Skip to main content

Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes

  • Reference work entry
The Prokaryotes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aagaard, C., J. Z. Dalgaard, and R. A. Garrett. 1995 Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron-cells of Sulfolobus acidocaldarius Proc Natl Akad Sci USA 92 12285–12289

    Article  CAS  Google Scholar 

  • Aagaard, C., I. Leviev, R. N. Aravalli, P. Forterre, D. Prieur, and R. A. Garret. 1996 General vectors for archaeal hyperthermophils: Strategies based on a mobile intron and a plasmid FEMS Microbiol Rev 18 93–104

    Article  CAS  PubMed  Google Scholar 

  • Aalén, N., I. H. Steen, N. K. Birkeland, and T. Lien. 1997 Purification and properties of an extremely thermostable NADP+-specific glutamate dehydrogenase from Archaeoglobus fulgidus Arch Microbiol 168 536–539

    Article  PubMed  Google Scholar 

  • Abdollahi, H., and J. W. T. Wimpenny. 1990 Effects of oxygen on the growth of Desulfovibrio desulfuricans J Gen Microbiol 136 1025–1030

    Article  CAS  Google Scholar 

  • Achenbach-Richter, L., K. O. Stetter, and C. R. Woese. 1987 A possible biochemical missing link among archaebacteria Nature 327 348–349

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. W. W. 1994 Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms FEMS Microbiol Rev 15 261–277

    Article  CAS  PubMed  Google Scholar 

  • Adams, M. W. W. 1990 The structure and mechanism of iron-hydrogenase Biochim Biophys Acta 1020 115–145

    Article  CAS  PubMed  Google Scholar 

  • Aeckersberg, F., F. Bak, and F. Widdel. 1991 Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium Arch Microbiol 156 5–14

    Article  CAS  Google Scholar 

  • Aeckersberg, F. 1994 Anaerober Abbau von Alkanen und 1-Alkenen durch sulfatreduzierende Bakterien. PhD Thesis University of Bremen

    Google Scholar 

  • Aeckersberg, F., F. A. Rainey, and F. Widdel. 1998 Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions Arch Microbiol 170 361–369

    Article  CAS  PubMed  Google Scholar 

  • Aharon, P., and F. Baoshun. 2000 Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico Geochim Cosmochim Acta 64 233–246

    Article  CAS  Google Scholar 

  • Akagi, J. M., and L. L. Campbell. 1962 Studies on thermophilic sulfate-reducing bacteria III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans J Bacteriol 84 1194–1201

    CAS  PubMed  Google Scholar 

  • Akagi, J. M., and V. Adams. 1973 Isolation of a bisulfate reductase activity from Desulfotomaculum nigrificans and its identification as a carbon monoxide-binding pigment P582 J Bacteriol 116 392–396

    CAS  PubMed  Google Scholar 

  • Akagi, J. M. 1983 Reduction of bisulfite by the trithionate pathway by cells extracts from Desulfotomaculum nigrificans Biochem Biophys Res Comm 117 530–535

    Article  CAS  PubMed  Google Scholar 

  • Akagi, J. M., and G. Jackson. 1985 Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans Appl Microbiol 15 1427–1430

    Google Scholar 

  • Akagi, J. M., H. L. Drake, J. H. Kim, and D. Gevertz. 1994 Thiosulfate and trithionate reductases Peck Jr, HD, LeGall, J, Inorganic microbial sulfur metabolism Academic Press San Diego 260–270

    Chapter  Google Scholar 

  • Aketagawa, J., K. Kobayashi, and M. Ishimoto. 1985 Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F J Biochem 97 1025–1032

    CAS  PubMed  Google Scholar 

  • Albracht, S. P. J. 1994 Nickel hydrogenase: in search of the active site Biochim Biophys Acta 1188 167–204

    Article  PubMed  Google Scholar 

  • Almendra, M. J., C. D. Brondino, O. Gravel, A. S. Pereira, P. Tavares, S. Bursakov, R. Duarte, J. Caldeira, J. J. G. Mora, and I. Moura. 1999 Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas Biochemistry 38 16399–16372

    Article  CAS  Google Scholar 

  • Alperin, M. J., and W. S. Reeburgh. 1984 Geochemical observations supporting anaerobic methane oxidation Crawford, RL, Hanson, RS, Microbial growth in C-1 compounds American Society of Microbiology Washington DC

    Google Scholar 

  • Alperin, M. J., and W. S. Reeburgh. 1985 Inhibition experiments on anaerobic methane oxidation Appl Environ Microbiol 50 940–945

    CAS  PubMed  Google Scholar 

  • Alperin, M. J., W. S. Reeburgh, and M. J. Whiticar. 1988 Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation Global Biogeochemical Cycles 2 279–288

    Article  CAS  Google Scholar 

  • Altenschmidt, U., and G. Fuchs. 1991 Anaerobic degradation of toluene in denitrifying Pseudomonas species: indication of toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate Arch Microbiol 156 152–158

    Article  CAS  PubMed  Google Scholar 

  • Altenschmidt, U., B. Oswald, and G. Fuchs. 1991 Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas species J Bacteriol 173 5494–5501

    CAS  PubMed  Google Scholar 

  • Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990 Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations Appl Environ Microbiol 56 1919–1925

    CAS  PubMed  Google Scholar 

  • Aravalli, R. N., and R. A. Garrett. 1997 Shuttle vectors for hyperthermophilic archaea Extremophiles 1 183–191

    Article  CAS  PubMed  Google Scholar 

  • Arendsen, A., M. F. J. M. Verhagen, R. B. G. Wolbert, A. J. Pierik, A. J. M. Stams, M. S. M. Jetten, and W. R. Hagen. 1993 The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S=9/2 iron-sulfur clusters Biochemistry 32 10323–10330

    Article  CAS  PubMed  Google Scholar 

  • Arendsen, A. F., J. Hadden, G. Card, A. S. McAlpine, S. Bailey, V. Zaitsev, E. H. M. Duke, P. F. Lindley, M. Kröckel, A. X. Trautwein, M. C. Feiters, J. M. Charnock, C. D. Garner, S. J. Marritt, A. J. Thomson, I. M. Kooter, M. K. Johnson, W. A. M. van den Berg, W. M. A. M. van Dongen, and W. R. Hagen. 1998 The “prismane” protein resolved: X-ray structure at 1.7 Å and multiple spectroscopy of two novel 4Fe clusters JBIC 3 81–95

    Article  CAS  Google Scholar 

  • Arendsen, A. F., P. T. M. Veenhuizen, and W. R. Hagen. 1995 Redox properties of the sulfhydrogenase from Pyrococcus furiosus FEBS Lett 368 117–121

    Article  CAS  PubMed  Google Scholar 

  • Argyle, J. L., B. J. Rapp-Giles, and J. D. Wall. 1992 Plasmid transfer by conjugation in Desulfovibrio desulficans FEMS Microbiol Lett 94 255–262

    Article  CAS  Google Scholar 

  • Armitage, J. P. 1997 Behavioural responses of bacteria to light and oxygen Arch Microbiol 168 249–261

    Article  CAS  PubMed  Google Scholar 

  • Aubert, C., M. T. Giudici-Orticoni, M. Czjzek, R. Haser, M. Bruschi, and A. Dolla. 1998a Structural and kinetic studies of the Y73E mutant of octaheme cytochrome c 3 (Mr=26000) from Desulfovibrio desulfuricans Norway Biochemistry 37 2120–2130

    Article  CAS  PubMed  Google Scholar 

  • Aubert, C., G. Leroy, M. Bruschi, J. D. Wall, and A. Dolla. 1997 A single mutation in the heme 4 environment of Desulfovibrio desulfuricans Norway cytochrome c-3 (Mr 26,000) greatly affects the molecule reactivity J Biol Chem 272 15128–15134

    Article  CAS  PubMed  Google Scholar 

  • Aubert, C., E. Lojou, P. Bianco, M. Rousset, M. C. Durand, M. Bruschi, and A. Dolla. 1998b The Desulfuromonas acetoxidans triheme cytochrome c 7 produced in Desulfovibrio desulfuricans retains its metal reductase activity Appl Environ Microbiol 64 1308–1312

    CAS  PubMed  Google Scholar 

  • Baars, J. K. 1930 Over sulfaatreductie door bacterien. PhD Thesis University of Delft

    Google Scholar 

  • Bache, R., P. M. H. Kroneck, M. Merkle, and H. Beinert. 1983 A survey of EPR-detectable components in sulfur-reducing bacteria Biochim Biophys Acta 722 417–426

    Article  CAS  Google Scholar 

  • Badziong, W., and R. K. Thauer. 1978 Grwoth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources Arch Microbiol 117 209–214

    Article  CAS  PubMed  Google Scholar 

  • Badziong, W., B. Ditter, and R. K. Thauer. 1979 Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source Arch Microbiol 123 301–305

    Article  CAS  Google Scholar 

  • Badziong, W., and R. K. Thauer. 1980 Vectorial electron transport in Desulfovibrio vulgaris (Marburg), growing on hydrogen plus sulfate as sole energy source Arch Microbiol 125 167–174

    Article  CAS  Google Scholar 

  • Baena, S., M. L. Fardeau, M. Labat, B. Ollivier, J. L. Garcia, and B. K. C. Patel. 1998 Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon Syst Appl Microbiol 21 498–504

    Article  CAS  PubMed  Google Scholar 

  • Bagley, K. A., E. C. Duin, W. Roseboom, S. P. J. Albracht, and W. H. Woodruff. 1995 Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum Biochemistry 34 5527–5535

    Article  CAS  PubMed  Google Scholar 

  • Bainton, R. J., K. M. Kubo, J. Feng, and N. L. Craig. 1993 Tn7 Transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system Cell 72 931–943

    Article  CAS  PubMed  Google Scholar 

  • Bak, F., and F. Widdel. 1986a Anaerobic degradation of indolic compounds by sulfate.reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov, sp. nov Arch Microbiol 146 170–176

    Article  CAS  Google Scholar 

  • Bak, F., and F. Widdel. 1986b Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov Arch Microbiol 146 177–180

    Article  CAS  Google Scholar 

  • Bak, F., and N. Pfennig. 1987 Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds Arch Microbiol 147 184–189

    Article  CAS  Google Scholar 

  • Balashova, V. V. 1985 The use of molecular sulfur as an agent oxidizing hydrogen by the facultative anaerobic Pseudomonas strain Mikrobiologiya (Russian) 54 324–326

    CAS  Google Scholar 

  • Bale, S. J., K. Goodman, P. A. Rochelle, J. R. Marchesi, J. C. Fry, A. J. Weightman, and R. J. Parkes. 1997 Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea Inter J Syst Bacteriol 47 515–521

    Article  CAS  Google Scholar 

  • Banci, L., I. Bertini, M. Bruschi, P. Sompornpisut, and P. Turano. 1996 NMR characterization and solution structure determination of the oxidizing cytochrome c 7 from Desulfuromonas acetoxidans Pro Natl Acad Sci USA 93 14396–14400

    Article  CAS  Google Scholar 

  • Barnes, R. O., and E. D. Goldberg. 1976 Methane production and consumption in anoxic marine sediments Geology 4 297

    Article  CAS  Google Scholar 

  • Baron, C., J. Heider, and A. Böck. 1993 Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA Pro Natl Acad Sci USA 90 4181–4185

    Article  CAS  Google Scholar 

  • Barrett, E. L., and M. A. Clark. 1987 Tetrathionate reduction and production of hydrogen sulfide from thiosulfate Microbiol Rev 51 192–205

    CAS  PubMed  Google Scholar 

  • Barton, L. L., J. LeGall, and H. D. Peck Jr. 1970 Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts Biochem Biophys Res Comm 41 1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Barton, L. L., J. LeGall, J. M. Odom, and H. D. Peck Jr. 1983 Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas J Bacteriol 153 867–871

    CAS  PubMed  Google Scholar 

  • Bedessem, M. E., N. G. Swoboda-Colberg, and P. J. S. Colberg. 1997 Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments FEMS Microbiol Lett 152 213–218

    Article  CAS  Google Scholar 

  • Beeder, J., R. N. Nilsen, J. T. Rosnes, T. Torsvik, and T. Lien. 1994 Archaeoglobus fulgidus isolated from hot north sea oil field waters Appl Environ Microbiol 60 1227–1231

    CAS  PubMed  Google Scholar 

  • Beeder, J., T. Torsvik, and T. Lien. 1995 Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water Arch Microbiol 164 331–336

    Article  CAS  PubMed  Google Scholar 

  • Beh, M., G. Strauss, R. Huber, K. O. Stetter, and G. Fuchs. 1993 Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus Arch Microbiol 160 306–311

    Article  CAS  Google Scholar 

  • Beijerinck, W. M. 1895 Über Spirillum desulfuricans als Ursache von Sulfatreduction Centralb Bakteriol II. Abt 1 49–59, 104–114

    Google Scholar 

  • Belkin, S., C. O. Wirsen, and H. W. Jannasch. 1985 Biological and abiological sulfur reduction at high temperatures Appl Environ Microbiol 49 1057–1061

    CAS  PubMed  Google Scholar 

  • Bell, G. R., J. LeGall, and H. D. Peck Jr. 1974 Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas J Bacteriol 120 994–997

    CAS  PubMed  Google Scholar 

  • Beller, H. R., M. Reinhard, and D. Grbic-Galic. 1992 Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures Appl Environ Microbiol 58 3192–3195

    CAS  PubMed  Google Scholar 

  • Beller, H. R., A. M. Spormann, P. K. Sharma, J. R. Cole, and M. Reinhard. 1996 Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacteria Appl Environ Microbiol 62 1188–1196

    CAS  PubMed  Google Scholar 

  • Beller, H. R., and A. M. Spormann. 1997a Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T J Bacteriol 179 670–676

    CAS  PubMed  Google Scholar 

  • Beller, H. R., and A. M. Spormann. 1997b Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1 Appl Environ Microbiol 63 3729–3731

    CAS  PubMed  Google Scholar 

  • Berks, B. C. 1996 A common export pathway for proteins binding complex redox cofactors Mol Microbiol 22 393–404

    Article  CAS  PubMed  Google Scholar 

  • Berry, D. F., A. J. Francis, and J. M. Bollag. 1987 Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions Microbiol Rev 51 43–59

    CAS  PubMed  Google Scholar 

  • Bertrand, P., M. Bruschi, M. Denis, J. P. Gayda, and F. Manca. 1982 Cytochrome c 553 from Desulfovibrio vulgaris: potentiometric characterization by optical and EPR studies Biochem Biophys Res Comm 106 756–760

    Article  CAS  PubMed  Google Scholar 

  • Biebl, H., and N. Pfennig. 1977 Growth of sulfate-reducing bacteria with sulfur as electron acceptor Arch Microbiol 112 115–117

    Article  CAS  PubMed  Google Scholar 

  • Biegert, T., G. Fuchs, and J. Heider. 1996 Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatic is initiated by formation of benzylsuccinate from toluene and fumarate Eur J Biochem 238 661–668

    Article  CAS  PubMed  Google Scholar 

  • Bilous, P. T., and J. H. Weiner. 1985 Proton translocation coupled to dimethyl sulfoxide reduction in anaerobically grown Escherichia coli HB101 J Bacteriol 163 369–375

    CAS  PubMed  Google Scholar 

  • Birks, S. J., and D. J. Kelly. 1997 Assay and properties of acetone carboxylase, a novel enzyme involved in acetone-dependent growth and CO2 fixation in Rhodobacter capsulatus and other photosynthetic and denitrifying bacteria Microbiology 143 755–766

    Article  CAS  Google Scholar 

  • Blackledge, M. J., S. Medvedeva, M. Poncin, F. Guerlesquin, M. Bruschi, and D. Marion. 1995 Structure and dynamics of ferrocytochrome c 553 from Desulfovibrio vulgaris studied by NMR spectroscopy and restrained molecular dynamics J Mol Biol 245 661–681

    Article  CAS  PubMed  Google Scholar 

  • Blair, N. E., and R. C. Aller. 1995 Anaerobic methane oxidation on the Amazon shelf Geochim Cosmochim Acta 59 3707–3715

    Article  CAS  Google Scholar 

  • Blanchard, L., D. Marion, B. Pollock, G. Voordouw, J. Wall, M. Bruschi, and F. Guerlesquin. 1993 Overexpression of Desulfovibrio vulgaris Hildenborough cytochrome c553 in Desulfovibrio desulfuricans G200 Eur J Biochem 218 293–301

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, L., A. Dolla, B. Bersch, E. Forest, P. Bianco, D. Marion, and F. Guerlesquin. 1994 Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough Eur J Biochem 226 423–432

    Article  CAS  PubMed  Google Scholar 

  • Blomfield, I. C., V. Vaughn, R. F. Rest, and B. I. Eisenstein. 1991 Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon Mol Microbiol 5 1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Blumenthals, I. I., M. Itoh, G. J. Olson, and R. M. Kelly. 1990 Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus Appl Environ Microbiol 56 1255–1262

    Google Scholar 

  • Böck, A., K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, and F. Zinoni. 1991 Selenocysteine: the 21st amino acid Mol Microbiol 5 515–520

    Article  PubMed  Google Scholar 

  • Bokranz, M., M. Gutmann, C. Körtner, E. Kojro, F. Fahrenholz, F. Lauterbach, and A. Kröger. 1991 Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes Arch Microbiol 156 119–128

    Article  CAS  PubMed  Google Scholar 

  • Bolivar, F., R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. L. Heyneker, and H. W. Boyer. 1977 Construction and characterization of new cloning vehicles. II: A multipurpose cloning system Gene 2 95–113

    Article  CAS  PubMed  Google Scholar 

  • Boll, M., and G. Fuchs. 1995 Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism Eur J Biochem 234 921–933

    Article  CAS  PubMed  Google Scholar 

  • Boll, M., and G. Fuchs. 1998 Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism Eur J Biochem 251 946–954

    Article  CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya, E. A., T. G. Sokolova, N. A. Kostrikina, and G. A. Zavarzin. 1990 Desulfurella acetivorans gen. nov. and sp. nov.-a new thermophilic sulfur-reducing eubacterium Arch Microbiol 153 151–155

    Article  Google Scholar 

  • Boon, J. J., J. W. Leeuw de, G. J. van der Hoek, and J. H. Vosjan. 1977 Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched β-hydroxy acids in Desulfovibrio desulfuricans J Bacteriol 129 1183–1191

    CAS  PubMed  Google Scholar 

  • Boulegue, J. 1978 Solubility of elemental sulfur in water at 298 K Phosphorus and Sulfur 5 127–128

    Article  CAS  Google Scholar 

  • Boyle, A. W., C. D. Phelps, and L. Y. Young. 1999 Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol Appl Environ Microbiol 65 1133–1140

    CAS  PubMed  Google Scholar 

  • Bramlett, R. N., and H. D. Peck Jr. 1975 Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris J Biol Chem 250 2979–2986

    CAS  PubMed  Google Scholar 

  • Brandis, A., and R. K. Thauer. 1981 Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source J Gen Microbiol 126 249–252

    CAS  Google Scholar 

  • Brandis-Heep, A., N. A. Gebhardt, R. K. Thauer, F. Widdel, and N. Pfennig. 1983 Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei Arch Microbiol 136 222–229

    Article  CAS  Google Scholar 

  • Brandt, K. K., B. K. C. Patel, and K. Ingvorsen. 1999 Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake Inter J Syst Bacteriol 49 193–200

    Article  CAS  Google Scholar 

  • Brierley, C. L., and J. A. Brierley. 1982 Anaerobic reduction of molybdenum by species Zentralb. Bakteriol. Abt. 1 Orig. Reihe C 3 289–294

    CAS  Google Scholar 

  • Brock, T. D., K. M. Brock, R. T. Belly, Weiss, R. T., and R. T. 1972 Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperatures Arch Microbiol 84 54–68

    CAS  Google Scholar 

  • Brown, M. S., and J. M. Akagi. 1966 Purification of acetokinase from Desulfovibrio desulfuricans J Bacteriol 92 1273–1274

    CAS  PubMed  Google Scholar 

  • Brugna, M., M. T. Giudici-Orticoni, S. Spinelli, K. Brown, M. Tegoni, and M. Bruschi. 1998 Kinetics and interaction studies between cytochrome c 3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough Proteins: Structure, Function and Genetics 33 590–600

    Article  CAS  Google Scholar 

  • Brumlik, M. J., G. Leroy, M. Bruschi, and G. Voordouw. 1980 The nucleotide sequence of the Desulfovibrio gigas desulforedoxin gene indicates that the Desulfovibrio vulgaris rbo gene originated from a gene fusion event J Bacteriol 172 7289–7292

    Google Scholar 

  • Brumlik, M. J., and G. Voordouw. 1989 Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough J Bacteriol 171 4996–5004

    CAS  PubMed  Google Scholar 

  • Brune, D. C. 1989 Sulfur oxidation by phototrophic bacteria Biochim Biophys Acta 975 189–221

    Article  CAS  PubMed  Google Scholar 

  • Bruschi, M., P. Bertrand, C. More, G. Leroy, J. Bonicel, J. Haladjian, G. Chottard, W. B. R. Pollock, and G. Voordouw. 1992 Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200 Biochemistry 31 3281–3288

    Article  CAS  PubMed  Google Scholar 

  • Bruschi, M., E. C. Hatchikian, and J. Bonicel. 1977 The N-terminal sequence of superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans FEBS Lett 76 121–124

    Article  CAS  PubMed  Google Scholar 

  • Bruschi, M., B. Wondstra, M. Guigliarelli, E. Asso, Y. Petillot, and C. Abergel. 1997a Biochemical and spectroscopic characterization of two new cytochromes isolated from Desulfuromonas acetoxidans Biochemistry 36 10601–10608

    Article  CAS  PubMed  Google Scholar 

  • Bryant, F. O., and M. W. W. Adams. 1989 Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus J Biol Chem 264 5070–5079

    CAS  PubMed  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977 Growth in Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria Appl Environ Microbiol 33 1162–1169

    CAS  PubMed  Google Scholar 

  • Brysch, K., C. Schneider, G. Fuchs, and F. Widdel. 1987 Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov Arch Microbiol 148 264–274

    Article  CAS  Google Scholar 

  • Bühler, M., and J. Schindler. 1984 Aliphatic hydrocarbons Kieslich, K Biotransformations Verlag-Chemie Weinheim 6a 329–385

    Google Scholar 

  • Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. Fitzgerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, J. L. Nguyen, J. L., T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H. P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1996 Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii Science 273 1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Burggraf, S., H. W. Jannasch, B. Nicolaus, and K. O. Stetter. 1990 Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archae bacteria Syst Appl Microbiol 13 24–28

    Article  Google Scholar 

  • Butlin, K. R., and M. E. Adams. 1947 Autotrophic growth of sulphate-reducing bacteria Nature 160 154–155

    Article  CAS  Google Scholar 

  • Caccavo Jr, F., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stoltz, and M. J. McInerney. 1994 Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism Appl Environ Microbiol 60 3752–3759

    CAS  PubMed  Google Scholar 

  • Caldwell, M. E., R. M. Garrett, R. C. Prince, and J. M. Suflita. 1998 Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions Environ Sci Technol 32 2191–2195

    Article  CAS  Google Scholar 

  • Cammack, R., L. Kerscher, and D. Oesterhelt. 1980 A stable free radical intermediate in the reaction of 2-oxoacid: ferredoxin oxidoreductase of Halobacterium halobium FEBS Lett 118 271–273

    Article  CAS  Google Scholar 

  • Cammack, R., G. Fauque, J. J. G. Moura, and J. LeGall. 1984 ESR studies of cytochrome c 3 from Desulfovibrio desulfuricans strain Norway 4. Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur Biochim Biophys Acta 784 68–74

    Article  CAS  Google Scholar 

  • Cammack, R. 1999 Hydrogenase sophistication Nature 397 214–215

    Article  CAS  PubMed  Google Scholar 

  • Campbell, L. L., H. A. Frank, and R. E. Hall. 1957 Studies on thermophilic sulfate-reducing bacteria. I. Identification of Sporovibrio desulfurican as Clostridium nitrificans J Bacteriol 73 516–521

    CAS  PubMed  Google Scholar 

  • Campbell, L. L., and J. R. Postgate. 1965 Classification of the spore-forming sulfate-reducing bacteria Bacteriol Rev 29 359–363

    CAS  PubMed  Google Scholar 

  • Canfield, D. E., and D. J. Des Marais. 1991 Aerobic sulfate reduction in microbial mats Science 251 1471–1473

    Article  CAS  PubMed  Google Scholar 

  • Canfield, D. E., and B. Thamdrup. 1994 The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur Science 266 1973–1975

    Article  CAS  PubMed  Google Scholar 

  • Carr, M. C., G. P. Curley, S. G. Mayhew, and G. Voordouw. 1990 Effects of substituting asparagine for glycine-61 in flavodoxin from Desulfovibrio vulgaris (Hildenborough) Biochem Inter 20 1025–1032

    CAS  Google Scholar 

  • Casalot, L., C. E. Hatchikian, N. Forget, P. De Philip, Z. Dermoun, J.-P. Bélaich, and M. Roesset. 1998 Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructovorans Anaerobe 4 45–55

    Article  CAS  PubMed  Google Scholar 

  • Chabriere, E., M. H. Charon, A. Volbeda, L. Pieulle, E. C. Hatchikian, and J. C. Fontecilla-Camps. 1999a Crystal structures of the key anaerobic enzyme pyruvate: ferredoxin oxidoreductase, free and in complex with pyruvate Nature Structural Biology 6 182–190

    Article  CAS  PubMed  Google Scholar 

  • Chabriere, E., A. Volbeda, J. C. Fontecilla-Camps, M. Roth, and M. H. Charon. 1999b Combination of methods used in the structure determination of pyruvate: ferredoxin oxidoreductase from two crystal forms Acta Crystallogr D55 1546–1554

    CAS  Google Scholar 

  • Chambers, L. A., and P. A. Trudinger. 1975 Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol 123 36–40

    CAS  PubMed  Google Scholar 

  • Charon, M.-H., A. Volbeda, E. Chabriere, L. Pieulle, and J. C. Fontecilla-Camps. 1999 Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase Current Opinion in Structural Biology 9 663–669

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., M. Pereira, M. Teixeira, A. V. Xavier, and J. LeGall. 1994a Isolation and characterization of a high molecular weight cytochrome from the sulfate reducing bacterium Desulfovibrio gigas FEBS Lett 347 295–299

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., N. K. Menon, L. Dervertarnian, J. J. G. Moura, and A. E. Przybyla. 1994b Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli FEBS Lett 351 401–404

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., P. Sharma, J. LeGall, A. M. Mariano, M. Teixeira, A. V. Xavier. 1994c A blue non-heme iron protein from Desulfovibrio gigas Eur J Biochem 226 613–618

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., J. LeGall, and A. V. Xavier. 1994d Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate Biochem Biophys Res Comm 203 839–844

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., J. LeGall, P. Fareleira, H. Santos, and A. V. Xavier. 1995 Malate metabolism by Desulfovibrio gigas and its link to sulfate and fumarate reduction: purification of the malic enzyme and detection of NAD(P)+ transhydrogenase activity Anaerobe 1 227–235

    Article  CAS  PubMed  Google Scholar 

  • Christner, J. A., E. Münck, T. A. Kent, P. A. Janick, J. C. Salerno, and L. M. Siegel. 1984 Exchange coupling between siroheme and (4Fe-4S) cluster in E. coli sulfite reductase. Mossbauer studies and coupling models for a 2-elctron reduced enzyme state and complexes with sulfide Journal of the American Chemical Society 106 6786–6794

    Article  CAS  Google Scholar 

  • Cline, S. W., and W. F. Doolittle. 1987 Efficient transfection of the archaebacterium Halobacterium halobium J Bacteriol 169 1341–1344

    CAS  PubMed  Google Scholar 

  • Coates, J. D., J. Woodward, J. Allen, P. Philp, and D. R. Lovley. 1997 Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments Appl Environ Microbiol 63 3589–3593

    CAS  PubMed  Google Scholar 

  • Cohn, F. 1867 Beiträge zur Physiologie der Phycochromaeen unf Florideen In M. S.-P. Institut Archiv für Mikroskopische Anatomie Max Cohen & Sohn Bonn 3 1–60

    Google Scholar 

  • Cole, J. A. 1988 Assimilatory and dissimilatory reduction of nitrate to ammonia Cole, JA, Ferguson, SJ The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 281–329

    Google Scholar 

  • Cole, S. T., and I. S. Girons. 1994 Bacterial genomics FEMS Microbiol Rev 14 139–160

    Article  CAS  PubMed  Google Scholar 

  • Coleman, G. S. 1960 A sulphate-reducing bacterium from the sheep rumen J Gen Microbiol 22 423–436

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. W., and F. Widdel. 1986 Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a stystematic investigation Syst Appl Microbiol 8 8–18

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., and F. Widdel. 1986 Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria Appl Microbiol Biotechnol 25 169–174

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch Microbiol 149 350–357

    Article  CAS  Google Scholar 

  • Coschigano, P. W., T. S. Wehrman, and L. Y. Young. 1998 Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of glycine free radical Appl Environ Microbiol 64 1650–1656

    CAS  PubMed  Google Scholar 

  • Costa, C., M. Teixeira, J. LeGall, J. J. G. Moura, and I. Moura. 1997 Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum) JBIC 2 198–208

    Article  CAS  Google Scholar 

  • Coulter, E. D., N. V. D. M. Shenvi, and D. M. Kurtz. 1999 NADH peroxidase activity of rubrerythrin Biochem Biophys Res Comm 255 317–323

    Article  CAS  PubMed  Google Scholar 

  • Coutinho, I. B., D. L. Turner, M. Y. Liu, J. LeGall, and A. V. Xavier. 1996 Structure of the three-haem core of cytochrome c 5515 determined by 1H NMR JBIC 1 305–311

    Article  CAS  Google Scholar 

  • Craig, N. L. 1991 Tn7: a target site-specific transposon Mol Microbiol 5 2569–2573

    Article  CAS  PubMed  Google Scholar 

  • Crane, B. R., L. M. Siegel, and E. D. Getzoff. 1995 Sulfite reductase structure at 1.6 Å: Evolution and catalysis for reduction of inorganic anions Science 270 59–67

    Article  CAS  PubMed  Google Scholar 

  • Crane, B. R., and E. D. Getzoff. 1996 The relationship between structure and function for the sulfite reductases Current Opinion in Structural Biology 6 744–756

    Article  CAS  PubMed  Google Scholar 

  • Curley, G. P., and G. Voordouw. 1988 Cloning and sequencing of the gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough FEMS Microbiol Lett 49 295–299

    Article  CAS  Google Scholar 

  • Cypionka, H., F. Widdel, and N. Pfennig. 1985 Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients FEMS Microbial Ecology 31 39–45

    Article  CAS  Google Scholar 

  • Cypionka, H., and W. Dilling. 1986 Intracellular localization of the hydrogenase in Desulfotomaculum orientis FEMS Microbiol Lett 36 257–260

    Article  CAS  Google Scholar 

  • Cypionka, H., and N. Pfennig. 1986 Growth yields of Desufovibrio orientis with hydrogen in chemostat culture Arch Microbiol 143 396–399

    Article  CAS  Google Scholar 

  • Cypionka, H. 1987 Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans Arch Microbiol 148 144–149

    Article  CAS  Google Scholar 

  • Cypionka, H. 1989 Characterization of sulfate transport in Desulfovibrio desulfuricans Arch Microbiol 152 237–243

    Article  CAS  PubMed  Google Scholar 

  • Cypionka, H. 1994 Sulfate transport Peck, HD, LeGall, J Inorganic microbial sulfur metabolism Academic Press San Diego 243 3–14

    Chapter  Google Scholar 

  • Cypionka, H. 1995 Solute transport and cell energetics Barton, LL Sulfate-reducing bacteria Plenum Press New York 8 152–184

    Google Scholar 

  • Czechowski, H. M., and H. W. Rossmore. 1980 Factors affecting Desulfovibrio desulfuricans lactate dehydrogenase Developments in industrial microbiology New York 349–356

    Google Scholar 

  • Czechowski, M. H., S. H. He, M. Nacro, D. V. DerVartanian, H. D. Peck Jr., and J. LeGall. 1984 A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp.n., a new species of sulfate reducing bcaterium Biochem Biophys Res Comm 125 1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Czjzek, M., F. Payan, F. Guerlesquin, M. Bruschi, and R. Haser. 1994 Crystal structure of cytochrome c 3 from Desulfovibrio desulfuricans Norway at 1.7Å resolution J Mol Biol 243 653–667

    Article  CAS  PubMed  Google Scholar 

  • Dahl, C., O. Keuken, H.-G. Koch, and H. G. Trüper. 1988 ATP sulfurylase and bisulfite reductase from the extremely thermophilic sulfate-reducing archaebacterium, Archaeoglobus fulgidus J Gen Microbiol 134 1419–1425

    Google Scholar 

  • Dahl, C., H.-G. Koch, O. Keuken, and H. G. Trüper. 1990 Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus FEMS Microbiol Lett 67 27–32

    Article  CAS  Google Scholar 

  • Dahl, C., N. M. Kredich, R. Deutzmann, and H. G. Trüper. 1993 Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase gene J Gen Microbiol 139 1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Dahl, C., N. Speich, and H. G. Trüper. 1994 Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus Peck Jr, HD, LeGall, J Inorganic Microbial Sulfur Metabolism Academic Press San Diego 243 331–349

    Chapter  Google Scholar 

  • Lampreia, J., G. Fauque, N. Speich, C. Dahl, I. Moura, H. G. Trüper, and J. J. Moura. 1999 Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus 181(1) 342–347

    Google Scholar 

  • Dahl, C., M. Molitor, and H. G. Trüper. 2001 Siroheme-sulfite reductase-type protein from Pyrobaculum islandicum Peck, HD, LeGall, J. Methods Enzymol. 331 410–409

    Google Scholar 

  • Dai, Y.-R., D. W. Reed, J. H. Millstein, P. L. Hartzell, D. A. Grahame, and E. DeMoll. 1998 Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus Arch Microbiol 169 525–529

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard, T., and F. Bak. 1994 Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation Appl Environ Microbiol 60 291–297

    CAS  PubMed  Google Scholar 

  • Dannenberg, S., M. Kroder, W. Dilling, and H. Cypionka. 1992 Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria Arch Microbiol 158 93–99

    Article  CAS  Google Scholar 

  • Daumas, S., R. Cord-Ruwisch, and J. L. Garcia. 1988 Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal water Antonie van Leeuwenhoek J. Microbiol. Serol. 54 165–178

    Article  CAS  Google Scholar 

  • Davis, J. B., and H. F. Yarbrough. 1966 Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans Chemical Geology 1 137–144

    Article  Google Scholar 

  • Dawson, J. H. 1988 Probing structure-function relations in heme-containing oxygenases and peroxidases Science 240 433–439

    Article  CAS  PubMed  Google Scholar 

  • De Luca, G., M. Asso, J. P. Bélaich, and Z. Dermoun. 1998a Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructovorans overproduced in Escherichia coli Biochemistry 37 2660–2665

    Article  PubMed  Google Scholar 

  • De Luca, G., P. De Philip, M. Rousset, J. P. Bélaich, and Z. Dermoun. 1998b The NADP-reducing hydrogenase of Desulfovibrio fructovorans: Evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity Biochem Biophys Res Comm 248 591–596

    Article  PubMed  Google Scholar 

  • Dean, J. A. 1992 Lange’s handbook of chemistry McGraw-Hill New York

    Google Scholar 

  • Deckers, H. M., F. R. Wilson, and G. Voordouw. 1990 Cloning and sequencing of a (NiFe) hydrogenase operon from Desulfovibrio vulgaris Miyazaki F J Gen Microbiol 136 2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Deckers, H. M., and G. Voordouw. 1994a Identification of a large family of genes for putative chemoreceptor proteins in an ordered library of the Desulfovibrio vulgaris Hildenborough genome J Bacteriol 176 351–358

    CAS  PubMed  Google Scholar 

  • Deckers, H. M., and G. Voordouw. 1994b Membrane topology of the methyl-accepting chemotaxis protein DcrA from Desulfovibrio vulgaris Hildenborough Antonie van Leeuwenhoek 65 7–12

    Article  CAS  PubMed  Google Scholar 

  • Deckers, H. M., and G. Voordouw. 1996 The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes Antonie van Leeuwenhoek 70 21–29

    Article  CAS  PubMed  Google Scholar 

  • DerVartanian, D. V., and J. LeGall. 1974 A monomolecular electron transfer chain: structure and function of cytochrome c 3 Biochim Biophys Acta 346 79–99

    Article  CAS  Google Scholar 

  • DerVartanian, D. V. 1994 Desulforubidin: Dissimilatory, high-spin sulfite reductase of Desulfomicrobium species Peck Jr, HD, LeGall, J Inorganic Microbial Sulfur Metabolism Academic Press San Diego 243 270–276

    Chapter  Google Scholar 

  • Devereux, R., M. Delaney, F. Widdel, and D. A. Stahl. 1989 Natural relationships among sulfate-reducing eubacteria J Bacteriol 171 6689–6695

    CAS  PubMed  Google Scholar 

  • Devereux, R., S. He, C. L. Doyle, S. Orkland, D. A. Stahl, J. LeGall, and W. B. Whitman. 1990 Diversity and origin of Desulfovibrio species: Phylogenetic definition of a family J Bacteriol 172 3609–3619

    CAS  PubMed  Google Scholar 

  • Devereux, R., M. D. Kane, J. Winfrey, and D. A. Stahl. 1992 Genus-and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria Syst Appl Microbiol 15 601–609

    Article  CAS  Google Scholar 

  • Devereux, R., S. G. Willis, and M. E. Hines. 1997 Genome sizes of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfobulbus propionicus estimated by pulsed-field gel electrophoresis of linearized chromosomal DNA Current Microbiology 34 337–339

    Article  CAS  PubMed  Google Scholar 

  • Devohl, A. J., and S. I. Ahmed. 1981 Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291 407–408

    Article  Google Scholar 

  • Devreese, B., C. Costa, H. Demol, V. Papaefthymiou, I. Moura, J. J. G. Moura, and J. van Beeumen. 1997 The primary structure of the split-soret cytochrome c from Desulfovibrio desufuricans ATCC 27774 reveals an unusual type of diheme cytochrome c Eur J Biochem 248 445–451

    Article  CAS  PubMed  Google Scholar 

  • DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Suflita. 1990 Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium Arch Microbiol 154 23–30

    Article  CAS  Google Scholar 

  • Dias, J. M., M. E. Than, A. Humm, R. Huber, G. P. Bourenkov, H. P. Bartunik, S. Bursakov, J. Calvete, J. Caldeira, C. Carniero, J. J. G. Moura, I. Moura, and M. J. Romao. 1999 Crystal structure of the first dissimilatory nitrate reductase at 1.9A solved by MAD methods Structure 7 65–79

    Article  CAS  PubMed  Google Scholar 

  • Dilling, W., and H. Cypionka. 1990 Aerobic respiration in sulfate-reducing bacteria FEMS Microbiol Lett 71 123–128

    CAS  Google Scholar 

  • Dirmeier, R., M. Keller, G. Frey, H. Huber, and K. O. Stetter. 1998 Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi Eur J Biochem 252 486–491

    Article  CAS  PubMed  Google Scholar 

  • Dolfing, J. 1990 Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1 Arch Microbiol 153 264–266

    Article  CAS  PubMed  Google Scholar 

  • Dolfing, J., and J. M. Tiedje. 1987 Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture Arch Microbiol 149 102–105

    Article  CAS  PubMed  Google Scholar 

  • Dolfing, J., J. Zeyer, P. Binder-Eicher, and R. P. Schwarzenbach. 1990 Isolation and characterization of a bacterium that mineralizes toluene in the absence of moleculat oxygen Arch Microbiol 154 336–341

    Article  CAS  PubMed  Google Scholar 

  • Dolla, A., R. Fu, M. J. Brumlik, and G. Voordouw. 1992 Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli J Bacteriol 174 1726–1733

    CAS  PubMed  Google Scholar 

  • Dörner, C. 1992 PhD. Thesis Eberhard-Karls-Universität Tübingen

    Google Scholar 

  • Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988 High efficiency transformation of E. coli by high voltage electroporation Nucleic Acids Research 16 6127–6145

    Article  CAS  PubMed  Google Scholar 

  • Dowling, N. J. E., F. Widdel, and D. C. White. 1986 Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria J Gen Microbiol 132 1815–1825

    CAS  Google Scholar 

  • Drake, H. L., and J. M. Akagi. 1977 Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris J Bacteriol 132 132–138

    CAS  PubMed  Google Scholar 

  • Dross, F., V. Geisler, R. Lenger, F. Theis, T. Krafft, F. Fahrenholz, E. Kojro, A. Duchene, D. Tripier, K. Juvenal, and A. Kröger. 1992 The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes Eur J Biochem 206 93–102

    Article  CAS  PubMed  Google Scholar 

  • Drzyzga, O., J. Küver, and K.-H. Blotevogel. 1993 Complete oxidation of benzoate and 4-hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus Arch Microbiol 159 109–113

    Article  CAS  PubMed  Google Scholar 

  • Edwards, E. A., L. E. Wills, M. Reinhard, and D. Grbic-Galic. 1992 Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions Appl Environ Microbiol 58 794–800

    CAS  PubMed  Google Scholar 

  • Ehrenreich, P. 1996 Anaerobes Wachstum neuartiger sulfatreduziernder und nitratreduzierender Bakterien auf n-Alkanen und Erdöl PhD Thesis Universität Bremen

    Google Scholar 

  • Ehrenreich, P., A. Behrends, J. Harder, and F. Widdel. 1999 Anaerobic oxidation of alkanes by newly isolated denitrifiying bacteria Arch Microbiol 173 58–64

    Article  Google Scholar 

  • Eidsness, M. E., R. A. Scott, B. C. Prickril, D. V. DerVartanian, J. LeGall, I. Moura, J. J. G. Moura, and H. D. Peck Jr. 1989 Evidence for selenocysteine coordination to the active site nickel in the (NiFeSe)hydrogenases from Desulfovibrio baculatus Pro Natl Acad Sci USA 86 147–151

    Article  CAS  Google Scholar 

  • Einsle, O., A. Messerschmidt, P. Stach, G. P. Bourenkov, H. D. Bartunik, R. Huber, and P. M. H. Kroneck. 1999 Structures of cytochrome c nitrite reductase Nature 400 476–480

    Article  CAS  PubMed  Google Scholar 

  • Elion, L. 1925 A thermophilic sulphate-reducing bacterium Zentralb Bakteriol II. Abtlg. 63 58–67

    CAS  Google Scholar 

  • Elvert, M., and E. Suess. 1999 Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids Naturwissenschaften 86 295–300

    Article  CAS  Google Scholar 

  • Ensign, S. A., F. J. Small, J. R. Allen, and M. K. Sluis. 1998 New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones Arch Microbiol 169 179–187

    Article  CAS  PubMed  Google Scholar 

  • Erauso, G., S. Marsin, N. Benbouzid-Rollet, M.-F. Baucher, T. Barbeyron, Y. Zivanovic, D. Prieur, and P. Forterre. 1996 Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: Evidence for rolling-circle replication in a hyperthermophile J Bacteriol 178 3232–3237

    CAS  PubMed  Google Scholar 

  • Eschemann, A., M. Kühl, and H. Cypionka. 1999 Aerotaxis of Desulfovibrio Environ Microbiol 1 489–494

    Article  CAS  PubMed  Google Scholar 

  • Evans, W. C., and G. Fuchs. 1988 Anaerobic degradation of aromatic compounds Ann Rev Microbiol 42 289–317

    Article  CAS  Google Scholar 

  • Evans, P. J., W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young. 1992 Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization Appl Environ Microbiol 58 496–501

    CAS  PubMed  Google Scholar 

  • Evans, P. J., D. T. Mang, K. S. Kim, and L. Y. Young. 1991 Anaerobic degradation of toluene by a denitrifying bacterium Appl Environ Microbiol 57 1139–1145

    CAS  PubMed  Google Scholar 

  • Fauque, G., D. Herve, and J. LeGall. 1979 Structure-function relationship in hemoproteins: The role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria Arch Microbiol 121 261–264

    Article  CAS  PubMed  Google Scholar 

  • Fauque, G. D., L. L. Barton, and J. LeGall. 1980 Oxidative phosphorylation linked to the dissimilatory reduction of elemental sulphur by Desulfovibrio Sulphur in Biology Excerpta Medica Amsterdam 71–86

    Google Scholar 

  • Fauque, G., M. H. Czechowski, L. Kang-Lissolo, D. V. DerVartanian, J. J. G. Moura, I. Moura, J. Lampreia, A. V. Xavier, and J. LeGall. 1986 Presented at the Annual Meeting of the Society for Industrial Microbiology, San Francisco

    Google Scholar 

  • Fauque, G., P. J. H. D., J. J. G. Moura, B. H. Huynh, Y. Berlier, D. V. DerVartanian, M. Teixeira, A. E. Przybyla, P. A. Lespinat, I. Moura, and J. LeGall. 1988 The three classes of hydrogenases from sulfate-reducing bacteria of the genes Desulfovibrio FEMS Microbiol Rev 54 299–344

    Article  CAS  Google Scholar 

  • Fauque, G., A. R. Lino, M. Czechowski, L. Kang, D. V. DerVartanian, J. J. G. Moura, J. LeGall, and I. Moura. 1990 Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands Biochim Biophys Acta 1040 112–118

    Article  CAS  PubMed  Google Scholar 

  • Fauque, G., J. LeGall, and L. L. Barton. 1991 Sulfate-reducing and sulfur-reducing bacteria J. M. Shively and L. L. Barton Variations in Autotrophic Life Academic Press London 271–337

    Google Scholar 

  • Fauque, G., M. Czechowski, Y. M. Berlier, P. A. Lespinat, J. LeGall, and J. J. G. Moura. 1992 Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium Biochem Biophys Res Comm 184 1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Fauque, G. D., O. Klimmek, and A. Kröger. 1994 Sulfur reductase from spirilloid mesophilic sulfur-reducing eubacteria H. D. Peck and J. LeGall Inorganic microbial sulfur metabolism Academic Press San Diego 243 367–383

    Chapter  Google Scholar 

  • Fayet, O., P. Ramond, P. Polard, M. F. Priere, and M. Chandler. 1990 Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences Mol Microbiol 4 1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Fiala, G., and K. O. Stetter. 1986 Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C Arch Microbiol 145 56–61

    Article  CAS  Google Scholar 

  • Fiebig, K., and G. Gottschalk. 1983 Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri Appl Environ Microbiol 45 161–168

    CAS  PubMed  Google Scholar 

  • Fiechtner, M. D., and R. J. Kassner. 1979 The redox properties and heme environment of cytochrome c551,5 from Desulfuromonas acetoxidans Biochim Biophys Acta 579 269–278

    Article  CAS  PubMed  Google Scholar 

  • Finlay, B. J., A. S. W. Span, and J. M. P. Harman. 1983 Nitrate respiration in primitive eukaryotes Nature 303 333–336

    Article  CAS  Google Scholar 

  • Finster, K., W. Liesack, and B. Thamdrup. 1998 Elemental sulfur and thiosulfate disproprtionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment Appl Environ Microbiol 64 119–125

    CAS  PubMed  Google Scholar 

  • Finster, K., W. Liesack, and B. J. Tindall. 1997a Desulfospira joergensenii, gen. nov., sp. nov., a new sulfate-reducing bacterium isolated from marine surface sediment Syst Appl Microbiol 20 201–208

    Article  CAS  Google Scholar 

  • Finster, K., W. Liesack, and B. J. Tindall. 1997b Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium Inter J Syst Bacteriol 47 1212–1217

    Article  CAS  Google Scholar 

  • Fischer, F., W. Zillig, K. O. Stetter, and G. Schreiber. 1983 Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria Nature 301 511–513

    Article  CAS  PubMed  Google Scholar 

  • Fischer, U. 1988 Sulfur in biotechnology H.-J. Rehm Biotechnology-Special Microbial Processes VCH Verlagsgesellschaft Weinheim 6b 463–496

    Google Scholar 

  • Fischer, U. 1989 Enzymatic steps and dissimilatory sulfur metabolism by whole cells of anoxyphotobacteria E. S. Saltzman and W. J. Cooper Biogenic sulfur in the environment American Chemical Society Washington DC 393 262–279

    Chapter  Google Scholar 

  • Fitz, R. M., and H. Cypionka. 1989 A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans Arch Microbiol 152 369–376

    Article  CAS  Google Scholar 

  • Fitz, R. M., and H. Cypionka. 1990 Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans Arch Microbiol 154 400–406

    Article  CAS  Google Scholar 

  • Folkerts, M., U. Ney, H. Kneifel, E. Stackebrandt, E. G. Witte, H. Fröstel, S. M. Schoberth, and H. Sahm. 1989 Desulfovibrio fufuralis sp. nov., a furfural degrading strictly anaerobic bacterium Syst Appl Microbiol 151 126–132

    Google Scholar 

  • Fons, M., B. Cami, J.-C. Patte, and M. Chippaux. 1987 Cloning in Escherichia coli of genes involved in the synthesis of proline and leucine in Desulfovibrio desulfuricans Norway Molecular and General Genetics 206 141–143

    Article  CAS  PubMed  Google Scholar 

  • Fowler, V. J., F. Widdel, N. Pfennig, and C. R. Wese. 1986 Phylogenetic relationships of sulfate-and sulfur-reducing eubacteria Syst Appl Microbiol 8 32–41

    Article  CAS  Google Scholar 

  • Friedrich, M., and B. Schink. 1995 Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate Arch Microbiol 164 271–279

    Article  CAS  Google Scholar 

  • Friedrich, M., N. Springer, W. Ludwig, and B. Schink. 1996 Phylogenetic positions of Desulfofustis glycolicus gen. nov, sp. nov., and Syntrophobotulus glycolicus gen. nov, sp. nov., two new strict anaerobes growing with glycolic acid Inter J Syst Bacteriol 46 1065–1069

    Article  CAS  Google Scholar 

  • Frischauf, A.-M., H. Lehrach, A. Poustka, and N. Murray. 1983 Lambda replacement vectors carrying polylinker sequences J Mol Biol 170 827–842

    Article  CAS  PubMed  Google Scholar 

  • Fritz, G. 1999 Structure and function of redox proteins involved in dissimilatory sulfate reduction: adenosine 5′-phosphosulfate reductase and multiheme cytochromes Universität Konstanz

    Google Scholar 

  • Fu, R., J. D. Wall, and G. Voordouw. 1994 DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment J Bacteriol 176 344–350

    CAS  PubMed  Google Scholar 

  • Fu, R., and G. Voordouw. 1997 Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough Microbiology 143 1815–1826

    Article  CAS  PubMed  Google Scholar 

  • Fu, R., and G. Voordouw. 1998 ISD1, an insertion element from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough: Structure, transposition and distribution Appl Environ Microbiol 64 53–61

    CAS  PubMed  Google Scholar 

  • Fuchs, G. 1986 CO2 fixation on acetogenic bacteria: variations on the theme FEMS Microbiol Rev 39 181–213

    Article  CAS  Google Scholar 

  • Fukui, M., A. Teske, B. Aßmus, G. Muyzer, and F. Widdel. 1999 Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema) Arch Microbiol 172 193–203

    Article  CAS  PubMed  Google Scholar 

  • Fuseler, K., and H. Cypionka. 1995 Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus Arch Microbiol 164 104–109

    Article  CAS  Google Scholar 

  • Galinski, E. A. 1995 Osmoadaptation in bacteria R. K. Poole Advances in microbial physiology Academic Press London 37 273–328

    Google Scholar 

  • Galushko, A. S., D. Minz, B. Schink, and F. Widdel. 1999 Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium Environ Microbiol 1 415–420

    Article  CAS  PubMed  Google Scholar 

  • Galushko, A. S., and E. P. Rozanova. 1991 Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids Mikrobiologiya (Russian) 60 102–107

    CAS  Google Scholar 

  • Gavel, O. Y., S. A. Bursakov, J. J. Calvete, G. N. George, J. J. G. Moura, and I. Moura. 1998 ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc Biochemistry 37 16225–16232

    Article  CAS  PubMed  Google Scholar 

  • Gay, P., D. LeCoq, M. Steinmetz, E. Ferrari, and J. A. Hoch. 1983 Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: Expression of the gene in Escherichia coli J Bacteriol 153 1424–1431

    CAS  PubMed  Google Scholar 

  • Gebhardt, N. A., D. Linder, and R. K. Thauer. 1983 Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei Arch Microbiol 136 230–233

    Article  CAS  Google Scholar 

  • Gebhardt, N. A., R. K. Thauer, D. Linder, P.-M. Kaulfers, and N. Pfennig. 1985 Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans Arch Microbiol 141 392–398

    Article  CAS  Google Scholar 

  • Geissler, J. F., C. S. Harwood, and J. Gibson. 1988 Purification and properties of benzoate-coenzyme a ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate J Bacteriol 170 1709–1714

    CAS  PubMed  Google Scholar 

  • Gibson, J., M. Dispensa, and C. S. Harwood. 1997 4-Hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases J Bacteriol 179 634–642

    CAS  PubMed  Google Scholar 

  • Gomes, C. M., G. S. S. Oliveira, J. LeGall, M.-Y. Liu, A. V. Xavier, C. Rodrigues-Pousada, and M. Teixeira. 1997 Studies on the redox centers of the treminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin J Biol Chem 272 22502–22508

    Article  CAS  PubMed  Google Scholar 

  • Gorny, N., and B. Schink. 1994 Anaerobic degradation of catechol by Desulfobacterium sp. strain cat2 proceeds via carboxylation to protocatechuate Appl Environ Microbiol 60 3396–3400

    CAS  PubMed  Google Scholar 

  • Gorris, L. G. M., A. C. W. Voet, and C. van der Drift. 1991 Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeglobus fulgidus Biofactors 29–35

    Google Scholar 

  • Gottschalk, G. 1968 The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria Eur J Biochem 5 346–351

    Article  CAS  PubMed  Google Scholar 

  • Graf, M., M. Bokranz, R. Böcher, P. Friedl, and A. Kröger. 1985 Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase FEBS Lett 184 100–103

    Article  CAS  Google Scholar 

  • Grahame, D. A. 1991 Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex J Biol Chem 266 22227–22233

    CAS  PubMed  Google Scholar 

  • Grahame, D. A., and E. DeMoll. 1996 Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri J Biol Chem 271 8352–8358

    Article  CAS  PubMed  Google Scholar 

  • Grahame, D. A., and E. DeMoll. 1995 Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri Biochemistry 34 4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Gribc-Galic, D., and T. M. Vogel. 1987 Transformation of toluene and benzene by mixed methanogenic cultures Appl Environ Microbiol 53 254–260

    Google Scholar 

  • Gross, R., J. Simon, C. R. D. Lancaster, and A. Kröger. 1998a Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2 Mol Microbiol 30 639–646

    Article  CAS  PubMed  Google Scholar 

  • Gross, R., J. Simon, F. Theis, and A. Kröger. 1998b Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration Arch Microbiol 170 50–58

    Article  CAS  PubMed  Google Scholar 

  • Gross, R., J. Simon, and A. Kröger. 1999 The role of the twin-arginine motif in the signal peptide encoded by the hyd A gene of the hydrogenase from Wolinella succinogenes Arch Microbiol 172 227–232

    Article  CAS  PubMed  Google Scholar 

  • Grossmann, J. P., and J. R. Postgate. 1955 The metabolism of malate and certain other compounds by Desulphovibrio desulphuricans J Gen Microbiol 12 429–445

    Article  Google Scholar 

  • Hafenbradl, D., M. Keller, R. Dirmeier, R. Rachel, P. Roßnagel, S. Burggraf, H. Huber, and K. O. Stetter. 1996 Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions Arch Microbiol 166 308–314

    Article  CAS  PubMed  Google Scholar 

  • Haladjian, J., P. Bianco, F. Guerlesquin, and M. Bruschi. 1991 Kinetic studies of the electron exchange reaction between the octaheme cytochrome c 3 (Mr 26000) and the hydrogenase from Desulfovibrio desulfuricans Norway Biochim Biophys Res Commm 179 605–610

    Article  CAS  Google Scholar 

  • Hamilton, W. A. 1985 Sulphate-reducing bacteria and anaerobic corrosion Annu Rev Microbiol 39 195–217

    Article  CAS  PubMed  Google Scholar 

  • Handley, J., V. Adams, and J. M. Akagi. 1973 Morphology of bacteriophage-like particles from Desulfovibrio vulgaris J Bacteriol 115 1205–1207

    CAS  PubMed  Google Scholar 

  • Hansen, L. B., K. Finster, H. Fossing, and N. Iversen. 1998 Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions Aquatic Microbial Ecology 14 195–204

    Article  Google Scholar 

  • Hansen, T. A. 1994 Metabolism of sulfate-reducing prokaryotes Antonie van Leeuwenhoek 66 165–185

    Article  CAS  PubMed  Google Scholar 

  • Happe, R. P., W. Roseboom, A. J. Pierik, S. P. J. Albracht, and K. A. Bagley. 1997 Biological activition of hydrogen Nature 385 126

    Article  CAS  PubMed  Google Scholar 

  • Harder, J. 1997 Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide Marine Geology 137 13–23

    Article  CAS  Google Scholar 

  • Hardy, J. A., and W. A. Hamilton. 1981 The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters Current Microbiology 6 259–262

    Article  CAS  Google Scholar 

  • Harms, G., K. Zengler, R. Rabus, F. Aeckersberg, D. Minz, R. Rosselló-Mora, and F. Widdel. 1999 Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria Appl Environ Microbiol 65 999–1004

    CAS  PubMed  Google Scholar 

  • Harmsen, H. J. M., B. Wullings, A. D. L. Akkermans, W. Ludwig, and A. J. M. Stams. 1993 Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria Arch Microbiol 160 238–240

    CAS  PubMed  Google Scholar 

  • Harrison, G., C. Curle, and E. J. Laishley. 1984 Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum Arch Microbiol 138 72–78

    Article  CAS  PubMed  Google Scholar 

  • Harwood, C., and J. Gibson. 1997 Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes J Bacteriol 179 301–309

    CAS  PubMed  Google Scholar 

  • Harwood, C. S., G. Burchhardt, H. Herrmann, and G. Fuchs. 1999 Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway FEMS Microbiol Rev 22 439–458

    Article  Google Scholar 

  • Hatchikian, E. C. 1994 Desulfofuscidin: Dissimilatory, high-spin sulfite reductase of thermophilic, sulfate-reducing bacteria H. D. Peck Jr. and J. LeGall Inorganic Microbial Sulfur Metabolism Academic Press San Diego 243 276–295

    Chapter  Google Scholar 

  • Hatchikian, E. C. 1975 Purification and properties of thiosulfate reductase from Desulfovibrio gigas Arch Microbiol 105 249–256

    Article  CAS  PubMed  Google Scholar 

  • Hatchikian, E. C., N. Forget, V. M. Fernandez, R. Williams, and R. Cammack. 1992 Further characterization of the (Fe)-hydrogenase from Desulfovibrio desulfuricans ATCC 7757 Eur J Biochem 209 357–365

    Article  CAS  PubMed  Google Scholar 

  • Hatchikian, E. C., J. LeGall, and G. R. Bell. 1977 Significance of superoxide dismutase and catalase activities in the strict anaerobes, sulfate-reducing bacteria A. M. Michelson, J. M. McCord, and I. Fridovich Superoxide and superoxide dismutases Academic Press New York 159–172

    Google Scholar 

  • Hatchikian, E. C., V. Magro, N. Forget, Y. Nicolet, and J. C. Fontecilla-Camps. 1999 Carboxy-terminal processing of the large subunit of (Fe) hydrogenase from Desulfovibrio desulfuricans ATCC 7757 J Bacteriol 181 2947–2952

    CAS  PubMed  Google Scholar 

  • Hatchikian, E. C., P. Papavassiliou, P. Bianco, and J. Haladjian. 1984 Characterization of cytochrome c 3 from the thermophilic sulfate reducer Thermodesulfobacterium commune J Bacteriol 159 1040–1046

    CAS  PubMed  Google Scholar 

  • Hatchikian, E. C., and J. G. Zeikus. 1983 Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune J Bacteriol 153 1211–1220

    CAS  PubMed  Google Scholar 

  • Hayward, H. R. 1960 Anaerobic degradation of choline J Biol Chem 235 3592–3596

    CAS  PubMed  Google Scholar 

  • He, S. H., D. V. DerVartanian, and J. LeGall. 1986 Isolation of fumarate reductase from Desulfovibrio multispirans, a sulfate reducing bacterium Biochem Biophys Res Commm 135 1000–1007

    Article  CAS  Google Scholar 

  • He, S.-H., S. B. Woo, D. V. DerVartanian, J. LeGall, and H. D. Peck Jr. 1989 Effects of acetylene on hydrogenases from the sulfate reducing and methanogenic bacteria Biochem Biophys Res Comm 161 127–133

    Article  CAS  PubMed  Google Scholar 

  • Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller, and K. O. Stetter. 1999 Anaerobic respiration with elemental sulfur and with disulfides FEMS Microbiol Rev 22 353–381

    Article  Google Scholar 

  • Heider, J., and A. Böck. 1993 Selenium metabolism in microorganisms A. H. Rose Advances in microbial physiology Academic Press London 35 71–109

    Google Scholar 

  • Heider, J., and G. Fuchs. 1997a Anaerobic metabolism of aromatic compounds Eur J Biochem 243 577–596

    Article  CAS  PubMed  Google Scholar 

  • Heider, J., and G. Fuchs. 1997b Microbial anaerobic aromatic metabolism Anaerobe 3 1–22

    Article  CAS  PubMed  Google Scholar 

  • Heider, J., A. M. Spormann, H. R. Beller, and F. Widdel. 1999 Anaerobic bacterial metabolism of hydrocarbons FEMS Microbiol Rev 22 459–473

    Article  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989 Anaerobic degradation of betaine by marine Desulfobacterium strains Arch Microbiol 152 393–396

    Article  CAS  Google Scholar 

  • Helms, L. R., G. D. Krey, and R. P. Swenson. 1990 Identification, sequence determination, and expression of the flavodoxin gene from Desulfovibrio salexigens Biochem Biophys Res Comm 168 809–817

    Article  CAS  PubMed  Google Scholar 

  • Helms, L. R., and R. P. Swenson. 1991 Cloning and characterization of the flavodoxin gene from Desulfovibrio desulfuricans Biochim Biophys Acta 1089 417–419

    Article  CAS  PubMed  Google Scholar 

  • Henrichs, S. M., and W. S. Reeburgh. 1987 Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy Geomicrobiol J 5 191–237

    Article  CAS  Google Scholar 

  • Henry, E. A., R. Devereux, J. S. Maki, C. C. Gilmour, C. R. Woese, L. Mandelco, R. Schauder, C. C. Remsen, and R. Mitchell. 1994 Characterization of a new thermophilic sulfate-reducing bacterium Arch Microbiol 161 62–69

    Article  CAS  PubMed  Google Scholar 

  • Hensgens, C. M. H., J. Vonck, J. van Beeumen, E. F. J. van Bruggen, and T. A. Hansen. 1993 Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas J Bacteriol 175 2859–2863

    CAS  PubMed  Google Scholar 

  • Hensgens, C. M. H., M. E. Nienhuis-Kuiper, and T. A. Hansen. 1994 Effects of tungstate on the growth of Desulfovibrio gigas NCIMB 9332 and other sulfate-reducing bacteria with ethanol as a substrate Arch Microbiol 162 143–147

    Article  CAS  Google Scholar 

  • Hensgens, C. M. H., M. Jansen, M. E. Nienhuis-Kuiper, E. J. Boekema, J. F. L. van Breemen, and T. A. Hansen. 1995a Purification and characterization of an alcohol dehydrogenase from 1,2-propanediol-grown Desulfovibrio strain HDv Arch Microbiol 164 265–270

    Article  CAS  Google Scholar 

  • Hensgens, C. M. H., W. R. Hagen, and T. A. Hansen. 1995b Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas J Bacteriol 177 6195–6200

    CAS  PubMed  Google Scholar 

  • Heunisch, G. W. 1976 Stoichiometry of the reaction of sulfites with hydrogen sulfide ion Inorg Chemi 16 1411–1413

    Article  Google Scholar 

  • Higuchi, Y., K. Inaka, N. Yasuoka, and T. Yagi. 1987 Isolation and crystallization of high molecular weight cytochrome from Desulfovibrio vulgaris Hildenborough Biochim Biophys Acta 911 341–348

    Article  CAS  Google Scholar 

  • Higuchi, Y., M. Kusunoki, Y. Matsuura, N. Yasuoka, and M. Kakudo. 1984 Refined structure of cytochrome c 3 at 1.8 Å resolution J Mol Biol 172 109–139

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, Y., T. Okamoto, K. Fujimoto, and S. Misaki. 1994 Location of active sites of NiFe hydrogenase detremined by the combination of multiple isomorphous replacement and multiwavelength anomalous-diffraction methods Acta Crystallogr D50 781–785

    CAS  Google Scholar 

  • Higuchi, Y., T. Yagi, and N. Yasuoka. 1997 Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis Structure 5 1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs, K.-U., J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong. 1999 Methane-consuming archaebacteria in marine sediments Nature 398 802–805

    Article  CAS  PubMed  Google Scholar 

  • Hipp, W. M., A. S. Pott, N. Thum-Schmitz, I. Faath, C. Dahl, and H. G. Trüper. 1997 Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes Microbiology 143 2891–2902

    Article  CAS  PubMed  Google Scholar 

  • Hirschler, A., J.-F. Rontani, D. Raphel, R. Matheron, and J.-C. Bertrand. 1998 Anaerobic degradation of hexadecan-2-one by a micobial enrichment culture under sulfate-reducing conditions Appl Environ Microbiol 64 1576–1579

    CAS  PubMed  Google Scholar 

  • Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens. 1994 Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium Global Biogeochemical Cycles 8 451–463

    Article  CAS  Google Scholar 

  • Hollaus, F., and U. Sleytr. 1972 On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia Arch Microbiol 86 129–146

    CAS  Google Scholar 

  • Holo, H. 1989 Chloroflexus aurantiacus secrets 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate Arch Microbiol 145 173–180

    Article  Google Scholar 

  • Hoppe-Seyler, F. 1886 Über die Gährung der Cellulose mit Bildung von Methan und Kohlensäure F. Hoppe-Seyler Physiologische Chemie Verlag von K. J. Trübner Strassburg 10

    Google Scholar 

  • Howard, K. A., C. Card, J. S. Benner, H. J. Callahan, R. maunus, K. Silber, G. Wilson, and J. E. Brooks. 1986 Cloning the Dde I restriction-modification system using a two-step method Nucleic Acids Research 14 7939–7951

    Article  CAS  PubMed  Google Scholar 

  • Hryniewicz, M., A. Sirko, A. Palucha, A. Böck, and D. Hulanicka. 1990 Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding J Bacteriol 172 3358–3366

    CAS  PubMed  Google Scholar 

  • Hu, Y., S. Faham, R. Roy, M. W. W. Adams, and D. C. Rees. 1999 Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 Å resolution crystal structure and its mechanistic implications J Mol Biol 286 899–914

    Article  CAS  PubMed  Google Scholar 

  • Huber, H., H. Jannasch, R. Rachel, T. Fuchs, and K. O. Stetter. 1997 Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers Syst Appl Microbiol 20 374–380

    Article  CAS  Google Scholar 

  • Huber, R., J. K. Kristjansson, and K. O. Stetter. 1987 Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100° C Arch Microbiol 149 95–101

    Article  CAS  Google Scholar 

  • Huber, R., P. Rossnagel, C. R. Woese, R. Rachel, T. A. Langworthy, and K. O. Stetter. 1996 Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov Syst Appl Microbiol 19 40–49

    Article  CAS  PubMed  Google Scholar 

  • Huber, R., T. Wilharm, D. Huber, A. Trincone, S. Burggraf, H. König, R. Rachel, I. Rockinger, H. Fricke, and K. O. Stetter. 1992 Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria Syst Appl Microbiol 15 340–351

    Article  Google Scholar 

  • Hucklesby, D. P., D. M. James, M. J. Banwell, and E. J. Hewitt. 1976 Properties of nitrite reductase from Cucurbita Pepo Phytochemistry 15 599–603

    Article  CAS  Google Scholar 

  • Huynh, B. H., M. H. Czechowski, H.-J. Krüger, D. V. DerVartanian, H. D. Peck Jr., and J. LeGall. 1984a Desulfovibrio vulgaris hydrogenase; a nonheme iron enzyme lacking nickel that exhibits anomalous EPR and Mössbauer spectra Pro Natl Acad Sci USA 81 3728–3732

    Article  CAS  Google Scholar 

  • Huynh, B. H., L. Kang, D. V. DerVartanian, H. D. Peck Jr., and J. LeGall. 1984b Characterization of a sulfite reductase from Desulfovibrio vulgaris J Biol Chem 259 15373–15376

    CAS  PubMed  Google Scholar 

  • Huynh, B. H., D. S. Patil, I. Moura, M. Teixeira, J. J. G. Moura, D. V. DerVartanian, M. H. Czechowski, B. C. Prickril, H. D. Peck Jr., and J. LeGall. 1987 On the active sites of the (NiFe) hydrogenase from Desulfovibrio gigas J Biol Chem 262 795–800

    CAS  PubMed  Google Scholar 

  • Imhoff, D., and J. R. Andreesen. 1979 Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme FEMS Microbiol Lett 5 155–158

    Article  CAS  Google Scholar 

  • Imhoff, J. F. 1982 Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae Arch Microbiol 132 197–203

    Article  CAS  Google Scholar 

  • Imhoff-Stuckle, D., and N. Pfennig. 1983 Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov Arch Microbiol 136 194–198

    Article  CAS  Google Scholar 

  • Isaksen, M. F., and B. B. Jørgensen. 1996 Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments Appl Environ Microbiol 62 408–414

    CAS  PubMed  Google Scholar 

  • Isaksen, M. F., and A. Teske. 1996 Desulforhopalus vacuolatus gen. nov, sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary Arch Microbiol 166 160–168

    Article  CAS  Google Scholar 

  • Ishimoto, M., J. Koyama, T. Omura, and Y. Nagai. 1954a Biochemical studies on sulfate-reducing baceria. III. Sulfate reduction by cell suspensions J Biol Chem 41 537–546

    CAS  Google Scholar 

  • Ishimoto, N., J. Koyama, and Y. Nagai. 1954b Biochemical studies on sulfate-reducing bacteria. IV. The cytochrome system of sulfate-reducing bacteria J Biol Chem 41 763–770

    CAS  Google Scholar 

  • Ivanovsky, R. N., N. V. Sintsov, and E. N. Kondratieva. 1980 ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum Arch Microbiol 128 239–241

    Article  Google Scholar 

  • Iversen, N., and T. H. Blackburn. 1981 Seasonal rates of methane oxidation in anoxic marine sediments Appl Environ Microbiol 41 1295–1300

    CAS  PubMed  Google Scholar 

  • Iversen, N., and B. B. Jørgensen. 1985 Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark) Limnol Oceanogr 30 944–955

    Article  CAS  Google Scholar 

  • Jackson, R. H., A. Cornish-Bowden, and J. A. Cole. 1981 Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12 Biochem J 193 861–867

    CAS  PubMed  Google Scholar 

  • Jankielewicz, A., O. Klimmek, and A. Kröger. 1995 The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes Biochim Biophys Acta 1231 157–162

    Article  Google Scholar 

  • Jankielewicz, A., R. A. Schmitz, O. Klimmek, and A. Kröger. 1994 Polysulfide reductase and formate dehydrogenase from Wolinella succinogenes contain molybdopterin guanine dinucleotide Arch Microbiol 162 238–242

    Article  CAS  Google Scholar 

  • Jansen, K., R. K. Thauer, F. Widdel, and G. Fuchs. 1984 Carbon assimilation pathways in sulfate reducing bacteria, formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii Arch Microbiol 138 257–262

    Article  CAS  Google Scholar 

  • Jansen, K., G. Fuchs, and R. K. Thauer. 1985 Autotrophic CO2 fixation by Desulfovibrio baarsii: demonstration of enzyme activities characteristics for the acetyl-CoA pathway FEMS Microbiol Lett 28 311–315

    CAS  Google Scholar 

  • Janssen, P. H., and B. Schink. 1995a Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus J Bacteriol 177 277–282

    CAS  PubMed  Google Scholar 

  • Janssen, P. H., and B. Schink. 1995b Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum Arch Microbiol 163 188–194

    Article  CAS  PubMed  Google Scholar 

  • Janssen, P. H., A. Schuhmann, F. Bak, and W. Liesack. 1996 Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov Arch Microbiol 166 184–192

    Article  CAS  Google Scholar 

  • Jansen, M., and T. A. Hansen. 1998 Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria Arch Microbiol 169 84–87

    Article  CAS  PubMed  Google Scholar 

  • Jeanjean, R., and E. Broda. 1977 Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation Arch Microbiol 114 19–23

    Article  CAS  PubMed  Google Scholar 

  • Jenney Jr., F. E., M. F. J. M. Verhagen, X. Cui, and M. W. W. Adams. 1999 Anaerobic microbes: oxygen detoxification without superoxide dismutase Science 286 306–309

    Article  CAS  PubMed  Google Scholar 

  • Jochimsen, B., S. Peinemann-Simon, H. Völker, D. Stüben, R. Botz, P. Stoffers, P. R. Dando, and M. Thomm. 1997 Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece Extremophiles 1 67–73

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. S., I. B. Zhulin, M.-E. R. Gapuzan, and B. L. Taylor. 1997 Oxygen dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough J Bacteriol 179 5598–5601

    CAS  PubMed  Google Scholar 

  • Jonkers, H. M., M. J. E. C. van der Maarel, H. van Gemerden, and T. A. Hansen. 1996 Dimethylsulfoxide reduction by marine sulfate-reducing bacteria FEMS Microbiol Lett 136 283–287

    CAS  Google Scholar 

  • Jørgensen, B. B., and T. Fenchel. 1974 The sulfur cycle of a marine sediment model system Marine Biology 24 189–201

    Article  Google Scholar 

  • Jørgensen, B. B. 1977 The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) Limnol Oceanogr 22 814–832

    Article  Google Scholar 

  • Jørgensen, B. B. 1982 Mineralization of organic matter in the sea-bed-the role of sulphate reduction Nature 296 643–645

    Article  Google Scholar 

  • Jørgensen, B. B. 1987 Ecology of the sulphur cycle: oxidative pathways in sediments In A. Cole, J. and S. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 31–63

    Google Scholar 

  • Jørgensen, B. B. 1990 A thiosulfate shunt in the sulfur cycle of marine sediments Science 249 152–154

    Article  PubMed  Google Scholar 

  • Jørgensen, B. B., and F. Bak. 1991 Pathways and microbioogy of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark) Appl Environ Microbiol 57 847–856

    PubMed  Google Scholar 

  • Kamimura, K., and M. Araki. 1989 Isolation and characterization of a bacteriophage lytic for Desulfovibrio salexigens, a salt-requiring, sulfate-reducing bacterium Appl Environ Microbiol 55 645–648

    CAS  PubMed  Google Scholar 

  • Karkhoff-Schweizer, R., M. Bruschi, and G. Voordouw. 1993 Expression of the γ-subunit gene of Desulfoviridin-type dissimilatory sulfite reductase and of the α-and β-subunit gene is not coordinately regulated Eur J Biochem 211 501–507

    Article  CAS  PubMed  Google Scholar 

  • Karkhoff-Schweizer, R., D. P. W. Huber, and G. Voordouw. 1995 Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR Appl Environ Microbiol 61 290–296

    CAS  PubMed  Google Scholar 

  • Keith, S. M., and R. A. Herbert. 1983 Dissimilatory nitrate reduction by a stain of Desulfovibrio desulfuricans FEMS Microbiol Lett 18 55–59

    Article  CAS  Google Scholar 

  • Kelly, D. P. 1988 Oxidation of sulphur compounds J. A. Cole and S. J. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 65–98

    Google Scholar 

  • Kelly, P. 1989 Physiology and biochemistry of unicellular sulfur bacteria H. G. Schlegel and B. Bowien Autotrophic Bacteria Springer-Verlag Madison

    Google Scholar 

  • Kengen, S. W. M., F. A. M. de Bok, N.-D. van Loo, C. Dijkema, A. J. M. Stams, and W. M. de Vos. 1994 Evidence for the operation of a novel Embden-Meyerhof-pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus J Biol Chem 269 17537–17541

    CAS  PubMed  Google Scholar 

  • Kengen, S. W. M., A. J. M. Stams, and W. M. de Vos. 1996 Sugar metabolism of hyperthermophiles FEMS Microbiol Rev 18 119–137

    Article  CAS  Google Scholar 

  • Kent, H. M., M. Buck, and D. J. Evans. 1989 Cloning and sequencing of the nifH gene of Desulfovibrio gigas FEMS Microbiol Lett 61 73–78

    Article  CAS  Google Scholar 

  • Keon, R. G., R. Fu, and G. Voordouw. 1997 Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough Arch Microbiol 167 376–383

    Article  CAS  PubMed  Google Scholar 

  • Kiene, R. P., R. S. Oremland, A. Catena, L. G. Miller, and D. G. Capone. 1986 Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen Appl Environ Microbiol 52 1037–1045

    CAS  PubMed  Google Scholar 

  • Kim, J.-H., and J. M. Akagi. 1985 Characterization of a trithionate reductase system from Desulfovibrio vulgaris J Bacteriol 163 472–475

    CAS  PubMed  Google Scholar 

  • Kitamura, M., K. Mizugai, M. Taniguchi, H. Akutsu, I. Kamagai, and T. Nakaya. 1995 A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c 553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki, F.) Microbiol Immunol 39 75–80

    CAS  PubMed  Google Scholar 

  • Kitamura, M., Y. Koshino, Y. Kamikawa, K. Kohno, S. Kojima, K. Miura, T. Sagara, H. Akutsu, I. Kumagai, and T. Nakaya. 1997 Cloning and expression of the rubredoxin gene from Desulfovibrio vulgaris (Miyazaki, F.)—comparison of the primary structure of desulfoferrodoxin Biochim Biophys Acta 1351 239–247

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, M., T. Sagara, M. Taniguchi, M. Ashida, K. Ezoe, K. Kohno, S. Kojima, K. Ozawa, H. Akutsu, I. Kumagai, and T. Nakaya. 1998 Cloning and expression of the gene encoding flavodoxin from Desulfovibrio vulgaris (Miyakazi, F.) J Biochem 123 891–898

    Article  CAS  PubMed  Google Scholar 

  • Klein, A. R., J. Breitung, D. Linder, K. O. Stetter, and R. K. Thauer. 1993 N5, N10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermphilic sulfate reducing Archeaoglobus fulgidus: Comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri Arch Microbiol 159 213–219

    Article  CAS  PubMed  Google Scholar 

  • Klemps, R., H. Cypionka, F. Widdel, and N. Pfennig. 1985 Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species Arch Microbiol 143 203–208

    Article  CAS  Google Scholar 

  • Klenk, H. P., R. Clayton, J.-F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. Fleischmann, D. J. Quackenbush, N. H. Lee, G. G. Sutton, G. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidman, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Artiach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D’Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1997 The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus Nature 390 364–374

    Article  CAS  PubMed  Google Scholar 

  • Kletzin, A., and M. W. W. Adams. 1996 Tungsten in biological systems FEMS Microbiol Rev 18 5–63

    Article  CAS  PubMed  Google Scholar 

  • Klimmek, O., V. Kreis, C. Klein, J. Simon, A. Wittershagen, and A. Kröger. 1998 The function of the periplasmid sud protein in polysulfide respiration of Wolinella succinogenes Eur J Biochem 253 263–269

    Article  CAS  PubMed  Google Scholar 

  • Klimmek, O., A. Kröger, R. Steudel, and G. Holdt. 1991 Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport Arch Microbiol 155 177–182

    Article  CAS  Google Scholar 

  • Klimmek, O., T. Stein, R. Pisa, J. Simon, and A. Kröger. 1999 The single cysteine residue of the sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes Eur J Biochem 263 79–84

    Article  CAS  PubMed  Google Scholar 

  • Kluyver, A. J., and C. B. Niel van. 1936 Prospects for a natural system of classification of bacteria Zentralb Bakteriol II. Abt. 94 369–403

    Google Scholar 

  • Knoblauch, C., B. B. Jørgensen, and J. Harder. 1999a Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments Appl Environ Microbiol 65 4230–4233

    CAS  PubMed  Google Scholar 

  • Knoblauch, C., K. Sahm, and B. B. Jørgensen. 1999b Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov, Desulfofrigus fragile sp. nov, Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea actica sp. nov Inter J Syst Bacteriol 49 1631–1643

    Article  CAS  Google Scholar 

  • Knoblauch, C., and B. B. Jørgensen. 1999c Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments Environ Microbiol 1 457–467

    Article  CAS  PubMed  Google Scholar 

  • Knoll, G., and J. Winter. 1989 Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria Appl Microbiol Biotechnol 30 318–324

    Article  CAS  Google Scholar 

  • Kobayashi, K., Y. Seki, and M. Ishimoto. 1974 Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris—Mechanism of trithionate, thiosulfate and sulfide formation and enzymatic properties J Biochem 75 519–529

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., E. Takahashi, and M. Ishimoto. 1972 Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfate reductase, Desulfoviridin J Biochem 72 879–887

    CAS  PubMed  Google Scholar 

  • König, H., R. Skorko, W. Zillig, and W.-D. Reiter. 1982 Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus Arch Microbiol 132 297–303

    Article  Google Scholar 

  • Kotzian, S., V. Kreis-Kleinschmidt, T. Krafft, O. Klimmek, J. M. Macy, and A. Kröger. 1996 Properties of a Wolinella succinogenes mutant lacking periplasmic sulfide dehydrogenase (Sud) Arch Microbiol 165 65–68

    Article  CAS  PubMed  Google Scholar 

  • Krafft, T., M. Bokranz, O. Klimmek, I. Schröder, F. Fahrenholz, E. Kojro, and A. Kröger. 1992 Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulfide reductase Eur J Biochem 206 503–510

    Article  CAS  PubMed  Google Scholar 

  • Krafft, T., R. Gross, and A. Kröger. 1995 The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor Eur J Biochem 230 601–606

    Article  CAS  PubMed  Google Scholar 

  • Krämer, M., and H. Cypionka. 1989 Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria Arch Microbiol 151 232–237

    Article  Google Scholar 

  • Kreis-Kleinschmidt, V., F. Fahrenholz, E. Kojro, and A. Kröger. 1995 Periplasmic sulphide dehydrogenase (Sud) from Wolinella succinogenes: Isolation, nucleotide sequence of the sud gene and its expression in Escherichia coli Eur J Biochem 227 137–142

    Article  CAS  PubMed  Google Scholar 

  • Kreke, B., and H. Cypionka. 1992 Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus Arch Microbiol 158 183–187

    Article  CAS  PubMed  Google Scholar 

  • Krekeler, D., P. Sigalevich, A. Teske, H. Cypionka, and Y. Cohen. 1997 A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov Arch Microbiol 167 369–375

    Article  CAS  Google Scholar 

  • Krekeler, D., A. Teske, and H. Cypionka. 1998 Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat FEMS Microbiol Ecol 25 89–96

    CAS  Google Scholar 

  • Kremer, D. R., and T. A. Hansen. 1987 Glycerol and dihydroxyacetone dissimilation in Desulfovibrio strains Arch Microbiol 147 249–256

    Article  CAS  Google Scholar 

  • Kremer, D. R., and T. A. Hansen. 1988a Pathway of propionate degradation in Desulfobulbus propionicus FEMS Microbiol Lett 49 273–277

    Article  CAS  Google Scholar 

  • Kremer, D. R., H. E. Nienhuis-Kuiper, and T. A. Hansen. 1988b Ethanol dissimilation in Desulfovibrio Arch Microbiol 150 552–557

    Article  CAS  Google Scholar 

  • Kremer, D. R., M. Veenhuis, G. Fauque, H. D. Peck Jr., J. LeGall, J. Lampreia, J. J. G. Moura, and T. A. Hansen. 1988c Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species Arch Microbiol 150 296–301

    Article  CAS  Google Scholar 

  • Kremer, D. R., H. E. Nienhuis-Kuiper, C. J. Timmer, and T. A. Hansen. 1989 Catabolism of malate and related dicarboxylic acids in various Desulfovibrio strains and the involvement of an oxygen-labile NADPH dehydrogenase Arch Microbiol 151 34–39

    Article  CAS  Google Scholar 

  • Krey, G. D., E. F. Vanin, and R. P. Swenson. 1988 Cloning, nucleotide sequence and expression of the flavodoxin gene from Desulfovibrio vulgaris (Hildenborough) J Biol Chem 263 15436–15443

    CAS  PubMed  Google Scholar 

  • Kröger, A., E. Dorrer, and E. Winkler. 1980 The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes Biochim Biophys Acta 589 118–136

    Article  PubMed  Google Scholar 

  • Kröger, A., and E. Winkler. 1981 Phosphorylative fumarate reduction in Vibrio succinogenes: Stoichiometry of ATP synthesis Arch Microbiol 129 100–104

    Article  Google Scholar 

  • Kröger, A. 1987 ATP-Synthese bei anaeroben Bakterien mit energiearmen Substraten Forum Mikrobiologie 12 487–493

    Google Scholar 

  • Kröger, A., J. Schröder, J. Paulsen, and A. Beilmann. 1988 Acetate oxidation with sulphur and sulphate as terminal electron acceptors J. A. Cole and S. J. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 133–145

    Google Scholar 

  • Kröger, A., V. Geisler, E. Lemma, F. Theis, and R. Lenger. 1992 Bacterial fumarate respiration Arch Microbiol 158 311–314

    Article  Google Scholar 

  • Krüger, H.-J., B. H. Huynh, P. O. Ljungdahl, A. V. Xavier, D. V. DerVartanian, I. Moura, H. D. Peck Jr., M. Teixeira, J. G. J. Moura, and J. LeGall. 1982 Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans J Biol Chem 257 14620–14623

    PubMed  Google Scholar 

  • Kuever, J., J. Kulmer, S. Jannsen, U. Fischer, and K.-H. Blotevogel. 1993 Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol Arch Microbiol 159 282–288

    Article  CAS  PubMed  Google Scholar 

  • Kuever, J., F. A. Rainey, and H. Hippe. 1999 Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae Inter J Syst Bacteriol 49 180

    Google Scholar 

  • Kuhn, E. P., J. Zeyer, P. Eicher, and R. P. Schwarzenbach. 1988 Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns Appl Environ Microbiol 54 490–496

    CAS  PubMed  Google Scholar 

  • Kuhnigk, T., J. Branke, D. Krekeler, H. Cypionka, and H. König. 1996 A feasible role of sulfate-reducing bacteria in the termite gut Syst Appl Microbiol 19 139–149

    Article  CAS  Google Scholar 

  • Kukko-Kalske, E., M. Lintunen, M. K. Inen, R. Lathi, and J. Heinonen. 1989 Intracellular PPi concentration is not directly dependent on amount of inorganic pyrophosphatase in Escherichia coli K-12 cells J Bacteriol 171 4498–4500

    CAS  PubMed  Google Scholar 

  • Kunow, J., D. Linder, K. O. Stetter, and R. K. Thauer. 1994 F420H2: quinone oxidoreductase from Archaeoglobus fulgidus: Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters Eur J Biochem 223 503–511

    Article  CAS  PubMed  Google Scholar 

  • Kunow, J., D. Linder, and R. K. Thauer. 1995 Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties and sequence alignments Arch Microbiol 163 21–28

    CAS  PubMed  Google Scholar 

  • L´Haridon, S., A.-L. Reysenbach, P. Glénat, D. Prieur, and C. Jeanthon. 1995 Hot subterranean biosphere in a continental oil reservoir Nature 377 223–224

    Article  Google Scholar 

  • L´Haridon, S., V. Cilia, P. Messner, G. Raguénès, A. Gambacorta, U. B. Sleytr, D. Prieur, and C. Jeanthon. 1998 Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent Inter J Syst Bacteriol 48 701–711

    Article  Google Scholar 

  • Laanbroek, H. J., T. Abee, and I. L. Voogd. 1982 Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen Arch Microbiol 133 178–184

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., H. J. Geerligs, L. Sijtsma, and H. Veldkamp. 1984 Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus and Desulfovibrio species isolated from intertidal sediments Appl Environ Microbiol 47 329–334

    CAS  PubMed  Google Scholar 

  • Laanbroek, H. J., W. Kingma, and H. Veldkamp. 1977 Isolation of an aspartate-fermenting, free-living Campylobacter species FEMS Lett 1 99–102

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., L. J. Stal, and H. Veldkamp. 1978 Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions Arch Microbiol 119 99–102

    Article  CAS  PubMed  Google Scholar 

  • Lack, A., and G. Fuchs. 1992 Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism J Bacteriol 174 3629–3636

    CAS  PubMed  Google Scholar 

  • Lack, A., and G. Fuchs. 1994 Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp Arch Microbiol 161 132–139

    CAS  PubMed  Google Scholar 

  • Laempe, D., W. Eisenreich, A. Bacher, and G. Fuchs. 1998 Cyclohexa-1,5-diene-1-carbonyl-CoA hydratase (corrected), an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica Eur J Biochem 255 618–627

    Article  CAS  PubMed  Google Scholar 

  • Laempe, D., M. Jahn, and G. Fuchs. 1999 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica Eur J Biochem 263 420–429

    Article  CAS  PubMed  Google Scholar 

  • Lampreia, J., I. Moura, G. Fauque, A. V. Xavier, J. LeGall, H. D. Peck Jr., and J. J. G. Moura. 1987 Presented at the Third International Conference on Bioinorganic Chemistry, Noordwijkerhout The Netherlands

    Google Scholar 

  • Lampreia, J., G. Fauque, N. Speich, C. Dahl, I. Moura, H. G. Trüper, and J. J. G. Moura. 1991 Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus Biochem Biophys Res Comm 181 342–347

    Article  CAS  PubMed  Google Scholar 

  • Länge, S., R. Scholtz, and G. Fuchs. 1989 Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum Arch Microbiol 151 77–83

    Article  Google Scholar 

  • Langelandsvik, A. S., I. H. Steen, N.-K. Birkeland, and T. Lien. 1997 Properties and primary structure of a thermostable L-malate dehydrogenase from Archaeoglobus fulgidus Arch Microbiol 168 59–67

    Article  CAS  PubMed  Google Scholar 

  • Langworthy, T. A., G. Holzer, G. Zeikus, and T. G. Tornabene. 1983 Iso-and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfobacterium commune Syst Appl Microbiol 4 1–17

    Article  CAS  PubMed  Google Scholar 

  • Laue, H., K. Denger, and A. M. Cook. 1997a Fermentation of cysteate by a sulfate-reducing bacterium Arch Microbiol 168 210–214

    Article  CAS  Google Scholar 

  • Laue, H., K. Denger, and A. M. Cook. 1997b Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU Appl Environ Microbiol 63 2016–2021

    CAS  PubMed  Google Scholar 

  • Lauterbach, F., C. Körtner, D. Tripier, and G. Unden. 1987 Cloning and expression of the genes of two fumarate reductase subunits from Wolinella succinogenes Eur J Biochem 166 447–452

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. P., and H. D. Peck Jr. 1971 Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as Desulfoviridin Biochem Biophys Res Comm 45 583–589

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. P., J. LeGall, and H. D. Peck Jr. 1973a Isolation of assimilatory-and dissimilatory-type sulfite reductase from Desulfovibrio vulgaris J Bacteriol 115 529–542

    CAS  PubMed  Google Scholar 

  • Lee, J. P., C.-S. Yi, J. LeGall, and H. D. Peck Jr. 1973b Isolation of a new pigment, Desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction J Bacteriol 115 453–455

    CAS  PubMed  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988 Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture Arch Microbiol 150 513–518

    Article  CAS  Google Scholar 

  • LeGall, J., and G. Fauque. 1988 Dissimilatory reduction of sulfur compounds A. J. B. Zehnder Biology of Anaerobic Microoganisms John Wiley & Sons New York 587–639

    Google Scholar 

  • LeGall, J., and A. V. Xavier. 1996 Anaerobes response to oxygen: the sulfate-reducing bacteria Anaerobe 2 1–9

    Article  CAS  Google Scholar 

  • Leinfelder, W., E. Zehelein, M. A. Mandrand-Berthelot, and A. Böck. 1988 Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine Nature 331 723–725

    Article  CAS  PubMed  Google Scholar 

  • Lenger, R., U. Herrmann, R. Gross, J. Simon, and A. Kröger. 1997 Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes Eur J Biochem 246 646–651

    Article  CAS  PubMed  Google Scholar 

  • Lespinat, P. A., Y. M. Berlier, G. D. Fauque, R. Toci, G. Denariaz, and J. LeGall. 1987 The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers J Industrial Microbiol 1 383–388

    Article  CAS  Google Scholar 

  • Leuthner, B., C. Leutwein, H. Schulz, P. Hörth, W. Haehnel, E. Schiltz, H. Schägger, and J. Heider. 1998 Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism Mol Microbiol 28 615–628

    Article  CAS  PubMed  Google Scholar 

  • Leyh, T. S., J. T. Taylor, and G. H. Markham. 1988 The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization J Biol Chem 263 2409–2416

    CAS  PubMed  Google Scholar 

  • Leyh, T. S., and Y. Suo. 1992 GTPase-mediated activation of ATP sulfurylase J Biol Chem 267 542–545

    CAS  PubMed  Google Scholar 

  • Li, C., H. D. Peck Jr., and A. E. Przybyla. 1986 Complementation of an Escherichia coli pyrF mutant with DNA from Desulfovibrio vulgaris J Bacteriol 165 644–646

    CAS  PubMed  Google Scholar 

  • Li, C., H. D. Peck Jr., J. LeGall, and A. E. Przybyla. 1987 Cloning, characterization and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFe)hydrogenase of Desulfovibrio gigas DNA 6 539–551

    Article  CAS  PubMed  Google Scholar 

  • Lie, T. J., T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. 1996 Sulfonates: novel electron acceptors in anaerobic respiration Arch Microbiol 166 204–210

    Article  CAS  PubMed  Google Scholar 

  • Lie, T., M. L. Clawson, W. Godchaux, and E. R. Leadbetter. 1999 Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov Appl Environ Microbiol 65 3328–3334

    CAS  PubMed  Google Scholar 

  • Lien, T., and T. Torsvik. 1990 Hydrogenase in Desulfobacter J. P. Bélaich, M. Bruschi, and I. L. Garcia Microbiology and Biochemistry of strict anaerobes involved in interspecies hydrogen transfer Plenum New York 519–520

    Chapter  Google Scholar 

  • Liesack, W., and K. Finster. 1994 Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov. and Desulfuromusa succinoxidans sp. nov Inter J Syst Bacteriol 44 753–758

    Article  Google Scholar 

  • Lin, E. C. C., and D. R. Kuritzkes. 1987 Pathways for anaerobic electron transfer F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger Escherichia Coli and Salmonella Typhimurium American Society for Microbiology Washington DC 1 201–221

    Google Scholar 

  • Liochev, S., and I. Fridovich. 1997 A mechanism for complementation of the sodA, sodB defect in Escherichia coli by overproduction of the rbo gene product (Desulfoferredoxin) from Desulfoarculus baarsii J Biol Chem 272 25573–25575

    Article  CAS  PubMed  Google Scholar 

  • Lipmann, F. 1958 Biological sulfate activation and transfer Science 128 575–580

    Article  CAS  PubMed  Google Scholar 

  • Liu, M.-C., and H. D. Peck Jr. 1981a The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase J Biol Chem 256 13159–13164

    CAS  PubMed  Google Scholar 

  • Liu, C. L., and H. D. Peck Jr. 1981b Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum J Bacteriol 145 966–973

    CAS  PubMed  Google Scholar 

  • Liu, M. C., M. Y. Liu, W. J. Payne, H. D. Peck Jr., and J. LeGall. 1983 Wolinella succinogenes nitrite reductase: purification and properties FEMS Microbiol Lett 19 201–206

    Article  CAS  Google Scholar 

  • Liu, M.-C., C. Costa, I. B. Coutinho, J. J. G. Moura, I. Moura, A. V. Xavier, and J. LeGall. 1988 Cytochrome components of nitrate-and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774 J Bacteriol 170 5545–5551

    CAS  PubMed  Google Scholar 

  • Liu, M. C., C. Costa, and I. Moura. 1994 Hexaheme nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774) H. D. Peck Jr. and J. LeGall Inorganic Microbial Sulfur Metabolism Academic Press San Diego 243 303–319

    Chapter  Google Scholar 

  • Liu, C., Y. Suo, and T. S. Leyh. 1994 The energetic linkage of GTP hydrolysis and the synthesis of activated sulfate Biochemistry 33 7309–7314

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., R. Wang, O. Varlamova, and T. S. Leyh. 1998 Regulating energy transfer in the ATP sulfurylase-GTPase system Biochemistry 37 3886–3892

    Article  CAS  PubMed  Google Scholar 

  • Llobet-Brossa, E., R. Rossello-Mora, and R. Amann. 1998 Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization Appl Environ Microbiol 64 2691–2696

    PubMed  Google Scholar 

  • Lojou, E., P. Bianco, and M. Bruschi. 1998 Kinetic studies on the electron transfer between various c-type cytochromes and iron (III) using a voltametric approach Electrochim Acta 43 2005–2013

    Article  CAS  Google Scholar 

  • Londry, K. L., P. M. Fedorak, and J. M. Suflita. 1997 Anaerobic degradation of m-cresol by a sulfate-reducing bacterium Appl Environ Microbiol 63 3170–3175

    CAS  PubMed  Google Scholar 

  • Lorenzen, J. P., A. Kröger, and G. Unden. 1993 Regulation of anaerobic respiratory pathways in Wolinella succinogenes by the presence of electron acceptors Arch Microbiol 159 477–483

    Article  CAS  Google Scholar 

  • Louie, T. M., S. Ni, L. Xun, and W. W. Mohn. 1997 Purification, characterization and gene sequence analysis of a novel cytochrome c co-induced with reductive dechlorination activity in Desulfomonile tiedjei DCB-1 Arch Microbiol 168 520–527

    Article  CAS  PubMed  Google Scholar 

  • Loutfi, M., F. Guerlesquin, P. Bianco, J. Haladjian, and M. Bruschi. 1989 Comparative studies of polyhemic cytochromes c isolated from Desulfovibrio vulgaris Hildenborough and Desulfovibrio desulfuricans Norway Biochem Biophys Res Comm 159 670–676

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982 Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments Appl Environ Microbiol 43 1373–1379

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., and D. J. Lonergan. 1990 Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15 Appl Environ Microbiol 56 1858–1864

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., P. K. Widman, J. C. Woodward, and E. J. P. Phillips. 1993a Reduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris Appl Environ Microbiol 59 3572–3576

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward. 1993b Enzymatic iron and uranium reduction by sulfate-reducing bacteria Marine Geology 113 41–53

    Article  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1994a Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome Appl Environ Microbiol 60 726–728

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1994b Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria Appl Environ Microbiol 60 2394–2399

    CAS  PubMed  Google Scholar 

  • Lovley, D. R. 1995a Microbial reduction of iron, manganese, and other metals Advances in Agronomy 54 175–231

    Article  CAS  Google Scholar 

  • Lovley, D. R., and E. J. P. Phillips. 1995b Fe(III) and S0 reduction by Pelobacter carbinolicus Appl Environ Microbiol 61 2132–2138

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., J. D. Coates, J. C. Woodward, and E. J. P. Phillips. 1995c Benzene oxidation coupled to sulfate reduction Appl Environ Microbiol 61 953–958

    CAS  PubMed  Google Scholar 

  • Ludwig, W., O. Strunk, S. Klugbauer, M. Weizenegger, J. Neumaier, M. Bachleitner, and K.-H. Schleifer. 1998 Bacterial phylogeny based on comparative sequence analysis Electrophoresis 19 554–568

    Article  CAS  PubMed  Google Scholar 

  • Lui, S. M., and J. A. Cowan. 1994 Conformational gating of the dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Synthesis, characterization and stopped-flow kinetics studies of 1,5-IAEDANS-labeled Desulfoviridin Biochemistry 33 11209–11216

    Article  CAS  PubMed  Google Scholar 

  • Lupton, F. S., R. Conrad, and J. G. Zeikus. 1984 Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates J Bacteriol 159 843–849

    CAS  PubMed  Google Scholar 

  • Ma, K., R. N. Schicho, R. M. Kelly, and M. W. W. Adams. 1993 Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor Pro Natl Acad Sci USA 90 5341–5344

    Article  CAS  Google Scholar 

  • Ma, K., and M. W. W. Adams. 1994 Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur J Bacteriol 176 6509–6517

    CAS  PubMed  Google Scholar 

  • Ma, K., and M. W. W. Adams. 1999 An unusual oxygen-sensitive, iron-and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus J Bacteriol 181 1163–1170

    CAS  PubMed  Google Scholar 

  • Macy, J. M., I. Schröder, R. K. Thauer, and A. Kröger. 1986 Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources Arch Microbiol 144 147–150

    Article  CAS  Google Scholar 

  • Macy, J. M., K. Nunan, K. D. Hagen, D. R. Dixon, P. J. Harbour, M. Cahill, and L. I. Sly. 1996 Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater Inter J Syst Bacteriol 46 1153–1157

    Article  CAS  Google Scholar 

  • Macy, J. M., J. M. Santini, B. V. Pauling, A. H. O’Neill, and L. I. Sly. 2000 Two new arsenate/sulfate-reducing bacteria: mechanism of arsenate reduction Arch Microbiol 173 49–57

    Article  CAS  PubMed  Google Scholar 

  • Madigan, M. T., and H. Gest. 1978 Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant-dependent” sugar fermentation Arch Microbiol 117 119–122

    Article  CAS  PubMed  Google Scholar 

  • Madigan, M. T., J. C. Cox, and H. Gest. 1980 Physiology of dark fermentative growth of Rhodopseudomonas capsulata J Bacteriol 142 908–915

    CAS  PubMed  Google Scholar 

  • Magot, M., G. Ravot, X. Campaignolle, B. Ollivier, B. K. C. Patel, M.-L. Fardeau, P. Thomas, J.-L. Crolet, and J.-L. Garcia. 1997 Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells Inter J Syst Bacteriol 47 818–824

    Article  CAS  Google Scholar 

  • Magro, V., L. Pieulle, N. Forget, B. Guigliarelli, Y. Petillot, and E. C. Hatchikian. 1997 Further characterization of the two tetraheme cytochrome c 3 from Desulfovibrio africanus: nucleotide sequences, EPR spectroscopy and biological activity Biochim Biophys Acta 1342 149–163

    Article  CAS  PubMed  Google Scholar 

  • Maier, R. J. 1996 Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases and electron transport factors that function at temperatures exceeding 100°C Adv Protein Science 48 35–73

    Article  CAS  Google Scholar 

  • Malki, S., G. De Luca, M.-L. Fardeau, M. Rousset, J.-P. Bélaich, and Z. Dermoun. 1997 Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio frutosovorans Arch Microbiol 167 38–45

    Article  CAS  PubMed  Google Scholar 

  • Malki, S., I. Saimmaime, G. De Luca, M. Rousset, Z. Dermoun, and J.-P. Bélaich. 1995 Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans J Bacteriol 177 2628–2636

    CAS  PubMed  Google Scholar 

  • Maloy, S. R., V. J. Stewart, and R. K. Taylor. 1996 Use of transposons in bacterial genetics S. R. Maloy, V. J. Stewart, and R. K. Taylor Genetic Analysis of Pathogenic Bacteria—A Laboratory Manual Cold Spring Harbor Laboratory Press 161–167

    Google Scholar 

  • Marion, D., and F. Guerlesquin. 1992 Sequential NMR resonance assignment and secondary structure of ferrocytochrome C553 from Desulfovibrio vulgaris HIldenborough Biochemistry 31 8171–8179

    Article  CAS  PubMed  Google Scholar 

  • Marritt, S. J., and W. R. Hagen. 1996 Dissimilatory sulfite reductase revisited (The desulfoviridin molecule does contain 20 iron ions, extensively demetallated sirohaem, and an S-9/2 iron-sulfur cluster) Eur J Biochem 238 724–727

    Article  CAS  PubMed  Google Scholar 

  • Marschall, C., P. Frenzel, and H. Cypionka. 1993 Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria Arch Microbiol 159 168–173

    Article  CAS  Google Scholar 

  • Martens, C. S., and R. A. Berner. 1977 Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases Limnol Oceanogr 22 10–25

    Article  CAS  Google Scholar 

  • Matias, P. M., C. Frazao, J. Morais, M. Coll, and M. A. Carrondo. 1993 Structure analysis of cytochrome c 3 from Desulfovibrio vulgaris Hildenborough at 1.9 Å resolution J Mol Biol 234 680–699

    Article  CAS  PubMed  Google Scholar 

  • McCready, R. G. L., I. R. Kaplan, and G. A. Din. 1974 Fractionation of sulfur isotopes by the yeast Saccharomyces cerevisiae Geochim Cosmochim Acta 38 1239–1253

    Article  CAS  Google Scholar 

  • McCready, R. G. L., W. D. Gould, and F. D. Cook. 1983 Respiratory nitrate reduction by Desulfovibrio sp Arch Microbiol 135 182–185

    Article  CAS  Google Scholar 

  • McIntire, W., D. J. Hopper, and T. P. Singer. 1985 p-Cresol methylhydroxylase Biochemistry Journal 228 325–335

    CAS  Google Scholar 

  • McRee, D. E., D. C. Richardson, J. S. Richardson, and L. M. Siegel. 1986 The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase J Biol Chem 261 10277–10281

    CAS  PubMed  Google Scholar 

  • Mechalas, B. J., and S. C. Rittenberg. 1960 Energy coupling in Desulfovibrio desulfuricans J Bacteriol 80 501–507

    CAS  PubMed  Google Scholar 

  • Menendez, C., Z. Bauer, H. Huber, N. Gad’on, K.-O. Stetter, and G. Fuchs. 1999 Presence of acetyl-coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation J Bacteriol 181 1088–1098

    CAS  PubMed  Google Scholar 

  • Menon, N. K., H. D. Peck Jr., J. LeGall, and A. E. Przybyla. 1987 Cloning and sequencing of the gene encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus J Bacteriol 169 5401–5407

    CAS  PubMed  Google Scholar 

  • Menon, N. K., J. Robbins, M. DerVartanian, D. Patil, H. D. Peck Jr., A. L. Menon, R. L. Robson, and A. E. Przybyla. 1993 Carboxy-terminal processing of the large subunit of (NiFe) hydrogenases FEBS Lett 331 91–95

    Article  CAS  PubMed  Google Scholar 

  • Meyer, L. 1864 Chemische Untersuchung der Thermen zu Landeck in der Grafschaft Glatz Erdmann, O. L. J praktische Chemie, Heidelberg 91 1–15

    Google Scholar 

  • Michaelis, G. B., J. T. Davidson, and H. D. Peck Jr. 1970 A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate-reductase from Desulfovibrio vulgaris Biochem Biophys Res Comm 39 321–328

    Article  Google Scholar 

  • Miller, J. D. A., and D. S. Wakerley. 1966 Growth of sulphate-reducing bacteria by fumarate dismutation J Gen Microbiol 43 101–107

    Article  CAS  PubMed  Google Scholar 

  • Min, H., and S. H. Zinder. 1990 Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans Arch Microbiol 153 399–404

    Article  CAS  Google Scholar 

  • Minz, D., Fishbain, S., Green, S. J., Muyzer, G., Cohen, Y., Rittmann, B. E., and Stahl, D. A. 1999a Unexpected population distribution in a microbial community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia Appl Environ Microbiol 65 4659–4665

    CAS  PubMed  Google Scholar 

  • Minz, D., J. L. Flax, S. J. Green, G. Muyzer, Y. Cohen, M. Wagner, B. E. Rittmann, and D. A. Stahl. 1999b Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes Appl Environ Microbiol 65 4666–4671

    CAS  PubMed  Google Scholar 

  • Miroshnichenko, M. L., F. A. Rainey, H. Hippe, N. A. Chernyh, N. A. Kostrikina, and E. A. Bonch-Osmolovskaya. 1998 Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments Inter J Syst Bacteriol 48 475–479

    Article  Google Scholar 

  • Miroshnichenko, M. L., F. A. Rainey, M. Rhode, and E. A. Bonch-Osmolovskaya. 1999 Hippea maritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents Inter J Syst Bacteriol 49 1033–1038

    Article  CAS  Google Scholar 

  • Mitchell, G. J., J. G. Jones, and J. A. Cole. 1986 Distribution and regulation of nitrate and nitrite reduction by Desufovibrio and Desulfotomaculum species Arch Microbiol 144 35–40

    Article  CAS  Google Scholar 

  • Mohamed, M. E., B. Seyfried, A. Tschech, and G. Fuchs. 1993 Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in dentrifying Pseudomonas sp Arch Microbiol 159 563–573

    Article  CAS  Google Scholar 

  • Mohn, W. W., and J. M. Tiedje. 1990a Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe J Bacteriol 172 2065–2070

    CAS  PubMed  Google Scholar 

  • Mohn, W. W., and J. M. Tiedje. 1990b Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation Arch Microbiol 153 267–271

    Article  CAS  PubMed  Google Scholar 

  • Molitor, M., C. Dahl, I. Molitor, U. Schäfer, N. Speich, R. Huber, R. Deutzmann, and H. G. Trüper. 1998 A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum Microbiology 144 529–541

    Article  CAS  PubMed  Google Scholar 

  • Möller, D., R. Schauder, G. Fuchs, and R. K. Thauer. 1987 Acetate oxidation to CO2 via citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate Arch Microbiol 148 202–207

    Article  Google Scholar 

  • Möller-Zinkhan, D., G. Börner, and R. K. Thauer. 1989 Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus Arch Microbiol 152 362–368

    Article  Google Scholar 

  • Möller-Zinkhan, D., and R. K. Thauer. 1990 Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts Arch Microbiol 153 215–218

    Article  Google Scholar 

  • Möller-Zinkhan, D., and R. K. Thauer. 1988 Membrane-bound NADPH dehydrogenase-and ferredoxin: NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei Arch Microbiol 150 145–154

    Article  Google Scholar 

  • Morelli, X., A. Dolla, R. Toci, and F. Guerlesquin. 1999 15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c 553 Eur J Biochem 261 398–404

    Article  CAS  PubMed  Google Scholar 

  • Moreno, C., R. Franco, I. Moura, J. LeGall, and J. G. Moura. 1993 Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus Eur J Biochem 217 981–989

    Article  CAS  PubMed  Google Scholar 

  • Moura, J. J. G., I. Moura, B. H. Huynh, H.-J. Krüger, M. Teixeira, R. C. DuVarney, D. V. DerVartanian, A. V. Xavier, H. D. Peck Jr., and J. LeGall. 1982 Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase Biochem Biophys Res Comm 108 1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Moura, I., G. Fauque, J. LeGall, A. V. Xavier, and J. J. G. Moura. 1987 Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau Eur J Biochem 162 547–554

    Article  CAS  PubMed  Google Scholar 

  • Moura, I., J. LeGall, A. R. Lino, H. D. Peck Jr., G. Fauque, A. V. Xavier, D. V. DerVartanian, J. J. G. Moura, and B. H. Huynh. 1988 Characterization of two dissimilatory sulfite reductases (Desulforubidin and Desulfoviridin) from the sulfate-reducing bacteria. Mössbauer and EPR studies Journal of the American Chemical Society 110 1075–1082

    Article  CAS  Google Scholar 

  • Moura, I., P. Tavares, J. J. G. Moura, N. Ravi, B. H. Huynh, M. Y. Liu, and J. LeGall. 1990 Purification and characterization of desulfoferredoxin. A novel protein from Desulfovibrio desulfuricans ATCC 27774 and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center J Biol Chem 265 21596–21602

    CAS  PubMed  Google Scholar 

  • Moura, I., and A. R. Lino. 1994 Low-spin sulfite reductases H. D. Peck Jr. and J. LeGall Inorganic Microbial Sulfur Metabolism Academic Press San Diego 243 296–303

    Chapter  Google Scholar 

  • Moura, I., S. Bursakov, C. Costa, and J. J. G. Moura. 1997 Nitrate and nitrite utilization in sulfate-reducing bacteria Anaerobe 3 279–290

    Article  CAS  PubMed  Google Scholar 

  • Mukund, S., and M. G. G. Adams. 1991 The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase J Biol Chem 266 14208–14216

    CAS  PubMed  Google Scholar 

  • Müller, F., and V. Massey. 1969 Flavin-sulfite complexes and their structures J Biol Chem 244 4007–4016

    PubMed  Google Scholar 

  • Müller, J. A., A. S. Galushko, A. Kappler, and B. Schink. 1999 Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate Arch Microbiol 172 287–294

    Article  PubMed  Google Scholar 

  • Murphy, M. J., and L. M. Siegel. 1973a Siroheme and Sirohydrochlorin J Biol Chem 248 6911–6919

    CAS  PubMed  Google Scholar 

  • Murphy, M. J., L. M. Siegel, and H. Kamin. 1973b Reduced nicotinamide adenine dinucleotide phophate-sulfite reductase of enterobacteria J Biol Chem 248 2801–2814

    CAS  PubMed  Google Scholar 

  • Murphy, M. J., L. M. Siegel, H. Kamin, D. V. DerVartanian, J.-P. Lee, J. LeGall, and H. D. Peck Jr. 1973c An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases Biochem Biophys Res Comm 54 82–88

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. J., L. M. Siegel, S. R. Tove, and H. Kamin. 1974 Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases Pro Natl Acad Sci USA 71 612–616

    Article  CAS  Google Scholar 

  • Myers, C. R., and K. H. Nealson. 1988 Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor Science 240 1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Nakano, K., and K. H. Kikumoto. 1983 Amino Acid sequence of cytochrome c 553 from Desulfovibrio vulgaris Miyazaki J Biol Chem 258 12409–12412

    CAS  PubMed  Google Scholar 

  • Nakatsukasa, W., and J. M. Akagi. 1969 Thiosulfate reductase isolated from Desulfotomaculum nigrificans J Bacteriol 98 429–433

    CAS  PubMed  Google Scholar 

  • Nanninga, H. J., and J. C. Gottschal. 1987 Properties of Desufovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant Appl Environ Microbiol 53 802–809

    CAS  PubMed  Google Scholar 

  • Nazina, T. N., A. E. Ivanova, L. P. Kanchaveli, and E. P. Rozanova. 1988 Desulfotomaculum kuznetsovii sp. nov., a new spore-forming thermophilic methylotrophic sulfate-reducing bacterium Microbiologiya (Russian) 57 823–827

    CAS  Google Scholar 

  • Nazina, T. N., and T. A. Pivovarova. 1979 Submicroscopic organization and sporulation in Desulfotomaculum nigrificans Mikrobiologija (Russian) 48 241–246

    Google Scholar 

  • Nelson, D. C., and R. W. Castenholz. 1981 Use of reduced sulfur compounds by Beggiatoa sp J Bacteriol 147 140–154

    CAS  PubMed  Google Scholar 

  • Nethe-Jaenchen, R., and R. K. Thauer. 1984 Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture Arch Microbiol 137 236–240

    Article  CAS  Google Scholar 

  • Neuberg, C., and E. Welde. 1914 Phytochemische Reduktionen. IX. Die Umwandlung von Thiosulfat in Schwefelwasserstoff und Sulfit durch Hefen E. Buchner, P. Ehrlich, F. Hofmeister, C. von Noorden, E. Salkowski, F. Tangl, A. von Wassermann, and N. Zuntz Biochemische Zeitung, Beiträge zur chemischen Physiologie und Pathologie Springer-Verlag Berlin 67 111–118

    Google Scholar 

  • Newman, D. K., T. J. Beveridge, and F. M. M. Morel. 1997a Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum Appl Environ Microbiol 63 2022–2028

    CAS  PubMed  Google Scholar 

  • Newman, D. K., E. K. Kennedy, J. D. Coates, D. Ahmann, D. J. Ellis, D. R. Lovley, and F. M. M. Morel. 1997b Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov Arch Microbiol 168 380–388

    Article  CAS  PubMed  Google Scholar 

  • Nicolet, Y., C. Pircas, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-Camps. 1999 Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center Structure 7 13–23

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, J. T., W. Liesack, and K. Finster. 1999 Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina Inter J Syst Bacteriol 49 859–865

    Article  CAS  Google Scholar 

  • NiviÈre, V., N. Forget, J. P. Gayda, and E. C. Hatchikian. 1986 Characterization of the soluble hydrogenase from Desulfovibrio africanus Biochem Biophys Res Comm 139 658–665

    Article  PubMed  Google Scholar 

  • NiviÈre, V., S.-L. Wong, and G. Voordouw. 1992 Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a b-lactamase fusion protein J Gen Microbiol 138 2173–2183

    Article  PubMed  Google Scholar 

  • Novelli, G. D., and C. E. ZoBell. 1944 Assimiliation of petroleum hydrocarbons by sulfate-reducing bacteria J Bacteriol 47 447–448

    Google Scholar 

  • Novotny, C., and F. Kapralek. 1979 Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii Biochem J 178 237–240

    CAS  PubMed  Google Scholar 

  • Odom, J. M., and H. D. Peck Jr. 1981a Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas J Bacteriol 147 161–169

    CAS  PubMed  Google Scholar 

  • Odom, J. M., and H. D. Peck Jr. 1981b Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp FEMS Microbiol Lett 12 47–50

    Article  CAS  Google Scholar 

  • Odom, J. M., and J. D. Wall. 1987 Properties of the hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774 J Bacteriol 169 1335–1337

    CAS  PubMed  Google Scholar 

  • Ogata, M., K. Arihara, and T. Yagi. 1981 D-Lactate dehydrogenase of Desulfovibrio vulgaris J Biochem 89 1423–1431

    CAS  PubMed  Google Scholar 

  • Ogata, M., and T. Yagi. 1986 Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F J Biochem 100 311–318

    CAS  PubMed  Google Scholar 

  • Ollivier, B., R. Cord-Ruwisch, E. C. Hatchikian, and J. L. Garcia. 1988 Characterization of Desulfovibrio fructosovorans sp. nov Arch Microbiol 149 447–450

    Article  CAS  Google Scholar 

  • Ollivier, B., C. E. Hatchikian, G. Prensier, J. Guezennec, and J.-L. Garcia. 1991 Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal Inter J Syst Bacteriol 41 74–81

    Article  CAS  Google Scholar 

  • Oltmann, L. F., E. G. van der Beek, and A. H. Stouthamer. 1975 Reduction of inorganic sulphur compounds by facultatively aerobic bacteria Plant and Soil 43 153–169

    Article  CAS  Google Scholar 

  • Oppenberg, B., and B. Schink. 1990 Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria Antonie van Leeuwenhoek 57 205–213

    Article  CAS  PubMed  Google Scholar 

  • Oren, A., and M. Shilo. 1979 Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation Arch Microbiol 122 77–84

    Article  CAS  Google Scholar 

  • Ouattara, A. S., B. K. C. Patel, J.-L. Cayol, N. Cuzin, A. S. Traore, and J.-L. Garcia. 1999 Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield and phylogeny of Desulfovibrio alcoholivorans Inter J Syst Bacteriol 49 639–643

    Article  CAS  Google Scholar 

  • Oude Elferink, S. J. W., W. M. Akkermans-van Vliet, J. J. Bogte, and A. J. M. Stams. 1999 Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge Inter J Syst Bacteriol 49 345–350

    Article  Google Scholar 

  • Oude Elferink, S. J. W., R. N. Maas, H. J. M. Harmsen, and A. J. M. Stams. 1995 Desulforhabdus amnigenus gen. nov., sp. nov., a sufate reducer isolated from anaerobic granular sludge Arch Microbiol 164 119–124

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu, H., and C. R. Woese. 1985 Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria Syst Appl Microbiol 6 257–263

    Article  CAS  Google Scholar 

  • Pankhania, I. P., L. A. Gow, and W. A. Hamilton. 1986 The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate J Gen Microbiol 132 3349–3356

    CAS  Google Scholar 

  • Pankhania, i. P., A. M. Spormann, W. A. Hamilton, and R. K. Thauer. 1988 Lactate conversion to acetate, CO2 an H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction Arch Microbiol 150 26–31

    Article  CAS  Google Scholar 

  • Paulsen, J., A. Kröger, and R. K. Thauer. 1986 ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans Arch Microbiol 144 78–83

    Article  CAS  Google Scholar 

  • Peck Jr., H. D. 1959 The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans Biochemistry 45 701–708

    CAS  Google Scholar 

  • Peck Jr., H. D. 1962 The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans J Biol Chem 237 198–203

    CAS  PubMed  Google Scholar 

  • Peck Jr., H. D., T. E. Deacon, and J. T. Davidson. 1965 Studies on adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus Biochim Biophys Acta 96 429–446

    Article  CAS  PubMed  Google Scholar 

  • Peck Jr., H. D. 1966 Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas Biochem Biophys Res Comm 22 112–118

    Article  CAS  PubMed  Google Scholar 

  • Peck Jr., H. D., and R. N. Bramlett. 1982a Flavoproteins in sulfur metabolism V. Massey and C. H. Williams Flavins and Flavoproteins Elsevier North Holland Inc New York 851–858

    Google Scholar 

  • Peck Jr., H. D., and J. LeGall. 1982b Biochemistry of dissimilatory sulphate reduction Phil. Trans. R. Soc. Lond. B 298 443–466

    Google Scholar 

  • Peck Jr., H. D., J. LeGall, P. A. Lespinat, Y. Berlier, and G. Fauque. 1987 A direct demonstration of hydrogen cycling by Desulfovibrio vulgaris employing membrane-inlet mass spectrometry FEMS Microbiol Lett 40 295–299

    Article  CAS  Google Scholar 

  • Peck Jr., H. D., and T. Lissolo. 1988 Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics J. A. Cole and S. J. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 99–132

    Google Scholar 

  • Pedroni, P., A. D. Volpe, G. Galli, G. M. Mura, C. Pratesi, and G. Grandi. 1995 Characterization of the locus encoidng the (Ni-Fe) sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases Microbiology 141 449–458

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, D. A., and C. S. Harwood. 1998 2-Ketocyclohexanecarboxyl coenzyme a hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris J Bacteriol 180 2330–2336

    CAS  PubMed  Google Scholar 

  • Pelsh, A. D. 1936 About new autotrophic hydrogenthiobacteria (in Russian) Trudy Solyanoi Laboratorii, vypusk, M.-L., Izdatelstvo AN SSSR 5 109–126

    Google Scholar 

  • Pereira, I. C., I. A. Abreu, A. V. Xavier, J. LeGall, and M. Teixeira. 1996 Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)—A heterooligomer heme protein with sulfite reductase activity Biochem Biophys Res Comm 224 611–618

    Article  CAS  PubMed  Google Scholar 

  • Pereira, I. A., I. Pacheco, M.-Y. Liu, J. LeGall, A. V. Xavier, and M. Teixeira. 1997 Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans Eur J Biochem 248 323–328

    Article  CAS  PubMed  Google Scholar 

  • Pereira, I. C., C. V. Romao, A. V. Xavier, J. LeGall, and M. Teixeira. 1998 Electron transfer between hydrogenases and mono-and multiheme cytochromes in Desulfovibrio ssp JBIC 3 494–498

    Article  CAS  Google Scholar 

  • Perrotta, J. A., and C. S. Harwood. 1994 Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris Appl Environ Microbiol 60 1775–1782

    CAS  PubMed  Google Scholar 

  • Peters, J. W. 1999 Structure and mechanism of iron-only hydrogenases Current Opinion in Structural Biology 9 670–676

    Article  CAS  PubMed  Google Scholar 

  • Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt. 1998 X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1,.8 angstrom resolution Science 282 1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, N., and H. Biebl. 1976 Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium Arch Microbiol 110 3–12

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, N., and H. Biebl. 1981a The dissimilatory sulfur-reducing bacteria M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel [{http://www.prokaryotes.com/The Prokaryotes] Springer Berlin 1 941–947

    Google Scholar 

  • Pfennig, N., and F. Widdel. 1981b Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle H. Bothe and A. Trebst Biology of inorganic nitrogen and sulfur Springer-Verlag Berlin 169–177

    Chapter  Google Scholar 

  • Pfennig, N., F. Widdel, and H. G. Trüper. 1981c The dissimilatory sulfur-reducing bacteria M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel [{http://www.prokaryotes.com/The Prokaryotes] Springer Berlin 1 926–940

    Google Scholar 

  • Pfennig, N. 1984 Genus Desulfuromonas R. G. E. Murray, D. J. Brenner, M. P. Bryant, J. G. Holt, N. R. Krieg, J. W. Moulder, N. Pfennig, P. H. A. Sneath, and J. T. Staley [{http://www.cme.msu.edu/bergeys//Bergey’s manual of systematic bacteriology] Williams & Wilkins Baltimore 1 664–666

    Google Scholar 

  • Phelps, C. D., J. Kazumi, and L. Y. Young. 1996 Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction FEMS Microbiol Lett 145 433–437

    Article  CAS  PubMed  Google Scholar 

  • Phil, T. D., L. K. Black, B. A. Sculman, and R. J. Maier. 1992 Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii J Bacteriol 174 137–143

    Google Scholar 

  • Pianzzola, M. J., M. Soubes, and D. Touati. 1996 Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli J Bacteriol 178 6736–6742

    CAS  PubMed  Google Scholar 

  • Pierik, A. J., M. G. Duyvis, J. M. Helvoort, R. B. Wolbert, and W. R. Hagen. 1992a The third subunit of desulfoviridin-type dissimilatory sulfite reductases Eur J Biochem 205 111–115

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., W. R. Hagen, W. R. Dunham, and R. H. Sands. 1992b Multi-frequency EPR and high-resolution Mössbauer spectroscopy of a putative (6Fe-6S) prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough) Eur J Biochem 206 705–719

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., R. B. G. Wolbert, P. H. A. Mutsaers, W. R. Hagen, and C. Veeger. 1992c Purification and biochemical characterization of a putative (6Fe-6S) prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough) Eur J Biochem 206 697–704

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht. 1998 A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in (Fe)-hydrogenases Eur J Biochem 258 572–578

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A. J., W. Roseboom, R. P. Happe, K. A. Bagley, and S. P. Albracht. 1999 Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of (NiFe)-hydrogenases J Biol Chem 274 3331–3337

    Article  CAS  PubMed  Google Scholar 

  • Pieulle, L., B. Guigliarelli, M. Asso, F. Dole, A. Bernadac, and E. C. Hatchikian. 1995 Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus Biochim Biophys Acta 1250 49–59

    Article  PubMed  Google Scholar 

  • Pieulle, L., J. Haladjian, J. Bonicel, and E. C. Hatchikian. 1996 Biochemical studies of the c-type cytochromes of the sulfate reducer Desulfovibrio africanus. Characterization of two tetraheme cytochromes c 3 with different specificity Biochim Biophys Acta 1273 51–61

    Article  PubMed  Google Scholar 

  • Pieulle, L., V. Magro, and E. C. Hatchikian. 1997 Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability J Bacteriol 179 5684–5692

    CAS  PubMed  Google Scholar 

  • Pieulle, L., E. Chabriere, C. Hatchikian, J. C. Fontecilla-Camps, and M. H. Charon. 1999a Crystallization and preliminary crystallographic analysis of the pyruvate-ferredoxin oxidoreductase from Desulfovibrio africanus Acta Crystallogr D55 329–331

    CAS  Google Scholar 

  • Pieulle, L., M.-H. Charon, P. Bianco, J. Bonicel, Y. Pétillot, and E. C. Hatchikian. 1999b Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus Eur J Biochem 264 500–508

    Article  CAS  PubMed  Google Scholar 

  • Pikuta, E. V., T. N. Zhilina, G. A. Zavarzin, N. A. Kostrikina, G. A. Osipov, and F. A. Rainey. 1998 Desulfonatronum lacustre gen. nov., sp. nov.: A new alkaliphilic sulfate-reducing bacterium utilizing ethanol Microbiology 67 105–113

    CAS  Google Scholar 

  • Platen, H., A. Temmes, and B. Schink. 1990 Anaerobic degradation of acetone by Desulfococcus biacutus spec. non Arch Microbiol 154 335–361

    Article  Google Scholar 

  • Plough, H., M. Kühl, B. Buchholz-Cleven, and B. B. Jørgensen. 1997 Anoxic aggregates—an ephemeral phenomenon in the pelagic environment Aquatic Microbial Ecology 13 285–294

    Article  Google Scholar 

  • Pollock, W. B. R., M. Loutfi, M. Bruschi, B. Rapp-Giles, J. D. Wall, and G. Voordouw. 1991 Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough J Bacteriol 173 220–228

    CAS  PubMed  Google Scholar 

  • Postgate, J. A. 1951 The reduction of sulphur compounds by Desulphovibrio desulphuricans J Gen Microbiol 5 725–788

    Article  CAS  PubMed  Google Scholar 

  • Postgate, J. A. 1953 Presented at the 323rd Meeting of the Biochemical Society, Paddington

    Google Scholar 

  • Postgate, J. A. 1956 Cytochrome c 3 and Desulphoviridin; Pigments of the anaerobe Desulphovibrio desulphuricans J Gen Microbiol 14 545–572

    Article  CAS  PubMed  Google Scholar 

  • Postgate, J. A. 1959 A diagnostic reaction of Desulphovibrio desulphuricans Nature 163 481–482

    Article  Google Scholar 

  • Postgate, J. A. 1960 On the autotrophy of Desulphovibrio desulphuricans Zeitschrift für Allgemeine Mikrobiologie 1 53–56

    Article  Google Scholar 

  • Postgate, J. R. 1963 A strain of Desulfovibrio able to use oxamate Arch Mikrobiol 46 287–295

    Article  CAS  PubMed  Google Scholar 

  • Postgate, J. R., and L. L. Campbell. 1966 Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria Bacteriol Rev 30 732–738

    CAS  PubMed  Google Scholar 

  • Postgate, J. R. 1970 Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains J Gen Microbiol 63 137–139

    Article  CAS  PubMed  Google Scholar 

  • Postgate, J. R. 1984a The sulphate-reducing bacteria, 2 ed Cambridge University Press Cambridge

    Google Scholar 

  • Postgate, J. R. 1984b Genus Desulfovibrio N. R. Krieg and J. G. Holt [{http://www.cme.msu.edu/bergeys//Bergey’s Manual of Systematic Bacteriology] Williams & Wilkins Baltimore, MD 1 666–672

    Google Scholar 

  • Postgate, J. R., H. M. Kent, R. L. Robson, and J. A. Chesshyre. 1984 The genomes of Desulfovibrio gigas and D. vulgaris J Gen Microbiol 130 1597–1601

    CAS  PubMed  Google Scholar 

  • Postgate, J. R., and H. M. Kent. 1985 Diazotrophy within Desulfovibrio J Gen Microbiol 131 2119–2122

    Google Scholar 

  • Postgate, J. R., H. M. Kent, and R. L. Robson. 1986 DNA from diazotrophic Desulfovibrio strains is homologous to Klebsiella pneumoniae structural nif DNA and can be chromosomal or plasmid-borne FEMS Microbiol Lett 33 159–163

    Article  CAS  Google Scholar 

  • Postgate, J. R., H. M. Kent, and R. L. Robson. 1988 Nitrogen fixation by Desulfovibrio J. A. Cole and S. J. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 457–471

    Google Scholar 

  • Poulos, T. L. 1988 Heme enzyme crystal structures G. L. Eichhorn and L. G. Marzilli Heme Proteins 7 Elsevier Science Publishing Inc. New York 1–36

    Google Scholar 

  • Powell, B., M. Mergeay, and N. Christofi. 1989 Transfer of broad host-range plasmids to sulphate-reducing bacteria FEMS Microbiol Lett 59 269–274

    Article  CAS  Google Scholar 

  • Pradella S., H. Hippe, and E. Stackebrandt. 1998 Macrorestriction analysis of Desulfurella acetivorans and Desulfurella multipotens FEMS Microbiol Lett 159 137–144

    Article  CAS  PubMed  Google Scholar 

  • Prickril, B. C., M. H. Czechowski, A. E. Przybyla, H. D. Peck Jr., and J. LeGall. 1986 Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris J Bacteriol 167 722–725

    CAS  PubMed  Google Scholar 

  • Prickril, B. C., S.-H. He, C. Li, N. Menon, E.-S. Choi, A. E. Przybyla, D. V. DerVartanian, H. D. Peck Jr., G. Fauque, J. LeGall, M. Teixeira, I. Moura, J. J. G. Moura, D. Patil, and B. H. Huynh. 1987 Identification of three classes of hydrogenase in the genus, Desulfovibrio Biochem Biophys Res Comm 149 369–377

    Article  CAS  PubMed  Google Scholar 

  • Prickril, B. C., D. M. Kurtz Jr., and J. LeGall. 1991 Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough) Biochemistry 30 11118–11123

    Article  CAS  PubMed  Google Scholar 

  • Probst, I., M. Bruschi, N. Pfennig, and J. LeGall. 1977 Cytochrome c 551, 5 (c 7) from Desulfuromonas acetoxidans Biochim Biophys Acta 460 58–64

    Article  CAS  PubMed  Google Scholar 

  • Probst, I., J. J. G. Moura, I. Moura, M. Bruschi, and J. LeGall. 1978 Isolation and characterization of a rubredoxin and an (8Fe-8S) ferredoxin from Desulfuromonas acetoxidans Biochim Biophys Acta 502 38–44

    Article  CAS  PubMed  Google Scholar 

  • Qatibi, A. I., V. NiviÈre, and J. L. Garcia. 1991 Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2-and 1,3-propanediol Arch Microbiol 155 143–148

    Article  CAS  Google Scholar 

  • Qatibi, A. I., R. Bennisse, M. Jana, and J. L. Garcia. 1998 Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol Current Microbiology 36 283–290

    Article  CAS  PubMed  Google Scholar 

  • Rabus, R., R. Nordhaus, W. Ludwig, and F. Widdel. 1993 Complete ocidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium Appl Environ Microbiol 59 1444–1451

    CAS  PubMed  Google Scholar 

  • Rabus, R., and F. Widdel. 1995 Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2 Arch Microbiol 164 448–451

    Article  CAS  PubMed  Google Scholar 

  • Rabus, R., M. Fukui, H. Wilkes, and F. Widdel. 1996 Degradative capacities and 16s rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil Appl Environ Microbiol 62 3605–3613

    CAS  PubMed  Google Scholar 

  • Rabus, R., and J. Heider. 1998 Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria Arch Microbiol 170 377–384

    Article  CAS  Google Scholar 

  • Rainey, F. A., R. Toalster, and E. Stackebrandt. 1993 Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the Proteobacteria Syst Appl Microbiol 16 373–379

    Article  CAS  Google Scholar 

  • Ramsing, N. B., M. Kühl, and B. B. Joergensen. 1993 Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes Appl Environ Microbiol 59 3840–3839

    CAS  PubMed  Google Scholar 

  • Ramsing, N. B., H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup. 1996 Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column Appl Environ Microbiol 62 1391–1404

    CAS  PubMed  Google Scholar 

  • Rapp, B. J., and J. D. Wall. 1987 Genetic transfer in Desulfovibrio desulfuricans Pro Natl Acad Sci USA 84 9128–9130

    Article  CAS  Google Scholar 

  • Reeburgh, W. S. 1976 Methane consumption in Cariaco Trench waters and sediments Earth Planetary Science Letters 28 337–344

    Article  CAS  Google Scholar 

  • Reeburgh, W. S. 1980 Anaerobic methane oxidation: rate depth distribution in Skan Bay sediment Earth Planetary Science Letters 47 345–352

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., and M. J. Alperin. 1988 Studies on anaerobic methane oxidation Mitt. Geologisch-Paläontologisches Institut der Universität Hamburg 66 367–375

    Google Scholar 

  • Reed, D. W., and P. L. Hartzell. 1999 The Archaeoglobus fulgidus D-lactate dehydrogenase is a Zn2+ flavoprotein J Bacteriol 181 7580–7587

    CAS  PubMed  Google Scholar 

  • Rees, G. N., G. S. Grassia, A. J. Sheehy, P. P. Dwivedi, and B. K. C. Patel. 1995 Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir Inter J Syst Bacteriol 45 85–89

    Article  Google Scholar 

  • Rees, G. N., C. G. Harfoot, and A. J. Sheehy. 1998 Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum Arch Microbiol 169 76–80

    Article  CAS  PubMed  Google Scholar 

  • Reichenbecher, W., and B. Schink. 1997 Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene) Arch Microbiol 168 338–344

    Article  CAS  PubMed  Google Scholar 

  • Ried, J. L., and A. Collmer. 1987 An nptI-sacB-sacR cartridge for constructing directed, unmarkde mutations in gram-negative bacteria by marker exchange-eviction mutagenesis Gene 57 239–246

    Article  CAS  PubMed  Google Scholar 

  • Reid, M. F., and C. A. Fewson. 1994 Molecular characterization of microbial alcohol dehydrogenases Crit. Rev. Microbiol. 20 13–56

    Article  CAS  PubMed  Google Scholar 

  • Rieder, R., R. Cammack, and D. O. Hall. 1984 Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4) Eur J Biochem 145 637–643

    Article  CAS  PubMed  Google Scholar 

  • Riederer-Henderson, M. A., and H. D. Peck. 1986 Properties of foramte dehydrogenase from Desulfovibrio gigas Can J Microbiol 32 430–435

    Article  CAS  Google Scholar 

  • Riederer-Henderson, M. A., and P. W. Wilson. 1970 Nitrogen fixation by sulphate-reducing bacteria J Gen Microbiol 61 27–31

    Article  CAS  PubMed  Google Scholar 

  • Ringel, M., R. Gross, T. Krafft, A. Kröger, and R. Schauder. 1996 Growth of Wolinella succinogenes with elemental sulfur in the absence of polysulfide Arch Microbiol 165 62–64

    Article  CAS  Google Scholar 

  • Robb, F. T., J.-B. Park, and M. W. W. Adams. 1992 Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus Biochim Biophys Acta 1120 267–272

    Article  CAS  PubMed  Google Scholar 

  • Robbins, P. W., and F. Lipmann. 1958 Enzymatic synthesis of adenosine-5’-phosphosulfate J Biol Chem 233 686–690

    CAS  PubMed  Google Scholar 

  • Roden, E. E., and D. R. Lovley. 1993 Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans Appl Environ Microbiol 59 734–742

    CAS  PubMed  Google Scholar 

  • Rohde, M., U. Fürstenau, F. Mayer, A. Przybyla, H. D. Peck, J. LeGall, E. S. Choi, and N. K. Menon. 1990 Localization of membrane-associated (NiFe) and (NiFeSe) hydrogenases of Desulfovibrio vulgaris using immunoelectron microscopic procedures Eur J Biochem 191 389–396

    Article  CAS  PubMed  Google Scholar 

  • Romão, C. V., M. Y. Liu, J. LeGall, C. M. Gomes, V. Braga, I. Pacheco, A. V. Xavier, and M. Teixeira. 1999 The superoxide dismutase activity of desulfoferredoxin from Desulfovibrio desulfuricans ATCC 27774 Eur J Biochem 261 438–443

    Article  PubMed  Google Scholar 

  • Romão, M. J., M. Archer, I. Moura, J. J. G. Moura, J. LeGall, R. Engh, M. Schneider, P. Hof, and R. Huber. 1995 Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas Science 270 1170–1176

    Article  PubMed  Google Scholar 

  • Romão, M. J., J. Knäblein, R. Huber, and J. J. G. Moura. 1997 Structure and function of molybdopterin containing enzymes Prog. Biophys. Molec. Biol. 68 121–144

    Article  Google Scholar 

  • Rooney-Varga, J., B. R. Sharak Genthner, R. Devereux, S. G. Willis, S. D. Friedman, and M. E. Hines. 1998 Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment Syst Appl Microbiol 21 557–568

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld, W. D. 1947 Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria J Bacteriol 54 664–665

    CAS  Google Scholar 

  • Rossi, M., W. B. R. Pollock, M. W. Reij, R. G. Keon, R. Fu, and G. Voordouw. 1993 The hmc operon of Desulfovibrio vulgaris subsp.vulgaris Hildenborough encodes a potential transmembrane redox protein complex J Bacteriol 175 4699–4711

    CAS  PubMed  Google Scholar 

  • Rousset, M., Z. Dermoun, C. E. Hatchikian, and J.-P. Bélaich. 1990 Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic (NiFe)hydrogenase from Desulfovibrio fructosovorans Gene 94 95–101

    Article  CAS  PubMed  Google Scholar 

  • Rousset, M., D. Z., M. Chippaux, and J. P. Bélaich. 1991 Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans Mol Microbiol 5 1735–1740

    Article  CAS  PubMed  Google Scholar 

  • Rousset, M., Z. Dermoun, J. D. Wall, and J.-P. Belaich. 1993 Analysis of the periplasmic (NiFe) hydrogenase transcription unit form Desulfovibrio fructosovorans J Bacteriol 175 3388–3393

    CAS  PubMed  Google Scholar 

  • Rousset, M., L. Casalot, B. J. Rapp-Giles, Z. Dermoun, P. de Philip, J.-P. Bélaich, and J. D. Wall. 1998a New shuttle vectors for the introduction of cloned DNA in Desulfovibrio Plasmid 39 114–122

    Article  CAS  PubMed  Google Scholar 

  • Rousset, M., Y. Montet, B. Guigliarelli, N. Forget, M. Asso, P. Bertrand, J. C. Fontecilla-Camps, and E. C. Hatchikian. 1998b (3Fe-4S) to (4Fe-4S) cluster conversion in Desulfovibrio fructosovorans (NiFe) hydrogenase by site-directed mutagenesis Pro Natl Acad Sci USA 95 11625–11630

    Article  CAS  Google Scholar 

  • Roy, A. B., and P. A. Trudinger. 1970 The biochemistry of inorganic compounds of sulphur Cambridge University Press Cambridge

    Google Scholar 

  • Rozanova, E. P., and A. I. Khudyakova. 1974 A new non-sporeforming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. spec Mikrobiologiya (Russian) 43 1069

    CAS  Google Scholar 

  • Rozanova, E. P., and T. N. Nazina. 1976 A mesophilic, sulfate-reducing, rod-shaped, nonsprefroming bacterium Mikrobiologiya (Russian) 45 825–830

    CAS  Google Scholar 

  • Rozanova, E. P., T. N. Nazina, and A. S. Galushko. 1988a Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov Mikrobiologiya (Russian) 57 634–641

    CAS  Google Scholar 

  • Rozanova, E. P., and T. A. Pivavora. 1988b Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974) Mikrobiologyia (Russian) 57 102–106

    Google Scholar 

  • Rubentschik, L. 1928 Über Sulfatreduktion durch Baterien bei Zellulosegärungsprodukten als Energiequelle Zentralbaltt für Bakteriologie, Parasitenkunde und Infektionkrankheiten 73 483–496

    Google Scholar 

  • Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F. A. Rainey, H. W. Jannasch, and F. Widdel. 1994 Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria Nature 372 455–458

    Article  CAS  PubMed  Google Scholar 

  • Sagemann, J., B. B. Joergensen, and O. Greeff. 1998 Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean Geomicrobiol J 15 85–100

    Article  CAS  Google Scholar 

  • Sahm, K., B. J. MacGregor, B. B. Joergensen, and D. A. Stahl. 1999a Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a costal marine sediment Environ Microbiol 1 65–74

    Article  CAS  PubMed  Google Scholar 

  • Sahm, K., C. Knoblauch, and R. Amann. 1999b Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments Appl Environ Microbiol 65 3976–3981

    CAS  PubMed  Google Scholar 

  • Saleh, A., R. Macpherson, and I. Miller. 1964 The effect of inhibitors on sulphate-reducing bacteria: a compilation J Appl Bacteriol 27 281–293

    Article  CAS  Google Scholar 

  • Samain, E., G. Albagnac, and J. LeGall. 1986a Redox studies of the tetraheme cytochrome c 3 isolated from the propionate-oxidizing, sulfate-reducing bacterium Desulfobulbus elongatus FEBS Lett 204 247–250

    Article  CAS  Google Scholar 

  • Samain, E., H. C. Dubourgier, J. LeGall, and G. Albagnac. 1986b Regulation of hydroganse activity in the propionate oxidizing sulfate reducing bacterium Desulfobulbus elongatus H. C. Dubourgier, G. Albagnac, J. Montreuil, C. Ramond, P. Sautiere, and J. Guillaume Biology of anaerobic bacteria Elsevier Amsterdam

    Google Scholar 

  • Samain, E., D. S. Patil, D. V. DerVartanian, G. Albagnac, and J. LeGall. 1987 Isolation of succinate dehydrogenase from Desulfobulbus elongatus, a propionate oxidizing, sulfate reducing bacterium FEBS Lett 216 140–144

    Article  CAS  PubMed  Google Scholar 

  • Sanford, R. A., J. R. Cole, F. E. Löffler, and J. M. Tiedje. 1996 Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate Appl Environ Microbiol 62 3800–3808

    CAS  PubMed  Google Scholar 

  • Santegoeds, C. M., L. R. Damgaard, G. Hesselink, J. Zopfi, P. Lens, G. Muyzer, and D. deBeer. 1999 Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses Appl Environ Microbiol 65 4618–4629

    CAS  PubMed  Google Scholar 

  • Sass, H., E. Wieringa, H. Cypionka, H. D. Babenzien, and J. Overmann. 1998 High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment Arch Microbiol 170 243–251

    Article  CAS  PubMed  Google Scholar 

  • Sass, H., M. Berchtold, J. Branke, H. König, H. Cypionka, and H.-D. Babenzien. 1998 Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov Syst Appl Microbiol 21 212–219

    Article  CAS  PubMed  Google Scholar 

  • Sawers, R. G., S. P. Ballantine, and D. H. Boxer. 1985 Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: Evidence for a third isoenzyme J Bacteriol 164 1324–1331

    CAS  PubMed  Google Scholar 

  • Schäfer, S., C. Barkowski, and G. Fuchs. 1986 Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus Arch Microbiol 146 301–308

    Article  Google Scholar 

  • Schäfer, T., and P. Schönheit. 1991 Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP forming) Arch Microbiol 155 366–377

    Article  Google Scholar 

  • Schäfer, T., and P. Schönheit. 1992 Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway Arch Microbiol 158 188–202

    Article  Google Scholar 

  • Schäfer, T., K. B. Xavier, H. Santos, and P. Schönheit. 1994 Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities FEMS Microbiol Lett 121 107–114

    Article  Google Scholar 

  • Schauder, R., B. Eikmanns, R. K. Thauer, F. Widdel, and F. Fuchs. 1986 Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle Arch Microbiol 145 162–172

    Article  CAS  Google Scholar 

  • Schauder, R., and A. Kröger. 1993 Bacterial sulphur respiration Arch Microbiol 159 491–497

    Article  CAS  Google Scholar 

  • Schauder, R., and E. Müller. 1993 Polysulfide as a possible substrate for sulfur-reducing bacteria Arch Microbiol 160 377–382

    Article  CAS  Google Scholar 

  • Schauder, R., A. Preuß, M. Jetten, and G. Fuchs. 1989 Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum Arch Microbiol 151 84–89

    Article  CAS  Google Scholar 

  • Schauder, R., F. Widdel, and G. Fuchs. 1987 Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus Arch Microbiol 148 218–225

    Article  CAS  Google Scholar 

  • Schedel, M., J. LeGall, and J. Baldensperger. 1975 Sulfur metabolism in Thiobacillus denitrificans. Evidence for the presence of a sulftie reductase activity Arch Microbiol 105 339–341

    Article  CAS  PubMed  Google Scholar 

  • Schedel, M., M. Vanselow, and H. G. Trüper. 1979 Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties Arch Microbiol 121 29–36

    Article  CAS  Google Scholar 

  • Schicho, R. N., K. Ma, M. W. W. Adams, and R. M. Kelly. 1993 Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus J Bacteriol 175 1823–1830

    CAS  PubMed  Google Scholar 

  • Schink, B., and N. Pfennig. 1982 Fermentation of trihydroxybenzenes by Pelobacter adidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium Arch Microbiol 133 195–201

    Article  CAS  Google Scholar 

  • Schink, B. 1984 Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds Arch Microbiol 137 33–41

    Article  CAS  Google Scholar 

  • Schink, B. 1988a Principles and limits of anaerobic degradation: Environmental and technological aspects A. J. B. Zehnder Biology of anaerobic microorganisms John Wiley & Sons New York 771–846

    Google Scholar 

  • Schink, B. 1988b Konservierung kleiner Energiebeträge bei gärenden Bakterien P. Präve, M. Schlingmann, W. Crueger, K. Esser, R. K. Thauer, and F. Wagner Jahrbuch Biotechnologie, 1988/89 Carl Hanser Verlag München, Wien 2 65–93

    Google Scholar 

  • Schink, B. 1997 Energetics of syntrophic cooperation in methanogenic degradation Microbiol Mol Biol Rev 61 262–280

    CAS  PubMed  Google Scholar 

  • Schink, B., and M. Friedrich. 2000 Phosphite oxidation by sulphate reduction Nature 406 37

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, R. A., E. A. Bonch-Osmolovskaya, and R. K. Thauer. 1990 Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans Arch Microbiol 154 274–279

    Article  CAS  Google Scholar 

  • Schmitz, R. A., D. Linder, K. O. Stetter, and R. K. Thauer. 1991 N5, N10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus Arch Microbiol 156 427–434

    Article  CAS  Google Scholar 

  • Schnell, S., F. Bak, and N. Pfennig. 1989 Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini Arch Microbiol 152 556–563

    Article  CAS  PubMed  Google Scholar 

  • Schnell, S., and B. Schink. 1991 Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini Arch Microbiol 155 183–190

    Article  CAS  Google Scholar 

  • Schocher, R. J., B. Seyfried, F. Vazquez, and J. Zeyer. 1991 Anaerobic degradation of toluene by pure cultures of denitrifying bacteria Arch Microbiol 157 7–12

    Article  CAS  PubMed  Google Scholar 

  • Schramm, A., C. M. Santegoeds, H. K. Nielsen, H. Plough, M. Wagner, M. Pribyl, J. Wanner, R. Amann, and D. deBeer. 1999 On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge Appl Environ Microbiol 65 4189–4196

    CAS  PubMed  Google Scholar 

  • Schröder, I., A. Kröger, and J. M. Macy. 1988 Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes Arch Microbiol 149 572–579

    Article  Google Scholar 

  • Schönheit, P., and T. Schäfer. 1995 Metabolism of hyperthermophiles W J Microbiol Biotechnol 11 26–57

    Article  Google Scholar 

  • Schultz, J. E., and P. F. Weaver. 1982 Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata J Bacteriol 149 181–190

    CAS  PubMed  Google Scholar 

  • Schumacher, W., P. M. H. Kroneck, and N. Pfennig. 1992 Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species Arch Microbiol 158 287–293

    Article  CAS  Google Scholar 

  • Schwörer, B., J. Breitung, A. R. Klein, K. O. Stetter, and R. K. Thauer. 1993 Formylmethanofuran: tetrahy-dromethanopterin formyltransferase and N5, N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic archaea Arch Microbiol 159 225–232

    Article  PubMed  Google Scholar 

  • Scott, A. I., A. J. Irwin, L. M. Siegel, and J. N. Shoolery. 1978 Sirohydrochlorin. Prosthetic group of sulfite and nitrite reductases and its role in the biosynthesis of vitamin B12 J Am Chem Soc 100 7987–7994

    Article  CAS  Google Scholar 

  • Scranton, M. I., P. C. Novelli, and P. A. Loud. 1984 The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments Limnol Oceanogr 29 993–1003

    Article  CAS  Google Scholar 

  • Sebban, C., L. Blanchard, M. Bruschi, and F. Guerlesquin. 1995 Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough) FEMS Microbiol Lett 133 143–149

    Article  CAS  PubMed  Google Scholar 

  • Sebban-Kreuzer, C., A. Dolla, and F. Guerlesquin. 1998a The formate dehydrogenase-cytochrome c 553 complex from Desulfovibrio vulgaris Hildenborough Eur J Biochem 253 645–652

    Article  CAS  PubMed  Google Scholar 

  • Sebban-Kreuzer, C., M. Blackledge, A. Dolla, M. D., and F. Guerlesquin. 1998b Tyrosine 64 of Cytochrome c 553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough Biochemistry 37 8331–8340

    Article  CAS  PubMed  Google Scholar 

  • Seeliger, S., R. Cord-Ruwisch, and B. Schink. 1998 A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria J Bacteriol 180 3686–3691

    CAS  PubMed  Google Scholar 

  • Segerer, A., A. Neuner, J. K. Kristjansson, and K. O. Stetter. 1986 Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively Aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria Inter J Syst Bacteriol 36 559–564

    Article  Google Scholar 

  • Segerer, A., K. O. Stetter, and F. Klink. 1985 Two contrary modes of chemolithotrophy in the same archaebacterium Nature 313 787–789

    Article  CAS  PubMed  Google Scholar 

  • Segerer, A. H., A. Trincone, M. Gahrtz, and K. O. Stetter. 1991 Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales Inter J Syst Bacteriol 41 495–501

    Article  Google Scholar 

  • Segerer, A. H., and K. O. Stetter. 1992 The order Sulfolobales A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer [{http://www.prokaryotes.com/The Prokaryotes, 2nd ed.] Springer New York 1 684–701

    Google Scholar 

  • Seitz, H. J., and H. Cypionka. 1986 Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate and nitrite Arch Microbiol 146 63–67

    Article  CAS  Google Scholar 

  • Seki, Y., and M. Ishimoto. 1979 Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron J Biochem 86 273–276

    CAS  PubMed  Google Scholar 

  • Selig, M., and P. Schönheit. 1994 Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle Arch Microbiol 162 286–294

    Article  CAS  Google Scholar 

  • Selig, M., K. B. Xavier, H. Santos, and P. Schönheit. 1997 Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga Arch Microbiol 167 217–232

    CAS  PubMed  Google Scholar 

  • Senez, J. C. 1954a Fermentation de l´acide pyruvique et des acides dicarboxyliques par les bactéries anaérobies sulfato-réductrices Bulletin de la Sociéte Chimie Bioloque 36 541–552

    CAS  Google Scholar 

  • Senez, J. C., and J. Leroux-Gilleron. 1954b Note préliminaire sur la dégradation anaérobie de la castéine et de la cystine par les bactéries sulfato-réductrices Bulletin de la Socieéte Chimie Biologique 36 553–559

    CAS  Google Scholar 

  • Senn, H., F. Guerlesquin, M. Bruschi, and K. Wüthrich. 1983 Coordination of the heme iron in the low-potential cytochromes c 553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans—Different chirality of the axially bound methionine in the oxidized and reduces states Biochim Biophys Acta 748 194–204

    Article  CAS  PubMed  Google Scholar 

  • Sequeira, C. A. C., and A. K. Tiller. 1988 Microbial Corrosion 1 Elsevier Applied Sciences London

    Google Scholar 

  • Seyedirashti, S., C. Wood, and J. M. Akagi. 1991 Induction and partial purification of bacteriophages from Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans ATCC 13541 J Gen Microbiol 137 1545–1549

    Article  CAS  PubMed  Google Scholar 

  • Seyedirashti, S., C. Wood, and J. M. Akagi. 1992 Molecular characterization of two bacteriophages isolated from Desulfovibrio vulgaris NCIMB 8303 (Hildenborough) J Gen Microbiol 138 1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Sharak Genthner, B. R., S. D. Friedmann, and R. Devereux. 1997 Reclassification of Desulfovibrio desulfuricans Norway 4 as Desulfomicrobium norvegicum comb. nov. and confirmation of Desulfomicrobium escambiense (corrig., formerly “escambium”) as a new species in the genus Desulfomicrobium Inter J Syst Bacteriol 47 889–892

    Article  Google Scholar 

  • Shimizu, F., M. Ogata, T. Yagi, S. Wakabayashi, and H. Matsubara. 1989 Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris Miyzaki Biochimie 71 1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Siebers, B., and R. Hensel. 1993 Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax FEMS Microbiol Lett 111 1–8

    Article  CAS  Google Scholar 

  • Siebers, B., V. F. Wendisch, and R. Hensel. 1997 Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase Arch Microbiol 168 120–127

    Article  CAS  PubMed  Google Scholar 

  • Siebers, B., H.-P. Klenk, and R. Hensel. 1998 PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution J Bacteriol 180 2137–2143

    CAS  PubMed  Google Scholar 

  • Siegel, L. M., and P. S. Davis. 1974 Reduced nicotinamide adenide dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components J Biol Chem 249 1587–1598

    CAS  PubMed  Google Scholar 

  • Siegel, L. M., P. S. Davis, and H. Kamin. 1974 Reduced nicotinamide adenide dinucleotide phosphate-sulfite reductase of enterobacteria. III. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow J Biol Chem 249 1572–1586

    CAS  PubMed  Google Scholar 

  • Siegel, L. M., D. C. Rueger, M. J. Barber, R. J. Krueger, N. R. Orme-Johnson, and W. H. Orme-Johnson. 1982 Escherichia coli sulfite reductase hemoprotein subunit J Biol Chem 257 6343–6350

    CAS  PubMed  Google Scholar 

  • Silva, P. J., B. de Castro, and W. R. Hagen. 1999a On the prosthetic groups of the NiFe sulfhydrogenase from Pyrococcus furiosus: topology, structure, and temperature-dependent redox chemistry JBIC 4 284–291

    Article  CAS  PubMed  Google Scholar 

  • Silva, G., S. Oliveira, C. M. Gomes, I. Pacheco, M. Y. Liu, A. V. Xavier, M. Teixeira, J. LeGall, and C. Rodrigues-Pousada. 1999b Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe Eur J Biochem 259 235–243

    Article  CAS  PubMed  Google Scholar 

  • Simon, J., R. Gross, M. Ringel, E. Scmidt, and A. Kröger. 1998 Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon Eur J Biochem 251 418–426

    Article  CAS  PubMed  Google Scholar 

  • Sirko, A., M. Hryniewicz, D. Hulanicka, and A. Böck. 1990 Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster J Bacteriol 172 3351–3357

    CAS  PubMed  Google Scholar 

  • Sisler, F. D., and C. E. ZoBell. 1951 Hydrogen utilization by some marine sulfate-reducing bacteria J Bacteriol 62 117–127

    CAS  PubMed  Google Scholar 

  • Skyring, G. W. 1987 Sulfate reduction in coastal ecosystems Geomicrobiol J 5 295–374

    Article  CAS  Google Scholar 

  • Sleytr, W., H. Adam, and H. Klaushofer. 1969 Die Feinstruktur der Zellwand und Cytoplasmamembran von Clostridium nigrificans, dargestellt mit Hilfe der Gefrierätz-und Ultradünnschnittechnik Arch Microbiol 66 40–58

    CAS  Google Scholar 

  • So, C. M., and L. Y. Young. 1999a Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes Appl Environ Microbiol 65 2969–2976

    CAS  PubMed  Google Scholar 

  • So, C. M., and L. Y. Young. 1999b Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01 Appl Environ Microbiol 65 5532–5540

    CAS  PubMed  Google Scholar 

  • Sørensen, J., D. Christensen, and B. B. Jørgensen. 1981 Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments Appl Environ Microbiol 42 5–11

    PubMed  Google Scholar 

  • Sorokin, Y. 1966a Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria Mikrobiologyia (Russian) 35 761–766

    CAS  Google Scholar 

  • Sorokin, Y. 1966b Investigation of the structural metabolism of sulfate-reducing bacteria with 14C Mikrobiologyia (Russian) 35 967–977

    CAS  Google Scholar 

  • Sorokin, Y. I. 1966c Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria Nature 210 551–552

    Article  CAS  PubMed  Google Scholar 

  • Sorokin, Y. I. 1972 The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea J. Conseil. Int. Explor. Mer. 34 423–455

    Article  CAS  Google Scholar 

  • Speich, N., and H. G. Trüper. 1988 Adenylylsulphate reductase in an dissimilatory sulphate-reducing archaebacterium J Gen Microbiol 134 1419–1425

    CAS  Google Scholar 

  • Speich, N., C. Dahl, P. Heisig, K. A. F. Lottspeich, K. O. Stetter, and H. G. Trüper. 1994 Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins Microbiology 140 1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Sperling, D., U. Kappler, A. Wynen, C. Dahl, and H. G. Trüper. 1998 Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases FEMS Microbiol Lett 162 257–264

    Article  CAS  PubMed  Google Scholar 

  • Sperling, D., U. Kappler, H. G. Trüper, and C. Dahl. 2001 Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducing archaeon Archaeoglobus fulgidus Methods Enzymology 331 419–427

    Article  CAS  Google Scholar 

  • Spormann, A. M., and R. K. Thauer. 1988 Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans Arch Microbiol 150 374–380

    Article  CAS  Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives” Inter J Syst Bacteriol 38 321–325

    Article  Google Scholar 

  • Stackebrandt, E., C. Sproer, F. A. Rainey, J. Burghardt, O. Päuker, and H. Hippe. 1997 Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov Inter J Syst Bacteriol 47 1134–1139

    Article  CAS  Google Scholar 

  • Stahlmann, J., R. Warthmann, and H. Cypionka. 1991 Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria Arch Microbiol 155 554–558

    Article  CAS  Google Scholar 

  • Stams, A. J. M., and T. A. Hansen. 1986 Metabolism of L-alanine in Desulfotomaculum ruminis and two marine Desulfovibrio strains Arch Microbiol 145 277–279

    Article  CAS  Google Scholar 

  • Stams, A. J. M., and T. A. Hansen. 1982 Oxygen-labile L(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans FEMS Microbiol Lett 13 389–394

    CAS  Google Scholar 

  • Stams, F. J. M., M. Veenhuis, G. H. Weenk, and T. A. Hansen. 1983 Occurence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus Arch Microbiol 136 54–59

    Article  CAS  Google Scholar 

  • Stams, A. J. M., K. D. R. K. Nicolay, G. H. Weenk, and T. A. Hansen. 1984 Pathway of propionate formation in Desulfobulbus propionicus Arch Microbiol 139 167–173

    Article  CAS  Google Scholar 

  • Stams, A. J. M., T. A. Hansen, and G. W. Skyring. 1985 Utilization of amino acids as energy substrates by two marine Desulfovibrio strains FEMS Microbiol Ecol 31 11–15

    Article  CAS  Google Scholar 

  • Starkey, R. L. 1937 Formation of sulfide by some sulfur bacteria J Bacteriol 33 545–571

    CAS  PubMed  Google Scholar 

  • Starkey, R. L. 1938 A study of spore formation and other morphological characteristics of Vibrio desulfuricans Arch Mikrobiol 9 268–304

    Article  Google Scholar 

  • Steen, I. H., T. Lien, and N.-K. Birkeland. 1997 Biochemical and phylogenetic characterization of isocitrate dehydrogenase form a hyperthermophilic archaeon, Archaeoglobus fulgidus Arch Microbiol 168 412–420

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp, D. J., and H. D. Peck. 1981 Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans J Biol Chem 256 5450–5458

    CAS  PubMed  Google Scholar 

  • Stephenson, M., and L. H. Stickland. 1931 Hydrogenase. II. The reduction of sulphate to sulphide by molecular hydrogen Biochem J 25 215–220

    CAS  PubMed  Google Scholar 

  • Stetter, K. O. 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C Nature 300 258–260

    Article  Google Scholar 

  • Stetter, K. O., and G. Gaag. 1983a Reduction of molecular sulphur by methanogenic bacteria Nature 305 309–311

    Article  CAS  Google Scholar 

  • Stetter, K. O., H. König, and E. Stackebrandt. 1983b Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C Syst Appl Microbiol 4 535–551

    Article  CAS  PubMed  Google Scholar 

  • Stetter, K. O. 1985 Extrem thermophile Bakterien Naturwissenschaften 72 291–301

    Article  CAS  Google Scholar 

  • Stetter, K. O., G. Lauerer, M. Thomm, and A. Neuner. 1987 Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria Science 236 822–824

    Article  CAS  PubMed  Google Scholar 

  • Stetter, K. O. 1988 Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria Syst Appl Microbiol 10 172–173

    Article  Google Scholar 

  • Stetter, K. O., G. Fiala, G. Huber, R. Huber, and A. Segerer. 1990 Hyperthermophilic microorganisms FEMS Microbiol Rev 75 117–124

    Article  Google Scholar 

  • Stetter, K. O. 1992 The genus Archaeoglobus A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer [{http://www.prokaryotes.com/The Prokaryotes, 2nd ed.] Springer-Verlag New York, NY 1 707–711

    Google Scholar 

  • Stetter, K. O., R. Huber, E. Blöchl, M. Kurr, R. D. Eden, M. Fielder, H. Cash, and I. Vance. 1993 Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs Nature 365 743–745

    Article  Google Scholar 

  • Stetter, K. O. 1996 Hyperthermophilic prokaryotes FEMS Microbiol Rev 18 149–158

    Article  CAS  Google Scholar 

  • Steuber, J., H. Cypionka, and P. M. H. Kroneck. 1994 Mechanism of dissimilatory sulfite reduction by Desulfovibrio desulfuricans: purification of a membrane-bound sulfite reductase and coupling with cytochrome c 3 and hydrogenase Arch Microbiol 162 255–260

    CAS  Google Scholar 

  • Steuber, J., A. F. Arendsen, W. R. Hagen, and M. H. Kroneck. 1995 Molecular properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex) and comparison with the enzyme from Desulfovibrio vulgaris (Hildenborough) Eur J Biochem 233 873–879

    Article  CAS  PubMed  Google Scholar 

  • Steudel, R., G. Holdt, and R. Nagorka. 1986 On the autoxidation of aqueous sodium polysulfide Zeitschrift für Naturforschung 41b 1519–1522

    CAS  Google Scholar 

  • Steudel, R., T. Göbel, and G. Holdt. 1988 The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate Zeitschrift für Naturforschung 43b 203–218

    Google Scholar 

  • Steudel, R. 1989a On the nature of the “Elemental Sulfur” (S0) produced by sulfur-oxidizing bacteria-α model for S0 globules H. G. Schlegel and B. Bowien Autotrophic Bacteria Springer-Verlag Berlin 289–303

    Google Scholar 

  • Steudel, R., T. Göbel, and G. Holdt. 1989b The molecular nature of the hydrophilic sulfur prepared from aqueous sulfide and sulfite (selmi sulfur sol) Zeitschrift für Naturforschung 44b 526–530

    Google Scholar 

  • Stieb, M., and B. Schink. 1989 Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain Arch Microbiol 151 126–132

    Article  CAS  Google Scholar 

  • Stille, W., and H. G. Trüper. 1984 Adenylylsulfate reductase in some new sulfate-reducing bacteria Arch Microbiol 137 145–150

    Article  CAS  Google Scholar 

  • Stock, J. B., and M. G. Surette. 1996 Chemotaxis, solute transport, and osmoregulation F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger Escherichia coli and Salmonella. In: Cellular and Molecular Biology, 2nd ed American Society of Microbiology Washington DC 1 1103–1129

    Google Scholar 

  • Stock, D., A. G. W. Leslie, and J. E. Walker. 1999 Molecular architecture of the rotary motor in ATP synthase Science 286 1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Stokkermans, J., W. van Dongen, A. Kaan, W. van den Berg, and C. Veeger. 1989 Hydg, a gene from Desulfovibrio vulgaris (Hildenborough) encodes a polypeptide homologous to the periplasmic hydrogenase FEMS Microbiol Lett 58 217–222

    CAS  Google Scholar 

  • Stolz, J. F., D. J. Ellis, J. S. blum, D. Ahmann, D. R. Lovley, and R. S. Oremland. 1999a Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the e Proteobacteria Inter J Syst Bacteriol 49 1177–1180

    Article  CAS  Google Scholar 

  • Stolz, J. F., and R. S. Oremland. 1999b Bacterial respiration of arsenic and selenium FEMS Microbiol Rev 23 615–627

    Article  CAS  PubMed  Google Scholar 

  • Stratford, M., and A. H. Rose. 1985 Hydrogen sulphide production from sulphite by Saccharomyces cerevisiae J Gen Microbiol 131 1417–1424

    CAS  Google Scholar 

  • Strauss, G., W. Eisenreich, A. Bacher, and G. Fuchs. 1992 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus Eur J Biochem 205 853–866

    Article  CAS  PubMed  Google Scholar 

  • Stumm, W., and J. J. Morgan. 1981 Aquatic chemistry John Wiley & Sons New York

    Google Scholar 

  • Suflita, J. M., L. Liang, and A. Saxena. 1989 The anaerobic biodegradation of o-, m-and p-cresol by sulfate-reducing bacterial enrichment cultures obtained from a schallow anoxic aquifer J Industrial Microbiol 4 255–266

    Article  CAS  Google Scholar 

  • Suh, B., and J. M. Akagi. 1966 Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans J Bacteriol 91 2281–2285

    CAS  PubMed  Google Scholar 

  • Suh, B., and J. M. Akagi. 1969 Formation of thiosulfate from sulfite by Desulfovibrio vulgaris J Bacteriol 99 210–215

    CAS  PubMed  Google Scholar 

  • Szewzyk, R., and N. Pfennig. 1987 Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov Arch Microbiol 147 163–168

    Article  CAS  Google Scholar 

  • Sznyter, L. A., B. Slatko, L. Moran, K. H. O’Donnell, and J. E. Brooks. 1987 Nucleotide sequence of the DdeI restriction-modification system and characterization of the methylase protein Nucleic Acids Res 15 8249–8266

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., and J. A. Cowan. 1991 Enzymatic redox chemistry: A proposed reaction pathway for the six-electron. Reduction of SO32-to S2-by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough) ACS 30 8910–8917

    CAS  Google Scholar 

  • Tan, J., L. R. Helms, R. P. Swenson, and J. A. Cowan. 1991 Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): Cloning and nucleotide sequence of the reductase gene ACS 30 9900–9907

    CAS  Google Scholar 

  • Tan, J., A. Soriano, S. M. Lui, and J. A. Cowan. 1994 Functional expression and characterization of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Arch Biochem Biophys 312 516–523

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K. 1990 Several new substrates for Desulfovibrio vulgaris strain Marburg and a spontaneous mutant from it Arch Microbiol 155 18–21

    Article  CAS  Google Scholar 

  • Tanaka, K. 1992 Anaerobic oxidation of 1,5-pentanediol, 2-butanol, and 2-propanol by a newly isolated sulfate-reducer J Ferm Bioeng 73 362–365

    Article  CAS  Google Scholar 

  • Tanimoto, Y., and F. Bak. 1994 Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria Appl Environ Microbiol 60 2450–2455

    CAS  PubMed  Google Scholar 

  • Taylor, J., and R. J. Parkes. 1983 The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans J Gen Microbiol 129 3303–3309

    CAS  Google Scholar 

  • Teixeira, M., I. Moura, G. Fauque, M. Czechowski, Y. Berlier, P. A. Lespinat, J. LeGall, A. V. Xavier, and J. J. G. Moura. 1986 Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens Biochimie 68 75–84

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, M., G. Fauque, I. Moura, P. A. Lespinat, Y. Berlier, B. Prickril, H. D. Peck Jr., A. V. Xavier, J. LeGall, and J. J. G. Moura. 1987 Nickel-(iron-sulfur)-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743) Eur J Biochem 167 47–58

    Article  CAS  PubMed  Google Scholar 

  • Teske, A., N. B. Ramsing, K. Habicht, M. Fukui, J. Küver, B. B. Jørgensen, and Y. Cohen. 1998 Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt) Appl Environ Microbiol 64 2943–2951

    CAS  PubMed  Google Scholar 

  • Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996 Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments Appl Environ Microbiol 62 1405–1415

    CAS  PubMed  Google Scholar 

  • Thamdrup, B., K. Finster, J. Würgler Hansen, and F. Bak. 1993 Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese Appl Environ Microbiol 59 101–108

    CAS  PubMed  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol Rev 41 100–180

    CAS  PubMed  Google Scholar 

  • Thauer, R. K., and J. G. Morris. 1984 Metabolism of chemotrophic anaerobes: old views and new aspects D. P. Kelly and N. G. Carr The microbe 1984, part II, prokaryotes and eukaryotes, Soc. Gen. Microbiol. Sym p. 36 Cambridge University Press Cambridge 123–168

    Google Scholar 

  • Thauer, R. K. 1988 Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria Eur J Biochem 176 497–508

    Article  CAS  PubMed  Google Scholar 

  • Thauer, R. K. 1989a Energy metabolism of sulfatereducing bacteria H. G. Schegel and B. Bowien Autotrophic bacteria Springer-Verlag Berlin 397–413

    Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989b Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria Ann Rev Microbiol 43 43–67

    Article  CAS  Google Scholar 

  • Thebrath, B., W. Dilling, and H. Cypionka. 1989 Sulfate activation in Desulfotomaculum Arch Microbiol 152 296–301

    Article  CAS  Google Scholar 

  • Thiele, J. H., M. Chartrain, and J. G. Zeikus. 1988a Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis Appl Environ Microbiol 54 10–19

    CAS  PubMed  Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988b Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs Appl Environ Microbiol 54 20–29

    CAS  PubMed  Google Scholar 

  • Thoenes, U., O. L. Flores, A. Neves, B. Devreese, J. J. Van Beeumen, R. Huber, M. J. Romao, L. J. J. J. G. Moura, and C. Rodrigues-Pousada. 1994 Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase Eur J Biochem 220 901–910

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B. J., K. O. Stetter, and M. D. Collings. 1989 A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus J Gen Microbiol 135 693–696

    CAS  Google Scholar 

  • Tormay, P., R. Wilting, J. Heider, and A. Böck. 1994 Genes coding for the selenocysteine-inserting tRNA species from Desulfomicrobium baculatum and Clostridium thermoaceticum: Structural and evolutionary implications J Bacteriol 176 1268–1274

    CAS  PubMed  Google Scholar 

  • Tormay, P., and A. Böck. 1997 Barriers to heterologous expression of a selenprotein gene in bacteria J Bacteriol 179 576–582

    CAS  PubMed  Google Scholar 

  • Trinkerl, M., A. Breunig, R. Schauder, and H. König. 1990 Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the Hindgut of a termite Syst Appl Microbiol 13 372–377

    Article  CAS  Google Scholar 

  • Trudinger, P. A. 1970 Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction J Bacteriol 104 158–170

    CAS  PubMed  Google Scholar 

  • Trudinger, P. A., and R. E. Loughlin. 1981 Metabolism of simple sulfur compounds A. Neuberger and L. L. M. van Deenen Comprehensive biochemistry Elsevier Amsterdam 19a 165–256

    Google Scholar 

  • Trüper, H. G., and N. Pfennig. 1966 Sulphur metabolism in Thiorhodaceae. III Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species Antonie Leeuwenhoek J. Microbiol. Serol. 32 261–276

    Article  Google Scholar 

  • Trüper, H. G. 1989 Physiology and biochemistry of phototrophic bacteria H. G. Schlegel and B. Bowien Autotrophic bacteria Springer-Verlag Berlin 267–281

    Google Scholar 

  • Trüper, H. G. 1994 Reverse siroheme sulfite reductase from Thiobacillus denitrificans H. D. Peck and J. LeGall Inorganic microbial sulfur metabolism Academic Press, Inc San Diego 243 422–426

    Chapter  Google Scholar 

  • Tschech, A., and B. Schink. 1986 Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures Arch Microbiol 145 396–402

    Article  CAS  Google Scholar 

  • Tschech, A. 1989a Der anaerobe Abbau von aromatischen Verbindungen Forum Mikrobiologie 5 251–264

    Google Scholar 

  • Tschech, A., and G. Fuchs. 1989b Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate Arch Microbiol 152 594–599

    Article  CAS  Google Scholar 

  • Tsuji, K., and T. Yagi. 1980 Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome c 3 in energy production system Arch Microbiol 125 35–42

    Article  CAS  Google Scholar 

  • Turner, D. L., H. S. Costa, I. B. Coutinho, J. LeGall, and A. V. Xavier. 1997 Assignment of the ligands geometry and redox potentials of the trihaem ferricytochrome c 3 from Desulfuromonas acetoxidans Eur J Biochem 243 474–481

    Article  CAS  PubMed  Google Scholar 

  • Turner, N., B. Barata, R. C. Bray, J. Deistung, J. LeGall, and J. G. Moura. 1987 The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase Biochem J 243 755–761

    CAS  PubMed  Google Scholar 

  • Tuttle, J. H., and H. W. Jannasch. 1973 Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria J Bacteriol 115 732–737

    CAS  PubMed  Google Scholar 

  • Ueki, A., and T. Suto. 1979 Cellular fatty acid composition of sulfate-reducing bacteria J Gen Appl Microbiol 25 185–196

    Article  CAS  Google Scholar 

  • Unden, G., R. Böcher, J. Knecht, and A. Kröger 1982 Hydrogenase from Vibrio succinogenes, a nickel protein FEBS Lett 145 230–234

    Article  CAS  PubMed  Google Scholar 

  • Vainshtein, M. B., A. G. Matrosov, V. P. Baskunov, A. M. Zyakun, and M. V. Ivanov. 1980 Thio sulfate as an intermediate product at bacterial sulfate reduction Microbiologiya (Russian) 49 855–858

    CAS  Google Scholar 

  • van Delden, A. 1903a Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien Central Bakteriol II. Abt. 11 81–94

    Google Scholar 

  • van Delden, A. 1903b Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien Central Bakteriol II. Abt. 11 113–119

    Google Scholar 

  • van den Berg, W. A. M., J. P. W. G. Stokkermans, and W. M. A. M. van Dongen. 1989 Development of a plasmid transfer system for the anaerobic sulphate reducer, Desulfovibrio vulgaris J Biotechnol 12 173–184

    Article  Google Scholar 

  • van den Berg, W. A. M., W. M. A. van Dongen, and C. Veeger. 1991 Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism J Bacteriol 173 3688–3694

    PubMed  Google Scholar 

  • van der Maarel, M. J. E. C., M. Jansen, R. Haanstra, W. G. Meijer, and T. A. Hansen. 1996a Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria Appl Environ Microbiol 62 3978–3984

    PubMed  Google Scholar 

  • van der Maarel, M. J. E. C., W. Aukema, and T. A. Hansen. 1996b Purification and characterization of dimethylsulfoniopropionate cleaving enzyme from Desulfovibrio acrylicus FEMS Microbiol Lett 143 241–245

    Article  Google Scholar 

  • van der Maarel, M. J. E. C., S. van Bergeijk, A. F. van Werkhoven, A. M. Laverman, W. G. Meijer, W. T. Stam, and T. A. Hansen. 1996c Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov Arch Microbiol 166 109–115

    Article  Google Scholar 

  • van der Spek, T. M., A. F. Arendsen, R. P. Happe, S. Yun, K. A. Bagley, D. J. Stufkens, W. R. Hagen, and P. J. Albracht. 1996 Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy Eur J Biochem 237 629–634

    Article  PubMed  Google Scholar 

  • van der Westen, H. M., S. G. Mayhew, and C. Veeger. 1978 Separation of hydrogenase from intact cells of Desulfovibrio vulgaris FEBS Lett 86 122–126

    Article  PubMed  Google Scholar 

  • van Dongen, W., W. Hagen, W. van den Berg, and C. Veeger. 1988 Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli FEMS Microbiol Lett 50 5–9

    Article  Google Scholar 

  • van Dongen, W. M. A. M., J. P. W. G. Stokkermans, and W. A. M. van den Berg. 1994 Genetic manipulation of Desulfovibrio H. D. Peck and J. LeGall Inorganic microbial sulfur metabolism Academic Press San Diego 243 319–330

    Chapter  Google Scholar 

  • van Gemerden, H. 1968 On the ATP generation by Chromatium in darkness Arch Microbiol 64 118–124

    Google Scholar 

  • van Niel, E. W. J., T. M. P. Gomes, A. Willems, M. D. Collins, R. A. Prins, and J. C. Gottschal. 1996 The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens FEMS Microbial Ecol 21 243–253

    Article  Google Scholar 

  • van Niel, E. W. J., and J. C. Gottschal. 1998 Oxygen consumption by Desulfovibrio strains with and without polyglucose Appl Environ Microbiol 64 1034–1039

    PubMed  Google Scholar 

  • Van Ommen Kloeke, F., R. D. Bryant, and E. J. Laishley. 1995 Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion Anaerobe 1 351–358

    Article  PubMed  Google Scholar 

  • van Rooijen, G. J. H., M. Bruschi, and G. Voordouw. 1989 Cloning and sequencing of the gene encoding cytochrome c 553 from Desulfovibrio vulgaris Hildenborough J Bacteriol 171 3575–3578

    PubMed  Google Scholar 

  • Varma, A., P. Schönheit, and R. K. Thauer. 1983 Electrogenic sodium ion/proton antiport in Desulfovibrio vulgaris Arch Microbiol 136 69–73

    Article  CAS  Google Scholar 

  • Vega, J. M., and R. H. Garrett. 1975 Siroheme: A prosthetic group of the Neurospora crassa assimilatory nitrite reductase J Biol Chem 250 7980–7989

    CAS  PubMed  Google Scholar 

  • Vega, J. M., and H. Kamin. 1977 Spinach nitrite reductase J Biol Chem 252 896–909

    CAS  PubMed  Google Scholar 

  • Volbeda, A., M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps. 1995 Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas Nature 372 580–587

    Article  Google Scholar 

  • Volbeda, A., E. Garcin, C. Piras, A. L. de Lacey, V. M. Fernandez, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps. 1996 Structure of the (NiFe) hydrogenase active site: evidence for biologically uncommon Fe ligands Journal of the American Chemical Society 118 12989–12996

    Article  CAS  Google Scholar 

  • Von Wolzogen Kuhr, C. A. H., and L. S. van der Vlught. 1934 Graphication of cast iron as an electrobiochemical process in anaerobic soils Water (The Hague) 18 147–165

    Google Scholar 

  • Voordouw, G., and S. Brenner. 1985a Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) Eur J Biochem 148 515–520

    Article  CAS  PubMed  Google Scholar 

  • Voordouw, G., J. E. Walker, and S. Brenner. 1985b Cloning of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH2-terminal sequence Eur J Biochem 148 509–514

    Article  CAS  PubMed  Google Scholar 

  • Voordouw, G., and S. Brenner. 1986 Cloning an sequencing of the gene encoding cytochrome c 3 from Desulfovibrio vulgaris (Hildenborough) Eur J Biochem 159 347–351

    Article  CAS  PubMed  Google Scholar 

  • Voordouw, G., H. M. Kent, and J. R. Postgate. 1987 Identification of the gene for hydrogenase and cytochrome c 3 in Desulfovibrio Can J Microbiol 33 1006–1010

    Article  CAS  Google Scholar 

  • Voordouw, G. 1988a Cloning of genes encoding redox proteins of known amino acid sequence from a library of the Desulfovibrio vulgaris (Hildenborough) genome Gene 68 75–83

    Article  Google Scholar 

  • Voordouw, G. 1988b Molecular Biology of redox proteins in sulphate reduction J. A. Cole and S. J. Ferguson The Nitrogen and Sulphur Cycles Cambridge University Press Cambridge 42 147–160

    Google Scholar 

  • Voordouw, G., N. K. Menon, J. LeGall, E.-S. Choi, H. D. Peck Jr., and A. E. Przybyla. 1989a Analysis and comparison of nucleotide sequences encoding the genes for (NiFe) hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus J Bacteriol 171 2894–2899

    CAS  PubMed  Google Scholar 

  • Voordouw, G., J. D. Strang, and F. R. Wilson. 1989b Organization of the genes encoding (Fe) hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello J Bacteriol 171 3881–3889

    CAS  PubMed  Google Scholar 

  • Voordouw, G., V. Niviere, G. Ferris, P. M. Fedorak, and D. W. S. Westlake. 1990 Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment Appl Environ Microbiol 56 3748–3754

    CAS  PubMed  Google Scholar 

  • Voordouw, G., J. K. Voordouw, R. R. Karkhoff-Schweizer, P. M. Fedorak, and D. W. S. Westlake. 1991 Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples Appl Environ Microbiol 57 3070–3078

    CAS  PubMed  Google Scholar 

  • Voordouw, G. 1992 Evolution of hydrogenase genes Adv Inorg Chem 38 397–423

    Article  CAS  Google Scholar 

  • Voordouw, G. 1993a Molecular biology of the sulfate-reducing bacteria J. M. Odom and R. Singleton Jr. The Sulfate-Reducing Bacteria: Contemporary Perspectives Springer-Verlag New York 88–130

    Chapter  Google Scholar 

  • Voordouw, G., and J. D. Wall. 1993b Genetics and molecular biology of sulfate-reducing bacteria M. Sebald Genetics and Molecular Biology of Anaerobic Bacteria Springer-Verlag New York 456–473

    Chapter  Google Scholar 

  • Voordouw, G. 1995 The genus Desulfovibrio: the centennial Appl Environ Microbiol 61 2813–2819

    CAS  PubMed  Google Scholar 

  • Voordouw, J. K., and G. Voordouw. 1998 Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough Appl Environ Microbiol 64 2882–2887

    CAS  PubMed  Google Scholar 

  • Vorholt, J., J. Kunow, K. O. Stetter, and R. K. Thauer. 1995 Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus Arch Microbiol 163 112–118

    Article  CAS  Google Scholar 

  • Wagner, M., A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl. 1998 Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration J Bacteriol 180 2975–2982

    CAS  PubMed  Google Scholar 

  • Wall, J. D., T. Murnan, J. Argyle, S. English, and B. J. Rapp-Giles. 1996 Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7 Appl Environ Microbiol 62 3762–3767

    CAS  PubMed  Google Scholar 

  • Wall, J. D., B. J. Rapp-Giles, and M. Rousset. 1993 Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction J Bacteriol 175 4121–4128

    CAS  PubMed  Google Scholar 

  • Wallrabenstein, C., E. Hausschild, and B. Schink. 1995 Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate Arch Microbiol 164 346–352

    Article  CAS  Google Scholar 

  • Warthmann, R., and H. Cypionka. 1990 Sulfate transport in Desulfobulbus propionicus and Desulfococcus multivorans Arch Microbiol 154 144–149

    Article  CAS  Google Scholar 

  • Watson, G. M. F., and F. R. Tabita. 1997 Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation FEMS Microbiol Lett 146 13–22

    Article  CAS  PubMed  Google Scholar 

  • Wawer, C., M. S. M. Jetten, and G. Muyzer. 1997 Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples Appl Environ Microbiol 63 4360–4369

    CAS  PubMed  Google Scholar 

  • Wei, J., and T. S. Leyh. 1998 Conformational change rate-limits GTP hydrolysis: the mechanism of the ATP sulfurylase-GTPase Biochemistry 37 17163–17169

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., and T. S. Leyh. 1999 Isomerization couples chemistry in the ATP sulfurylase-GTPase system Biochemistry 38 6311–6316

    Article  CAS  PubMed  Google Scholar 

  • Werkman, C. H., and H. J. Weaver. 1927 Studies in the bacteriology of sulphur stinker spoilage of canned sweet corn Iowa State Coll. J. Sci. 2 57–67

    CAS  Google Scholar 

  • White, R. H. 1988 Structural diversity among methanofurans from different methanogenic bacteria J Bacteriol 170 4594–4597

    CAS  PubMed  Google Scholar 

  • Widdel, F., and N. Pfennig. 1977 A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans Arch Microbiol 112 119–122

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F. 1980 Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduziernder Bakterien Georg-August-Universität zu Göttingen

    Google Scholar 

  • Widdel, F., and N. Pfennig. 1981a Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans Arch Microbiol 129 401–402

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F., and N. Pfennig. 1981b Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. solation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov Arch Microbiol 129 395–400

    Article  CAS  PubMed  Google Scholar 

  • Widdel, F., and N. Pfennig. 1982 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov Arch Microbiol 131 360–365

    Article  CAS  Google Scholar 

  • Widdel, F., G.-W. Kohring, and F. Mayer. 1983 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov Arch Microbiol 134 286–294

    Article  CAS  Google Scholar 

  • Widdel, F., and N. Pfennig. 1984 Dissimilatory sulfate-and sulfur-reducing bacteria N. R. Krieg and J. G. Holt [{http://www.cme.msu.edu/bergeys//Bergey’s manual of systematic bacteriology] Williams & Wilkins Baltimore, MD 1 663–679

    Google Scholar 

  • Widdel, F. 1986 Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors Appl Environ Microbiol 51 1056–1062

    CAS  PubMed  Google Scholar 

  • Widdel, F. 1987 New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov Arch Microbiol 148 286–291

    Article  CAS  Google Scholar 

  • Widdel, F. 1988 Microbiology and ecology of sulfate-and sulfur-reducing bacteria A. J. B. Zehnder Biology of Anaerobic Microorganisms John Wiley & Sons New York 469–585

    Google Scholar 

  • Widdel, F. 1992a Microbial Corrosion Finn, R. K., P. Präve, M. Schlingmann, W. Crueger, K. Esser, R. Thauer, and F. Wagner Biotechnology Focus 3. Fundamentals, Applications, Information Hanser Munich 261–300

    Google Scholar 

  • Widdel, F., and F. Bak. 1992b Gram-negative mesophilic sulfate-reducing bacteria A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes, 2nd ed Springer-Verlag New York 3 3352–3378

    Google Scholar 

  • Wight, K. M., and R. L. Starkey. 1945 Utilization of hydrogen by sulfate-reducing bacteria and its significance in anaerobic corrosion J Bacteriol 50 238

    Google Scholar 

  • Wilson, L. G., and R. S. Bandurski. 1958 Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate J Biol Chem 233 975–981

    CAS  PubMed  Google Scholar 

  • Woese, C. R., and G. E. Fox. 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms Proc Natl Acad Sci 74 5088–5090

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R., L. J. Magrum, and G. E. Fox. 1978 Archaebacteria J Mol Evol 11 245–252

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R. 1987 Bacterial Evolution Microbiol Rev 51 221–271

    CAS  PubMed  Google Scholar 

  • Woese, C. R., L. Achenbach, P. Rouviere, and L. Mandelco. 1991 Archaeal phylogeny: reexamination of the phylogenetic postion of Archaeoglobus fulgidus in light of certain composition-induced artifacts Syst Appl Microbiol 14 364–371

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, B. M., S. M. Lui, and J. A. Cowan. 1994 Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) FEBS Lett 223 79–89

    CAS  Google Scholar 

  • Wolfe, R. S., and N. Pfennig. 1977 Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium Appl Environ Microbiol 33 427–433

    CAS  PubMed  Google Scholar 

  • Wolin, M. J., E. A. Wolin, and N. J. Jacobs. 1961 Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. nov J Bacteriol 81 911–917

    CAS  PubMed  Google Scholar 

  • Wood, H. G., S. W. Ragsdale, and E. Pezacka. 1986 The acetyl-CoA pathway of autotrophic growth FEMS Microbiol Rev 39 345–362

    Article  CAS  Google Scholar 

  • Woolfolk, C. A. 1962 Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus J Bacteriol 84 659–668

    CAS  PubMed  Google Scholar 

  • Wu, L.-F., and M. A. Mandrand. 1993 Microbial hydrogenases: primary structure, classification, signatures and phylogeny FEMS Microbiol Rev 104 243–270

    Article  CAS  Google Scholar 

  • Yagi, T. 1969 Formate:cytochrome oxidoreductase of Desulfovibrio vulgaris J Biochem 66 473–478

    CAS  PubMed  Google Scholar 

  • Yagi, T. 1979 Purification and properties of cytochrome c 553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki Biochim Biophys Acta 548 96–105

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, I., and M. Ishimoto. 1978 Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions J Biochem 84 673–679

    CAS  PubMed  Google Scholar 

  • Yen, H., and B. Marrs. 1977 Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide Arch Biochem Biophys 181 411–418

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari, T. 1980 N2O reduction by Vibrio succinogenes Appl Environ Microbiol 39 81–84

    CAS  PubMed  Google Scholar 

  • Zehnder, A. J. B., and T. D. Brock. 1979 Methane formation and methane oxidation by methanogenic bacteria J Bacteriol 137 420–432

    CAS  PubMed  Google Scholar 

  • Zehnder, A. J. B., and T. D. Brock. 1980 Anaerobic methane oxidation: occurrence and ecology Appl Environ Microbiol 39 194–204

    CAS  PubMed  Google Scholar 

  • Zeikus, J. G. 1983 Metabolism of one carbon compounds by chemotrophic anaerobes Adv Microbial Physiol 24 215–299

    Article  CAS  Google Scholar 

  • Zeikus, J. G., M. A. Dawson, T. E. Thompson, K. Ingvorsen, and E. C. Hatchikian. 1983 Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov J Gen Microbiol 129 1159–1169

    CAS  Google Scholar 

  • Zellner, G., P. Vogel, H. Kneifel, and J. Winter. 1987 Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia Appl Microbiol Biotechnol 27 306–314

    Article  Google Scholar 

  • Zellner, G., and J. Winter. 1987 Analysis of a highly efficient methanogenic consortium producing biogas from whey Syst Appl Microbiol 9 284–292

    Article  CAS  Google Scholar 

  • Zellner, G., P. Messner, H. Kneifel, and J. Winter. 1989a Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester Arch Microbiol 152 329–334

    Article  CAS  Google Scholar 

  • Zellner, G., E. Stackebrandt, H. Kneifel, P. Messner, U. B. Sleytr, E. C. De Macario, H.-P. Zabel, K. O. Stetter, and J. Winter. 1989b Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z Syst Appl Microbiol 11 151–160

    Article  CAS  Google Scholar 

  • Zellner, G., and A. Jargon. 1997 Evidence for a tungsten-stimulated aldehyde dehydrogenase activity of Desulfovibrio simplex that oxidizes aliphatic and aromatic aldehydes with flavins as coenzymes Arch Microbiol 168 480–485

    Article  CAS  PubMed  Google Scholar 

  • Zengler, K., H. H. Richnow, R. Rosselló-Moura, W. Michaelis, and F. Widdel. 1999a Methane formation from long-chain alkanes by anaerobic microorganisms Nature 401 266–269

    Article  CAS  PubMed  Google Scholar 

  • Zengler, K., J. Heider, R. Roselló-Mora, and F. Widdel. 1999b Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis Arch Microbiol 172 204–212

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., and L. Y. Young. 1997 Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia Appl Environ Microbiol 63 4759–4764

    CAS  PubMed  Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, F. A. Rainey, E. N. Pikuta, G. A. Osipov, and N. A. Kostrikina. 1997 Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium Inter J Syst Bacteriol 47 144–149

    Article  CAS  Google Scholar 

  • Zillig, W., K. O. Stetter, W. Schäfer, D. Janekovic, S. Wunderl, I. Holz, and P. Palm. 1981 Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfatars Zbl Bakt Hyg I Abt Orig C 2 205–227

    CAS  Google Scholar 

  • Zillig, W., K. O. Stetter, D. Prangishvilli, W. Schäfer, S. Wunderl, D. Janekovic, I. Holz, and P. Palm. 1982 Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-reducing Thermoproteales Zbl Bakt Hyg I Abt Orig C 3 304–317

    CAS  Google Scholar 

  • Zillig, W., A. Gierl, G. Schreiber, S. Wunderl, D. Janekovic, K. O. Stetter, and H. P. Klenk. 1983 The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic anaerobic sulfur respiring Thermoproteales Syst Appl Microbiol 4 79–87

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., S. Yeats, I. Holz, A. Böck, F. Gropp, M. Rettenberger, and S. Lutz. 1985 Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens Nature 313 789–791

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., S. Yeats, I. Holz, A. Böck, M. Rettenberger, F. Gropp, and G. Simon. 1986 Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur Syst Appl Microbiol 8 197–203

    Article  CAS  Google Scholar 

  • Zillig, W., D. Prangishvilli, C. Schleper, M. Elferink, I. Holz, S. Albers, D. Janekovic, and D. Götz. 1996 Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea FEMS Microbiol Rev 18 225–236

    Article  CAS  PubMed  Google Scholar 

  • Zinder, S. H., and T. D. Brock. 1978a Dimethyl sulfoxide as an electron acceptor for anaerobic growth Arch Microbiol 116 35–40

    Article  CAS  PubMed  Google Scholar 

  • Zinder, S. H., and T. D. Brock. 1978b Dimethyl sulphoxide reduction by micro-organisms J Gen Microbiol 105 335–342

    Article  CAS  PubMed  Google Scholar 

  • Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988 Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate Arch Microbiol 150 254–266

    Article  CAS  Google Scholar 

  • Zinoni, F., J. Heider, and A. Böck. 1990 Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine Pro Natl Acad Sci USA 87 4660–4664

    Article  CAS  Google Scholar 

  • Zumft, W. 1972 Ferredoxin: Nitrite oxidoreductase from Chlorella. Purification and properties Biochim Biophys Acta 276 363–375

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Rabus, R., Hansen, T.A., Widdel, F. (2006). Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_22

Download citation

Publish with us

Policies and ethics