699–708 Schenk, H. E. A., Schwemmler, W. (ed.) Endocytobiology Walter de Gruyter & Co Berlin New York

    Google Scholar 

  • Cavanaugh, C. M. 1983bSymbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats Nature 302 58–61

    Article  CAS  Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. 1981 Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Science 213 340–342

    Article  PubMed  CAS  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., van Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., van Andel, T. H. 1979 Submarine thermal springs on the Galapagos Rift Science 203 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Dando, P. R., Southward, A. J. 1986 Chemoautotrophy in bivalve molluscs of the genus Thyasira Journal of the Marine Biological Association UK 66 915–929

    Article  CAS  Google Scholar 

  • de Bruyn, J. C., Boogerd, F. C., Bos, P., Kuenen, J. G. 1990 Floating filter, a novel method for the isolation and enumeration of acidophilic, thermphilic and other fastidiious organisms Applied and Environmental Microbiology 56 2891–2894

    PubMed  Google Scholar 

  • Dubinina, G. A., Grabovich, M. Y. 1984 Isolation, cultivation and charaterization of Macromonas bipunctata Mikrobiologiya 53 748–755

    Google Scholar 

  • Ehrlich, H., Brierley, C., (ed.). 1990 Microbial Metal Recovery McGraw Hill NY

    Google Scholar 

  • Felbeck, H. 1981 Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila(Ventimentifera) Science 213 336–338

    Article  PubMed  CAS  Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. 1981 Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats Nature 293 291–293

    Article  CAS  Google Scholar 

  • Friedrich, C. G., Mitrenga, G. 1981 Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria FEMS Microbiology Letters 10 209–212

    Article  CAS  Google Scholar 

  • Gommers, P. J. F. 1988 Microbiological oxidation of sulfide and acetate in a denitrifying fluidized bed reactor PhD. Thesis. Delft University of Technology Holland

    Google Scholar 

  • Gommers, P. J. F., Kuenen, J. G. 1988 Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium Archives of Microbiology 150 117–125

    Article  CAS  Google Scholar 

  • Gommers, P. J. F., Bijleveld, W., Kuenen, J. G. 1988aSimultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor. I. Start up and reactor performance Water Research 22 1075–1083

    Article  CAS  Google Scholar 

  • Gommers, P. J. F., Bijleveld, W., Zuiderwijk, F. J. M., Kuenen, J. G. 1988bSimultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor—Measurements of activities and conversions Water Research 22 1085–1092

    Article  CAS  Google Scholar 

  • Gottschal, G. C., Kuenen, J. G. 1980 Selective enrichment of facultatively chemolithotrophic Thiobacilli and related organisms in continous culture FEMS Microbiology Letters 7 241–247

    Article  CAS  Google Scholar 

  • Gottschal, G. C., Nanninga, H. J., Kuenen, J. G. 1981 Growth of Thiobacillus A2 under alternating growth conditions in the chemostat Journal of General Microbiology 126 85–96

    CAS  Google Scholar 

  • Gottschal, J. C., de Vries, S., Kuenen, J. G. 1979 Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates Archives of Microbiology 121 241–249

    Article  CAS  Google Scholar 

  • Gottschal, J. C., Thingstad, T. F. 1982 Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat Biotechnology Bioengineering 24 1403–1418

    Article  PubMed  CAS  Google Scholar 

  • Harrison, A. P. 1984 The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat Annual Review of Microbiology 38 265–292

    Article  PubMed  CAS  Google Scholar 

  • Harrison, A. P. 1989 The genus Acidiphilium, 1863–1868 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore

    Google Scholar 

  • Hazeu, W., Batenburg-van der Vegte, W. H., Bos, P., van der Pas, R. K., Kuenen, J. G. 1988 The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans Archives of Microbiology 150 574–579

    Article  CAS  Google Scholar 

  • Hazeu, W., Bijleveld, W., Grotenhuis, J. T. C., Kakes, E., Kuenen, J. G. 1986 Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans Antonie van Leeuwenhoek 52 507–518

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, M., Johnstone, K. I., White, D. 1969 Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole Journal of General Microbiology 57 397–410

    Article  PubMed  CAS  Google Scholar 

  • Ishaque, M., Aleem, M. I. H. 1973 Intermediates of denitrification in the chemo-autotroph Thiobacillus denitrificans Archives of Microbiology 94 269–282

    CAS  Google Scholar 

  • Jannasch, H. W. 1985 The chemosynthetic support of life and the microbial diversity at deep sea hydrothermal vents Proceedings of the Royal Society. London B225 277–297

    Article  Google Scholar 

  • Jannasch, H. W. 1988 Chemosynthetically sustained ecosystems in the deep sea 45–65 Schlegel, H. G., and Bowien, B. (ed.) Autotrophic bacteria Science Tech Publishers Madison WI

    Google Scholar 

  • Jensen, J., Revsbech, N. P. 1989 Photosynthesis and respiration of a diatom biofilm cultures in a new gradient growth chamber FEMS Microbiology Ecology 62 29–38

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. 1982 Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments Philosophical Transactions of the Royal Society of London Series B 298 543–561

    Article  PubMed  Google Scholar 

  • Jørgensen, B. B. 1988 Biogeochemistry of chemoautotrophic bacteria 117–146 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria Science Tech Publishers Madison WI

    Google Scholar 

  • Jørgensen, B. B., des Marais, D. J. 1986 Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats FEMS Microbiology Ecology 38 79–186

    Article  Google Scholar 

  • Jørgensen, B. B., Kuenen, J. G., Cohen, Y. 1979 Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai) Limnology and Oceanography 24 799–822

    Article  Google Scholar 

  • Kanagawa, T., Kelly, D. P. 1986 Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus FEMS Microbiology Letters 34 13–19

    CAS  Google Scholar 

  • Kanagawa, T., Mikami, E. 1989 Removal of methanethiol, dimethyl sulfide, dimethyl disulfide and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m Applied and Environmental Microbiology 55 555–558

    PubMed  CAS  Google Scholar 

  • Katayama-Fujimura, Y., Kawashima, I., Tsuzaki, N., Kuraishi, H. 1984 Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis and Thiobacillus intermedius International Journal of Systematic Bacteriology 34 139–144

    Article  CAS  Google Scholar 

  • Katayama-Fujimura, Y., Tsuzaki, N., Kuraishi, H. 1982 Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus Journal of General Microbiology 128 1599–1611

    CAS  Google Scholar 

  • Kelly, D. P. 1988aOxidation of sulphur compounds Society for General Microbiology Symposium 42 65–98

    Google Scholar 

  • Kelly, D. P. 1988bPhysiology and biochemistry of unicellular sulfur bacteria 193–218 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria Science Tech Publishers Madison WI

    Google Scholar 

  • Kelly, D. P., Harrison, A. P. 1989 The genus Thiobacillus 1842–1858 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore

    Google Scholar 

  • Kelly, D. P., Kuenen, J. G. 1984 Ecology of the colourless sulphur bacteria 211–240 Codd, G. A. (ed.) Aspects of microbial metabolism and ecology Academic Press London

    Google Scholar 

  • König, H., Stetter, K. O. 1989 Archaebacteria 2171–2173 Staley, J. (ed.)Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins Baltimore

    Google Scholar 

  • Kuenen, J. G. 1975 Colorless sulfur bacteria and the sulfur cycle Plant and Soil 43 49–76

    Article  CAS  Google Scholar 

  • Kuenen, J. G. 1989 The colorless sulfur bacteria 1834–1837 Staley. J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore

    Google Scholar 

  • Kuenen, J. G., Beudeker, R. F. 1982 Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs and heterotrophs Philosophical Transactions of the Royal Society of London Series B 298 473–497

    Article  PubMed  CAS  Google Scholar 

  • Kuenen, J. G., Boonstra, J., Schroder, H. G. J., Veldkamp, H. 1977 Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria Microbial Ecology 3 119–130

    Article  CAS  Google Scholar 

  • Kuenen, J. G., Bos, P. 1988 Habitats and ecological niches of chemolitho(auto)trophic bacteria 53–80 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria.Science Tech Publishers Madison WI

    Google Scholar 

  • Kuenen, J. G., Robertson, L. A. 1989aThe Genus Thiomicrospira 1858–1861 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins Baltimore

    Google Scholar 

  • Kuenen, J. G., Robertson, L. A. 1989bThe genus Thiosphaera 1861–1862 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins Baltimore

    Google Scholar 

  • Kuenen, J. G., Robertson, L. A., van Gemerden, H. 1985 Microbial interactions among aerobic and anaerobic sulphur oxidizing bacteria Advances in Microbial Ecology 8 1–59

    Article  CAS  Google Scholar 

  • Kuenen, J. G., Veldkamp, H. 1973 Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thiparus and Thiobacillus neapolitanus Archives of Microbiology 94 173–190

    CAS  Google Scholar 

  • Lane, D. J., Harrison, A. P., Stahl, D., Pace, B., Giovannoni, S. J., Olsen, G. J., Pace, N. R. 1990 Evolutionary relationships among sulfur and iron oxidizing eubacteria J. Bacteriology in press.

    Google Scholar 

  • Lane, D. J., Stahl, D. A., Olsen, G. J., Heller, D. J., Pace, N. R. 1985 Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences Journal of Bacteriology 163 75–81

    PubMed  CAS  Google Scholar 

  • Larkin, J. M., Strohl, W. R. 1983 Beggiatoa, Thiothrix, and Thioploca Annual Review of Microbiology 37 341–367

    Article  PubMed  CAS  Google Scholar 

  • Le Roux, N. W., Wakerly, D. S., Hunt, S. D. 1977 Thermophilic thiobacillus-type bacteria from Icelandic thermal areas Journal of General Microbiology 100 197–201

    Article  Google Scholar 

  • Lundgren, D. G., Andersen, K. J., Penson, C. C., Mahony, R. P. 1964 Culture structure and physiology of the chemoautotroph Ferrobacillus ferrooxidans Journal of General Microbiology 105 215–218

    Google Scholar 

  • Mason, J., Kelly, D. P. 1988 Thiosulfate oxidation by obligately heterotrophic bacteria Microbial Ecology 15 123–134

    Article  CAS  Google Scholar 

  • Matin, A. 1978 Organic nutrition of chemolithotrophic bacteria Annual Review of Microbiology 32 433–469

    Article  PubMed  CAS  Google Scholar 

  • Mosser, J. L., Mosser, A. G., Brock, T. D. 1973 Bacterial origin of sulfuric acid in geothermal habitats Science 179 1323–1324

    Article  PubMed  CAS  Google Scholar 

  • Muyzer, G., de Bruyn, A. C., Schmedding, D. J. M., Bos, P., Westbroek, P., Kuenen, J. G. 1987 A combined immunofluorescence-DNA-fluorescence staining technique for ennumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria Applied and Environmental Microbiology 53 660–664

    PubMed  CAS  Google Scholar 

  • Nelson, D. C. 1988 Physiology and biochemistry of filamentous sulfur bacteria 221–238 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria. Science Tech Publishers Madison WI

    Google Scholar 

  • Nelson, D. C., Castenholz, R. W. 1981 Use of reduced sulfur compounds by Beggiatoa sp Journal of Bacteriology 147 140–154

    PubMed  CAS  Google Scholar 

  • Nelson, D. C., Jannasch, H. W. 1983 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures Archives of Microbiology 136 262–269

    Article  CAS  Google Scholar 

  • Nelson, D. C., Wirsen, C. O., Jannasch, H. W. 1989 Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa Applied and Environmental Microbiology 55(4) 1023–1025

    Google Scholar 

  • Oyaizu, H., Oyaizu-Masuchi, Y., Yokota, A., Miyashita, K., Saitou, N., Takakuwa, S. 1990 Phylogenic study of the genus Thiobacillus with 16S rRNA partial sequencing Journal of General and Applied Microbiology subbmitted.

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B. 1986 Microelectrodes: their use in microbial ecology Advances in Microbial Ecology 9 293–352

    Google Scholar 

  • Revsbech, N. P., Madsen, B., Jørgensen, B. B. 1986 Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. 1986 Limnology Oceanography 31 293–304

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Ward, D. M. 1984 Microelectrode studies of interstitial water chemistry and photosyntheitc activity in a hot spring microbial mat Applied and Environmental Microbiology 48 270–275

    PubMed  CAS  Google Scholar 

  • Robertson, L. A., Cornelisse, R., Zeng, R., Kuenen, J. G. 1989 The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifiers Antonie van Leeuwenhoek 56 301–309

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L. A., Kuenen, J. G. 1983aAnaerobic and aerobic denitrification by sulphide oxidizing bacteria from waste water 3–12 W. J. van ben Brink (ed.) Anaerobic waste water treatment. TNO Corp. Comm. Dept Netherlands

    Google Scholar 

  • Robertson, L. A., Kuenen, J. G. 1983bThiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium Journal of General Microbiology 129 2847–2855

    CAS  Google Scholar 

  • Ruby, E. G., Jannasch, H. W. 1982 Physiological characteristics of Thiomicrospira sp. L-12 isolated from deep sea hydrothermal vents Journal of Bacteriology 149 161–165

    PubMed  CAS  Google Scholar 

  • Ruby, E. G., Wirsen, C. O., Jannasch, H. W. 1981 Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents Applied and Environmental Microbiology 42 317–324

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G. 1981 Allgemeine Mikrobiologie Thieme Verlag Stuttgart

    Google Scholar 

  • Schmidt, T. M., Arieli, B., Cohen, Y., Padan, E., Strohl, W. R. 1987 Sulfur metabolism in Beggiatoa alba Journal of Bacteriology 169 5466–5472

    PubMed  CAS  Google Scholar 

  • Segerer, A., Stetter, K. O. 1989 The genus Acidianus, 2251–2253 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins Baltimore

    Google Scholar 

  • Shafia, F., Wikinson, R. F. 1969 Growth of Ferrobacillus ferrooxidans on organic matter Journal of Bacteriology 97 251–260

    Google Scholar 

  • Smith, A. L., Kelly, D. P. 1979 Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus Journal of General Microbiology 115 377–384

    Article  Google Scholar 

  • Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A., Deming, J. W. 1989 Vent fauna on whale remains Nature 341 27–28

    Article  Google Scholar 

  • Smith, D. W., Finazzo, S. F. 1981 Salinity requirements of a marine Thiobacillus intermedius Archives of Microbiology 129 199–203

    Article  CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988aIsolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy Journal of General Microbiology 134 1407–1417

    CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988bMechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6 Journal of General Microbiology 134 3031–3039

    CAS  Google Scholar 

  • Smith, N. A., Kelly, D. P. 1988c Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m Journal of General Microbiology 134 3041–3048

    CAS  Google Scholar 

  • Sorokin, Y. I. 1970 Interrelations between sulphur and carbon turnover in meromictic lakes Archives of Hydrobiology 66 391–446

    Google Scholar 

  • Sorokin, Y. I. 1972 The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea J. Cons. Int. Explor. Mer. 34 432–455

    Google Scholar 

  • Southward, E. C. 1986 Gill symbionts in thyasirids and other bivalve molluscs Journal of the Marine Biological Association. UK 66 899–914

    Google Scholar 

  • Stackebrandt, E., Murray, R. G. E., Trüper, H. G. 1988 Proteobacteria classis nov., a name for the phylogenetic, taxon that includes the “Purple Bacteria and their relatives.” International Journal of Systematic Bacteriology 38 321–325

    Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., Heller, D. J., Schmidt, T. M., Pace, N. R. 1987 A phylogenetic analysis of certain sulfide oxidizing and related morphologically conspicuous bacteria by 5S ribosomal RNA sequences International Journal of Systematic Bacteriology 37 116–122

    Article  CAS  Google Scholar 

  • Stefess, G. C., Kuenen, J. G. 1989 Factors influencing elemental sulphur production from sulphide or thiosulphate by autotrophic thiobacilli Forum Mikrobiologie 12 92

    Google Scholar 

  • Stetter, K. O. 1988 Extremely thermophilic chemolithautotrophic archaebacteria 167–176 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria. Science Tech Publishers Madison WI

    Google Scholar 

  • Strohl, W. R. 1989 The genus Thiospirillopsis, 2106 Staley, J. (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore

    Google Scholar 

  • Sublette, K. L., Sylvester, N. D. 1987 Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas Biotechnology and Bioengineering 29 249–257

    Article  PubMed  CAS  Google Scholar 

  • Sugio, T., Domatsu, C., Munaka, O., Tano, T., Imai, K. 1985 Role of a ferric iron reducing system in sulfur oxidation of Thiobacillus ferrooxidans Applied and Environmental Microbiology 49 1401–1406

    PubMed  CAS  Google Scholar 

  • Suylen, G. M. B. H., Kuenen, J. G. 1986 Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1 Antonie van Leeuwenhoek 52 281–293

    Article  PubMed  CAS  Google Scholar 

  • Suylen, G. M. B. H., Stefess, G. C., Kuenen, J. G. 1986 Chemolithotrophic potential of a Hyphomicrobium species capable of growth on methylated sulphur compounds Archives of Microbiology 146 192–198

    Article  CAS  Google Scholar 

  • Sweerts, J. P. R. A., de Beer, D., Nielsen, L. P., Verdouw, H., van den Heuvel, J. C., Cohen, Y., Cappenberg, T. E. 1990 Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments Nature submitted.

    Google Scholar 

  • Tanji, Y., Kanagawa, T., Mikami, E. 1989 Removal of dimethyl sulfide, methyl mercaptan and hydrogen sulphide by immobilized Thiobacillus thioparus TK-m Journal of Fermentation and Bioengineering 67 280–285

    Article  CAS  Google Scholar 

  • Taylor, B. F., Hoare, D. S. 1969 New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus J. Bact. 100 487–497

    PubMed  CAS  Google Scholar 

  • Timmer ten Hoor, A. 1975 A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov Netherlands Journal of Sea Research 9 343–351

    Google Scholar 

  • Timmer ten Hoor, A. 1977 Denitrificerende kleurloze zwavelbacterien PhD thesis. University of Groningen Netherlands

    Google Scholar 

  • Trevisan, V. 1842 Prospetto della flora Euganea Coi Tipi Del Seminario.Padova 1–68

    Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1972 Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores Zeitschrift fur Allgemeine Mikrobiologie 12 311–346

    Article  PubMed  CAS  Google Scholar 

  • Tuttle, J. H., Holmes, P. E., Jannasch, H. W. 1974 Growth rate stimulation of marine pseudomonads by thiosulfate Archiv fur Mikrobiologie 99 1–14

    CAS  Google Scholar 

  • Tuttle, J. H., Jannasch, H. W. 1972 Occurrence and types of Thiobacillus-like bacteria in the sea Limnology and Oceanography 17 532–543

    Article  CAS  Google Scholar 

  • Tuttle, J. H., Wirsen, C. O., Jannasch, H. W. 1983 Microbial activities in the emitted hydrothermal waters of the Galapogos Rift vents Marine Biology 73 293–299

    Article  Google Scholar 

  • Winogradsky, S. 1888 Beiträge zur Morphologie und Physiologie der Bakterien Heft 1. Zur Morphologie und Physiologie der Schwefelbakterien Arthur Felix Leipzig 1–120

    Google Scholar 

  • Wirsen, C. O., Jannasch, H. W. 1978 Physiological and morphological observations on Thiovulum sp Journal of Bacteriology 136 765–774

    PubMed  CAS  Google Scholar 

  • Wirsen, C. O., Tuttle, J. H., Jannasch, H. W. 1986 Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site Marine Biology 92 449–456

    Article  CAS  Google Scholar 

  • Woese, C. R. 1987 Bacterial evolution Microbiological Reviews 51 221–271

    PubMed  CAS  Google Scholar 

  • Wood, A. P., Kelly, D. P. 1989 Isolation and physiological characterization of Thiobacillus thyasyris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira flexuosa Archives of Microbiology 152 160–166

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Robertson, L.A., Kuenen, J.G. (2006). The Colorless Sulfur Bacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_31

Download citation

Publish with us

Policies and ethics