Skip to main content

The Chemolithotrophic Prokaryotes

  • Reference work entry

Ihre Lebensprozesse spielen sich nach einem viel einfacheren Schema ab; durch einen rein anorganischen chemischen Prozess...werden alle ihre Lebensbewegungen im Gange erhalten.

[“Their life processes are played out in a very simple fashion; all their life activities are driven by a purely inorganic chemical process.”]

—Winogradsky, 1887

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Baas Becking, L. G. M., Parks, G. S. 1927 Energy relations in the metabolism of autotrophic bacteria Physiol. Rev. 7 85–106

    CAS  Google Scholar 

  • Badziong, W., Thauer, R. K., Zeikus, J. G. 1978 Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source Arch. Microbiol. 116 41–49

    PubMed  CAS  Google Scholar 

  • Bak, F., Cypionka, H. 1987 A novel type of energy metabolism involving fermentation of inorganic sulfur compounds Nature 326 891–892

    PubMed  CAS  Google Scholar 

  • Bak, F., Pfennig, N. 1987 Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds Arch. Microbiol. 147 184–189

    CAS  Google Scholar 

  • Barros, M. E. C., Rawlings, D. E., Woods, D. R. 1984 Mixotrophic growth of a Thiobacillus ferrooxidans strain Appl. Environ. Microbiol. 47 593–595

    PubMed  CAS  Google Scholar 

  • Beh, M., Strauss, G., Huber, R., Stetter, K. O., Fuchs, G. 1993 Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex neutrophilus Arch. Microbiol. 160 306–311

    CAS  Google Scholar 

  • Beudeker, R. F., Kerver, J. W. M., Kuenen, J. G. 1981aOccurrence, structure, and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus Arch. Microbiol. 129 221–226

    CAS  Google Scholar 

  • Beudeker, R. F., de Boer, W., Kuenen, J. G. 1981bHeterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions FEMS Microbiol. Lett. 12 337–342

    CAS  Google Scholar 

  • Bock, E. 1976 Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis Arch. Microbiol. 108 305–312

    PubMed  CAS  Google Scholar 

  • Bock, E., Wilderer, P. A., Freitag, A. 1988 Growth of Nitrobacter in the absence of dissolved oxygen Water Res. 22 245–250

    CAS  Google Scholar 

  • Bock, E., Koops, H.-P., Möller, U. C., Rudert, M. 1990 A new facultatively nitrite-oxidizing bacterium, Nitrobacter vulgaris sp. nov Arch. Microbiol. 153 105–110

    Google Scholar 

  • Brierley, J. A., Brierley, C. L. 1968 Urea as a nitrogen source of thiobacilli J. Bacteriol. 96 573–574

    PubMed  CAS  Google Scholar 

  • Brierley, J. A., Norris, P. R., Kelly, D. P., Le Roux, N. W. 1978 Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus Europ. Appl. Microbiol. Biotechnol. 5 291–299

    CAS  Google Scholar 

  • Brierley, C. L., Brierley, J. A., Norris, P. R., Kelly, D. P. 1980 Metal-tolerant microorganisms of hot, acid environments G. W. Gould and J. E. L. Corry (ed.) Microbial growth and survival in extremes of environment Society for Applied Bacteriology Technical Series Academic Press London. 15 39–51

    Google Scholar 

  • Brock, T. D., Schlegel, H. 1989 Introduction H. G. Schlegel and B. Bowien (ed.) Autotrophic bacteria Springer-Verlag, Berlin and Science Tech Publishers Madison WI 1–15

    Google Scholar 

  • Brock, T. D., Gustafson, J. 1976 Ferric iron reduction by sulfur-and iron-oxidizing bacteria Appl. Environ. Microbiol. 32 567–571

    PubMed  CAS  Google Scholar 

  • Broda, E. 1977aThe position of nitrate respiration in evolution Origins of Life 8 173–174

    PubMed  CAS  Google Scholar 

  • Broda, E. 1977bTwo kinds of lithotrophs missing in nature Z. Allg. Mikrobiol. 17 491–493

    PubMed  CAS  Google Scholar 

  • Burggraf, S., Olse, G. J., Stetter, K. O., Woese, C. R. 1992 A phylogenetic analysis of Aquifex pyrophilus Syst. Appl. Microbiol. 15 352–356

    PubMed  CAS  Google Scholar 

  • Butlin, K. R., Adams, M. E. 1947 Autotrophic growth of sulphate-reducing bacteria Nature 160 154–155

    CAS  Google Scholar 

  • Caspi, R., Haygood, M. G., Tebo, B. M. 1996 Unusual ribulose-1, 5-biphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium Microbiology (UK) 142 2549–2559

    CAS  Google Scholar 

  • Chyba, C. F. 1992 The violent environment of the origin of life J. Tran Thanh Van, K. Tran Thanh Van, J. C. Mounlou, J. Schneider, and C. McKay (eds.) Frontiers of life, Editions Frontieres, Gif-sur-Yvette France 97–104

    Google Scholar 

  • Clark, D. A., Norris, P. R. 1996 Acidimicrobium ferrooxidans gen. nov., sp. nov.:mixed cultures ferrous iron Microbiology (UK) 142 785–790

    CAS  Google Scholar 

  • Cypionka, H., Smock, A. M., Bottcher, M. E. 1998 A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans FEMS Microbiol. Lett. 166 181–186

    CAS  Google Scholar 

  • Davis, O. H., Doudoroff, M., Stanier, R. Y. 1969 Proposal to reject the genus Hydrogenomonas Int. J. Syst. Bacteriol. 19 375–390

    Google Scholar 

  • Eccleston, M., Kelly, D. P. 1978 Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate J. Bacteriol. 134 718–727

    PubMed  CAS  Google Scholar 

  • Edwards, M. R. 1998 From a soup or a seed? Trends Ecol. Evol. 13 178–181

    PubMed  CAS  Google Scholar 

  • Eisenmann, E., Beuerle, J., Sulger, K., Kroneck, P. M. H., Schumacher, W. 1995 Lithotrophic growth of Sulfospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia Microbiol. 164 180–185

    CAS  Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., Arnon, D. I. 1966 A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium Proc. Natl. Acad. Sci. USA 55 928–934

    PubMed  CAS  Google Scholar 

  • Freitag, A., Rudert, M., Bock, E. 1987 Growth of Nitrobacter by dissimilatory nitrate reduction FEMS Microbiol. Lett. 48 105–109

    CAS  Google Scholar 

  • Friedrich, C., Mitrenga, G. 1981 Oxidation of thiosulfate by Paracoccusdenitrificans and other hydrogen bacteria FEMS Microbiol. Lett. 10 209–212

    CAS  Google Scholar 

  • Fromageot, C., Senez, J. C. 1960 Aerobic and anaerobic reactions of inorganic substances M. Florkin and H. S. Mason (ed.) Comparative biochemistry Academic Press New York 1 347–409

    Google Scholar 

  • Fuchs, T., Huber, H., Burggraf, S., Stetter, K. O. 1996 The 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidanus ambivalens comb. nov Syst. Appl. Microbiol. 19 56–60

    CAS  Google Scholar 

  • Fuchs, G. 1989 Alternative pathways of autotrophic CO2 fixation H. G. Schlegel and B. Bowien (ed.) Autotrophic bacteria Springer-Verlag, Berlin and Science Tech Publishers Madison WI 365–382

    Google Scholar 

  • Galtier, N., Tourasse, N., Gouy, M. 1999 A nonhyperthermophilic common ancestor to extant life forms Science 283 220–221

    PubMed  CAS  Google Scholar 

  • Gautier, D. 1992 Primitive planetary atmospheres: origin and evolution J. Tran Thanh Van, K. Tran Thanh Van, J. C. Mounlou, J. Schneider, and C. McKay (eds.) Frontiers of life, Editions Frontieres Gif-sur-Yvette France 307–315

    Google Scholar 

  • Gogarten, J. P. 1995 The early evolution of cellular life Trends Ecol. Evol. 10 147–151

    PubMed  CAS  Google Scholar 

  • Gogarten, J. P., Taiz, L. 1992 Evolution of proton pumping ATPases_rooting the tree of life Photosynthesis Research 33 137–146

    CAS  Google Scholar 

  • Gogarten, J. P., Olendzenski, L., Hilario, E., Simon, C., Holsinger, K. E. 1996 Dating the cenancestor of organisms Science 274 1750–1751

    PubMed  CAS  Google Scholar 

  • Gogarten-Boeckels, M., Hilario, E., Gogarten, J. P. 1995 The effects of heavy meteroritic bombardment on the early evolution—the emergence of the three domains of life Origins of Live Evol. Biosphere 25 251–264

    Google Scholar 

  • Gommers, P. J. F., Kuenen, J. G. 1988 Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium Arch. Microbiol. 150 117–125

    CAS  Google Scholar 

  • Gottschal, J. C., de Vries, S., Kuenen, J. G. 1979 Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligat

    Google Scholar 

  • Grabovich, M. Y., Dubinina, G. A., Lebedeva, V. Y., Churikova, V. V. 1998 Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402 Microbiology (Moscow) 67 383–388

    CAS  Google Scholar 

  • Gribaldo, S., Cammarano, P. 1998 The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery J. Mol. Evol. 47 508–516

    PubMed  CAS  Google Scholar 

  • Güde, H., Strohl, W. R., Larkin, J. M. 1981 Mixotrophic and heterotrophic growth of Beggiatoaalba in continuous culture Arch. Microbiol. 129 357–360

    PubMed  Google Scholar 

  • Gupta, R. S. 1998a Life’s third domain (Archaea): an established fact or an endangered paradigm? Theor. Pop. Biol. 54 91–104

    CAS  Google Scholar 

  • Gupta, R. S. 1998b What are archaebacteria: life’s third domain or modern prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms Mol. Microbiol. 29 695–707

    PubMed  CAS  Google Scholar 

  • Hagen, K. D., Nelson, D. C. 1996 Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures Appl. Environ. Microbiol. 62 947–953

    PubMed  CAS  Google Scholar 

  • Hanert, H. 1981 The genus Gallionella M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.) The prokaryotes, 1st ed. Springer-Verlag Berlin 509–515

    Google Scholar 

  • Hempfling, W. P., Vishniac, W. 1967 Yield coefficients of Thiobacillus neapolitanus in continuous culture J. Bacteriol. 93 874–878

    PubMed  CAS  Google Scholar 

  • Hipp, W. M., Pott, A. S., Thum-Schmirtz, N., Faath, I., Dahl, C., Truper, H. G. 1997 Towards a phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes Microbiology (UK) 143 2891–2902

    CAS  Google Scholar 

  • Holmes, A. J., Costello, A., Lidstrom, M. E., Murrell, J. C. 1995 Evidence that particulate methane monooxygenase may be evolutionarily related FEMS Microbiol. Lett. 132 203–208

    PubMed  CAS  Google Scholar 

  • Holo, H. 1989 Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of carbon dioxide and acetate Arch. Microbiol. 151 252–256

    CAS  Google Scholar 

  • Horowitz, N. H. 1945 On the evolution of biochemical synteses Proc. Natl. Acad. Sci. USA 31 153–157

    PubMed  CAS  Google Scholar 

  • Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., Konig, H., Rachel, R., Rockinger, I., Fricke, H., Stetter, K. O. 1992 Aquifex pyrophilus, gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria Syst. Appl. Bacteriol. 15 340–351

    Google Scholar 

  • Ishii, M., Miyake, T., Satoh, T., Sugiyama, H., Oshima, Y., Igarashi, Y. 1996 Autotrophic carbon dioxide fixation in Acidanus brierleyi Arch. Microbiol. 166 368–371

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1979 Chemosynthetic primary production at East Pacific sea floor spreading centres Bioscience 29 592–598

    CAS  Google Scholar 

  • Jones, C. A., Kelly, D. P. 1983 Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition J. Chem. Tech. Biotechnol. 33B 241–261

    CAS  Google Scholar 

  • Justin, P., Kelly, D. P. 1978 Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture J. Gen. Microbio. 107 123–130

    CAS  Google Scholar 

  • Katayama, Y., Hiraishi, A., Kuraishi, H. 1995 Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus Microbiology (UK) 141 1469–1477

    CAS  Google Scholar 

  • Katayama-Fujimura, Y., Kuraishi, H. 1983 Emendation of Thiobacillus perometabolis London and Rittenberg, 1967 Int. J. Syst. Bacteriol. 33 650–651

    Google Scholar 

  • Kawasumi, T., Igarashi, U., Kodama, T., Minoda, Y. 1988 Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria Agr. Bio. Chem. 44 1985–1986

    Google Scholar 

  • Keil, F. 1912 Beiträge zur Physiologie der farblosen Schwefelbakterien Beitr. Biol. Pfl. 11 335–365

    Google Scholar 

  • Kelly, D. P. 1967 Problems of the autotrophic microorganisms Science Progress 55 35–51

    PubMed  CAS  Google Scholar 

  • Kelly, D. P. 1971 Autotrophy: concepts of lithotrophic bacteria and their organic metabolism Ann. Rev. Microbiol. 25 177–210

    CAS  Google Scholar 

  • Kelly, D. P., Eccleston, M., Jones, C. A. 1977 Evaluation of continuous chemostat cultivation of Thiobacillus ferrooxidans on ferrous iron or tetrathionate W. Schwartz (ed.) Bacterial leaching Verlag Chemie Weinheim. 1–7

    Google Scholar 

  • Kelly, D. P. 1978 Bioenergetics of chemolithotrophic bacteria A. T. Bull and P. M. Meadow (ed.) Companion to microbiology Longman London. 363–386

    Google Scholar 

  • Kelly, D. P., Wood, A. P, Gottschal, J. C., Kuenen, J. G. 1979 Autotrophic metabolism of formate by Thiobacillus strain A2 J. Gen. Microbiol. 114 1–13

    CAS  Google Scholar 

  • Kelly, D. P. 1981 Introduction to the chemolithotrophic bacteria M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.) The prokaryotes, 1st ed Springer-Verlag Berlin. 997–1004

    Google Scholar 

  • Kelly, D. P. 1982 Biochemistry of the chemolithotrophic oxidation of inorganic sulphur Phil. Trans. Roy. Soc. London B298 499–528

    Google Scholar 

  • Kelly, D. P., Wood, A. P. 1982 Autotrophic growth of Thiobacillus A2 on methanol FEMS Microbiol. Lett. 15 229–233

    CAS  Google Scholar 

  • Kelly, D. P., Kuenen, J. G. 1984 Ecology of the colourless sulphur bacteria G. A. Codd (ed.) Aspects of microbial metabolism and ecology Academic Press London. 211–240

    Google Scholar 

  • Kelly, D. P., Wood, A. P. 1984 Potential for methylotrophic autotrophy in Thiobacillus versutus (Thiobacillus sp. strain A2), pp. 324–329. R. L. Crawford and R. S. Hanson (ed.) Microbial growth on C1-compounds American Society for Microbiology Washington D. C.

    Google Scholar 

  • Kelly, D. P. 1985 Crossroads for archaebacteria Nature 313 734

    PubMed  CAS  Google Scholar 

  • Kelly, D. P. 1987 Sulphur bacteria first again Nature 326 830–831

    Google Scholar 

  • Kelly, D. P. 1988 Oxidation of sulphur compounds Soc. Gen. Microbiol. Symp. 42 65–98

    Google Scholar 

  • Kelly, D. P. 1989 Physiology and biochemistry of unicellular sulfur bacteria H. G. Schlegel and B. Bowien (ed.) Autotrophic bacteria Springer-Verlag Berlin Science Tech Publishers Madison WI 193–217

    Google Scholar 

  • Kelly, D. P., Harrison, A. P. 1989 The genus Thiobacillus J. T. Staley (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams and Wilkins Baltimore. 1842–1858

    Google Scholar 

  • Kelly, D. P. 1990 Energetics of chemolithotrophs T. A. Krulwich (ed.) The bacteria, vol. 12. Bacterial energetics Academic Press San Diego. 478–503

    Google Scholar 

  • Kelly, D. P., Smith, N. A. 1990 Organic sulfur compounds in the environment Adv. Microbiol. Ecol. 11 345–385

    CAS  Google Scholar 

  • Kelly, D. P. 1991 The chemolithotrophic prokaryotes A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.s) The prokaryotes, 2nd ed., Springer New York NY 331–343

    Google Scholar 

  • Kelly, D. P. 1999 Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways Arch. Microbiol. 171 219–229

    CAS  Google Scholar 

  • Kelly, D. P., Wood, A. P. 2000 The genus Thiobacillus Beijerinck N. R. Krieg, J. T. Staley, and D. J. Brenner (ed.s) Bergey’s manual of systematic bacteriology, 2nd ed. Springer-Verlag New York NY 2 in press

    Google Scholar 

  • Khmelenina, V. N., Gayazov, R. R., Suzina, N. E., Doronina, V. A., Mshenshii, Y. N., Trotsenko, Y. A. 1992 Synthesis of polysaccharides by Methylococcus capsulatus under different growth conditions Microbiology (Moscow) 61 277–282

    Google Scholar 

  • Kiesow, L. 1963 Über die Reduktion von Diphospho-pyridinnucleotid bei der Chemosynthese Biochem. Z. 338 400–406

    PubMed  CAS  Google Scholar 

  • Kondratieva, E. N. 1989 Chemolithotrophy of phototrophic bacteria H. G. Schlegel and B. Bowien (ed.) Autotrophicbacteria Springer-Verlag Berlin and Science Tech Publishers Madison WI 283–287

    Google Scholar 

  • Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu, P., Monosov, E. Z. 1976 The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis Arch. Microbiol. 108 287–292

    PubMed  CAS  Google Scholar 

  • Krämer, M., Cypionka, H. 1989 Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria Arch. Microbiol. 151 232–237

    Google Scholar 

  • Kristjansson, J. K., Ingason, A., Alfredsson, G. A. 1985 Isolation of thermophilic, obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs Arch. Microbiol. 140 321–325

    CAS  Google Scholar 

  • Lane, D. J., Harrison, A. P., Stahl, D., Pace, B., Giovannoni, S. J., Olsen, G. J., Pace, N. P. 1992 Evolutionary relationships among sulfur-and iron-oxidizing eubacteria J. Bacteriol. 174 269–278

    PubMed  CAS  Google Scholar 

  • Lewis, A. J., Miller, D. J. D. 1977 Stannous and cuprous iron oxidation by Thiobacillus ferrooxidans Can. J. Microbiol. 23 319–324

    PubMed  CAS  Google Scholar 

  • London, J. 1963 Thiobacillus intermedius nov. sp. A novel type of facultative autotroph Arch. Mikrobiol. 46 329–337

    Google Scholar 

  • London, J., Rittenberg, S. C. 1967 Thiobacillus perometabolis nov. sp., a non-autotrophic Thiobacillus Arch. Mikrobiol. 59 218–225

    PubMed  CAS  Google Scholar 

  • Lyalikova, N. N. 1972 Oxidation of trivalent antimony up to higher oxides as a source of energy for the development of a new autotrophic organism, Stibiobacter gen. nov. [Russian] Doklady Akademii Nauk SSSR 205 1228–1229

    CAS  Google Scholar 

  • Maden, B. E. H. 1995 No soup for starters? Autotrophy and the origins of metabolism Trends Biochem. Sci. 20 337–341

    PubMed  CAS  Google Scholar 

  • McDonald, I. R., Kelly, D. P., Murrell, J. C., Wood, A. P. 1997 Taxonomic relationships of Thiobacillus halophilus, T. Aquaesulis, and other species of Thiobacillus, as determined using 16S rRNA sequencing Arch. Microbiol. 166 394–398

    Google Scholar 

  • McFadden, B. A., Denend, A. R. 1972 Ribulose diphosphate carboxylase from autotrophic microorganisms J. Bacteriol. 110 633–642

    PubMed  CAS  Google Scholar 

  • Mason, J., Kelly, D. P. 1988 Thiosulfate oxidation by obligately heterotrophic bacteria Microb. Ecol. 15 123–134

    CAS  Google Scholar 

  • Mechalas, B. J., Rittenberg, S. C. 1960 J. Bacteriol. 80 501–507

    PubMed  CAS  Google Scholar 

  • Metzdorf, N., Kaltwasser, H. 1988 Utilization of organic compounds as the sole source of nitrogen by Thiobacillus thiooxidans Arch. Microbiol. 150 85–88

    CAS  Google Scholar 

  • Meyer, O. 1989 Aerobic carbon monoxide-oxidizing bacteria H. G. Schlegel and B. Bowien (ed.) Autotrophic bacteria Springer Berlin Science Tech Publishers Madison WI 331–350

    Google Scholar 

  • Moreira, D., Amils, R. 1997 Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov Int. J. Syst. 47 522–528

    CAS  Google Scholar 

  • Nelson, D. C., Hagen, D. C. 1996 Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures Appl. Environ. Microbiol. 62 947–953

    PubMed  Google Scholar 

  • Nelson, D. C., Jannasch, H. W. 1983 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures Arch. Microbiol. 136 262–269

    CAS  Google Scholar 

  • Nelson, D. C., Revsbech, N. P., Jørgensen;, B. B. 1986a Microoxic-anoxic niche of Beggiatoa spp.: microelectrode survey of marine and freshwater strains Appl. Env. Microbiol. 52 161–168

    CAS  Google Scholar 

  • Nelson, D. C., Jørgensen, B. B., Revsbech, N. P. 1986b Growth pattern and yield of chemoautotrophic Beggiatoa sp. in oxygen-sulfide gradients Appl. Env. Microbiol. 52 225–233

    CAS  Google Scholar 

  • Nelson, D. C., Wirsen, C. O., Jannasch, H. W. 1989a Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin Appl. Env. Microbiol. 55 2909–2917

    CAS  Google Scholar 

  • Nelson, D. C., Williams, C. A., Farah, B. A., Shively, J. M. 1989b Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains Arch. Microbiol. 151 15–19

    CAS  Google Scholar 

  • Nishihara, H., Igarashi, Y., Kodawa, T. 1989 Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment Arch. Microbiol. 152 39–43

    CAS  Google Scholar 

  • Nishihara, H., Igarashi, U., Kodawa, T. 1990 A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from a seaside saline hot spring Arch. Microbiol. 153 294–298

    CAS  Google Scholar 

  • Nishihara, H., Igarashi, Y., Kodama, T. 1991 Hydrogenovibrio marinus gen. nov. sp. nov., a marine obligately chemolithotrophic hydrogen-oxidizing bacterium Int. J. Syst. Bacteriol. 41 130–133

    Google Scholar 

  • Nishihara, H., Toshiaki, Y., Chung, S. Y., Suzuki, K-I., Yanagi, M., Yamasata, K., Kodama, T., Igarashi, Y. 1998 Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences Arch. Microbiol. 169 364–368

    PubMed  CAS  Google Scholar 

  • Odintsova, E. V., Wood, A. P., Kelly, D. P. 1993 Chemolithoautotrophic growth of Thiothrix ramosa Arch. Microbiol. 160 152–157

    CAS  Google Scholar 

  • Oparin, A. I. (trans. A. Synge). 1957 The origin of life on the Earth Oliver and Boyd Edinburgh.

    Google Scholar 

  • Postgate, J. R. 1979 The sulphate-reducing bacteria Cambridge University Press Cambridge.

    Google Scholar 

  • Rainey, F. A., Kelly, D. P., Stackebrandt, E., Burghardt, J., Hiraishi, A., Katayama, Y., Wood, A. P. 1999 A reevaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus pantotrophus comb. nov Int. J. Syst. Bacteriol. 49 645–651

    PubMed  Google Scholar 

  • Rittenberg, S. C. 1969 The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria Adv. Microbial Physiol. 3 159–196

    CAS  Google Scholar 

  • Rittenberg, S. C. 1972 The obligate autotroph—the demise of a concept Antonie van Leeuwenhoek J. Microbiol. Serol. 38 457–478

    CAS  Google Scholar 

  • Robertson, L. A., Kuenen, J. G. 1983 Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium J. Gen. Microbiol. 129 2847–2855

    CAS  Google Scholar 

  • Robertson, L. A., Kuenen, J. G. 1991 The colorless sulfur bacteria A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.s) The prokaryotes, 2nd ed., Springer-Verlag New York NY 385–413

    Google Scholar 

  • Ruby, E. G., Wirsen, C. O., Jannasch, H. W. 1981 Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents App. Env. Microbiol. 42 317–324

    CAS  Google Scholar 

  • Schauder, R., Widdel, F., Fuchs, G. 1987 Carbon assimilation pathways in sulfate-reducing bacteria. 2. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus Arch. Microbiol. 167 218–225

    Google Scholar 

  • Schlegel, H. G. 1975 Mechanisms of chemoautotrophy O. Kinne (ed.) Marine ecology John Wiley & Sons London. 2, part I 9–60

    Google Scholar 

  • Schmidt, I., Bock, E. 1997 Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha Arch. Microbiol. 167 106–111

    CAS  Google Scholar 

  • Schönheit, P., Schäfer, T. 1995 Metabolism of hyperthermophiles World J. Microbiol. Biotechnol. 11 26–57

    Google Scholar 

  • Segerer, A., Stetter, K. O., Klink, F. 1985 Two contrary modes of chemolithotrophy in the same bacterium Nature 313 787–789

    PubMed  CAS  Google Scholar 

  • Segerer, A., Neuner, A., Kristjansson, J. K., Stetter, K. O. 1986 Acidianus infernus gen. nov. sp. nov., and Acidianus brierleyi comb. nov. facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria Int. J. Syst. Bacteriol. 36 559–564

    Google Scholar 

  • Shima, S., Suzuki, K. I. 1993 Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth Int. J. Syst. Bacteriol. 43 703–708

    Google Scholar 

  • Smith, A. J., Hoare, D. S. 1968 Acetate assimilation by Nitrobacteragilis in relation to its “obligateautotrophy.” J. Bacteriol. 95 844–855

    PubMed  CAS  Google Scholar 

  • Smith, A. J., Hoare, D. S. 1977 Specialist phototrophs, lithotrophs, and methylotrophs: A unity among a diversity of prokaryotes? Bacteriol. Rev. 41 419–448

    PubMed  CAS  Google Scholar 

  • Smock, A. M., Bottcher, M. E., Cypionka, H. 1998 Fractionation of sulfur isotopes during thiosulfate reduction by Desulfovibrio desulfuricans Arch. Microbiol. 169 460–463

    PubMed  CAS  Google Scholar 

  • Stanley, S. H., Dalton, H. 1982 Role of ribulose-1,5-biphosphate carboxylase/oxygenase in Methylococcus capsulatus J. Gen. Microbiol. 128 2927–2935

    CAS  Google Scholar 

  • Stetter, K. O. 1992 Life at the upper temperature border J. Tran Thanh Van, K. Tran Thanh Van, H. C. Mounlou, J. Schneider, and C. McKay (ed.s) Frontiers of life, Editions Frontieres Gif-sur-Yvette France 195–219

    Google Scholar 

  • Taylor, S. 1977 Evidence for the presence of ribulose 1,5-bisphosphate carboxylase and phosphoribulokinase in Methylococcuscapsulatus (Bath) FEMS Microbiol. Lett. 2 305–307

    CAS  Google Scholar 

  • Teske, A., Ramsing, N. B., Kuever, J., Fossing, H. 1996 Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria Syst. Appl. Microbiol. 18 517–526

    CAS  Google Scholar 

  • Thauer, R. K. 1989 Energy metabolism of sulfate-reducing bacteria H. G. Schlegel and B. Bowien (ed.) Autotrophicbacteria Springer-Verlag Berlin Science Tech Publishers Madison WI 397–413

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Timmer-ten-Hoor, A. 1976 Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus denitrificans Antonie van Leeuwenhoek J. Microbiol. Serol. 42 483–492

    CAS  Google Scholar 

  • Umbreit, W. W. 1947 Problems of autotrophy Bact. Rev. 11 157–182

    PubMed  CAS  Google Scholar 

  • van der Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M., Kuenen, J. G. 1996 Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor Microbiology (UK) 142 2187–2196

    Google Scholar 

  • van der Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M., Kuenen, J. G. 1997 Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor Microbiology (UK) 143 2415–2421

    Google Scholar 

  • van Gool, A., Tobback, P. P., Fischer, I. 1971 Autotrophic growth and synthesis of reserve polymers in Nitrobacter winogradskyi Arch. Mikrobiol. 76 252–264

    PubMed  Google Scholar 

  • van Niel, C. B. 1943 Biochemical problems of the chemoautotrophic bacteria Physiol. Rev. 23 338–364

    Google Scholar 

  • Volkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. 1993 Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic Archaeum Appl. Environ. Microbiol. 59 2918–2926

    PubMed  CAS  Google Scholar 

  • Wachtershauser, G. 1988 Before enzymes and templates: theory of surface metabolism Microbiol. Rev. 52 452–484

    PubMed  CAS  Google Scholar 

  • Wachtershauser, G. 1990a The case for the chemo-autotrophic origin of life in an iron-sulfur world Origins of Life and Evolution of the Biosphere 20 173–176

    Google Scholar 

  • Wachtershauser, G. 1990b Evolution of the first metabolic cycles Proc. Natl. Acad. Sci. USA 87 200–204

    PubMed  CAS  Google Scholar 

  • Wachtershauser, G. 1992 Order out of order J. Tran Thanh Van, K. Tran Thanh Van, J. C. Mounlou, J. Schneider, and C. McKay (ed.s) Frontiers of life, Editions Frontieres Gif-sur-Yvette France 21–39

    Google Scholar 

  • Watson, G. M. F., Yu, J.-P., Tabita, F. R. 1999 Unusual ribulose 1,5-biphosphate carboxylase/oxygenase of anoxic Archaea J. Bacteriol. 181 1569–1575

    PubMed  CAS  Google Scholar 

  • Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A., Stahl, D. A. 1998 Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration J. Bacteriol. 180 2975–2982

    PubMed  CAS  Google Scholar 

  • Whittenbury, R., Kelly, D. P. 1977 Autotrophy: a conceptual phoenix Symp. Soc. Gen. Microbiol 27 121–149

    Google Scholar 

  • Winogradsky, S. 1887 Über Schwefelbacterien Bot. Z. 45 489–600, 606–616

    Google Scholar 

  • Winogradsky, S. 1922 Eisenbakterien als Anorgoxydanten Centralbl. Bakteriol. Parasitenk. Abt. 2. 57 1–21

    CAS  Google Scholar 

  • Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–271

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1998 The universal ancestor Proc. Natl. Acad. Sci. USA 95 6854–6859

    PubMed  CAS  Google Scholar 

  • Wood, A. P., Kelly, D. P. 1983 Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria FEMS Microbiol. Lett. 20 107–112

    CAS  Google Scholar 

  • Wood, A. P., Kelly, D. P., Norris, P. R. 1987 Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients Arch. Microbiol. 146 382–389

    CAS  Google Scholar 

  • Zavarzin, G. A. 1989 Sergei N. Winogradsky and the discovery of chemosynthesis H. G. Schlegel and B. Bowien (ed.) Autotrophic bacteria Springer-Verlag Berlin and Science Tech Publishers Madison WI 17–32

    Google Scholar 

  • Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M., Lutz, S. 1985 Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens Nature 313 789–791

    PubMed  CAS  Google Scholar 

  • Zillig, W., Yeats, S., Holz, I., Böck, A., Rettenberger, M., Gropp, F., Simon, G. 1986 Desulfurolobus ambivalens gen. nov., sp. nov., an autotrophic archaebacterium, facultatively oxidizing or reducing sulfur Syst. Appl. Microbiol. 8 197–203

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Kelly, D.P., Wood, A.P. (2006). The Chemolithotrophic Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_15

Download citation

Publish with us

Policies and ethics