Skip to main content

Principles of Enrichment, Isolation, Cultivation and Preservation of Prokaryotes

  • Reference work entry
The Prokaryotes

Introduction

Currently, a total of 4700 validly published prokaryotic species are recognized (as of July 2002; DSMZ, 2002; Euzéby, 2001; Fig. 1). In contrast, the number of bacterial species present in just one type of forest soil has been estimated to be 13,000 or even 53,000 species (Torsvik et al., 1994; Sandaa et al., 1999). In light of these more recent findings, the earlier estimate of the fraction of already cultured bacterial species of 20% (Wayne et al., 1987) appears to be much too optimistic. This view is also supported by numerous molecular investigations of 16S rRNA gene sequences in natural bacterial assemblages that indicate a significant fraction of bacteria present in the environment has not yet been recovered by cultivation-based approaches (Fuhrman et al., 1992; Ward et al., 1992; Barns et al., 1994; DeLong et al., 1994; Hiorns et al., 1997; Kuske et al., 1997; Ludwig et al., 1997; Suzuki et al., 1997; Gich et al., 2001; Béjà et al., 2002). The 16S rRNA gene...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aagot, N., O. Nybroe, P. Nielsen, and K. Johnsen. 2001 An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media Appl. Environ. Microbiol. 67 5233–5239

    Article  PubMed  CAS  Google Scholar 

  • Aaronson, S. 1970 Experimental Microbial Ecology Academic Press New York, NY

    Google Scholar 

  • Ahn, W. S., S. J. Park, and S. Y. Lee. 2001 Production of poly (3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli Biotechnol. Lett. 23 235–240

    Article  CAS  Google Scholar 

  • Aksoy, S. 1995 Wigglesworthia gen. nov. and Wigglesworthia glossinida sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of Tsetse flies Int. J. Syst. Bacteriol. 45 848–851

    Article  PubMed  CAS  Google Scholar 

  • Aldsworth, T. G., R. L. Sharman, and C. E. R. Dodd. 1999 Bacterial suicide through stress Cell. Molec. Life Sci. 56 378–383

    Article  PubMed  CAS  Google Scholar 

  • Alldredge, A. L., and M. J. Youngbluth. 1985 The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic Deep-Sea Res. 32 1445–1456

    Article  Google Scholar 

  • Amy, P. S., and R. Y. Morita. 1983 Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria Appl. Environ. Microbiol. 45 1109–1115

    PubMed  CAS  Google Scholar 

  • Andrews, J. H. 1984 Relevance of r-and K-theory to the ecology of plant pathogens In: M. J. Klug and C. A. Reddy (Eds.) Current Perspectives in Microbial Ecology ASM Press Washington, DC 1–7

    Google Scholar 

  • Andrews, J. H., and R. F. Harris. 1986 r-and K-selection and microbial ecology In: K. C. Marshall (Ed.) Advanced Microbiology and Ecology Plenum Press New York,NY 9 1–7

    Google Scholar 

  • Angle, J. S., S. P. McGrath, and R. L. Chaney. 1991 New culture medium containing ionic conentrations of nutreints similar to concentrations found in the soil solution Appl. Environ. Microbiol. 57 3674–3676

    PubMed  CAS  Google Scholar 

  • Arrhenius, S. 1889 Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren Z. Phys. Chem. 4 226–248

    Google Scholar 

  • Atlas, R. M., and R. Bartha. 1993 Microbial Ecology, 3rd ed Benjamin/Cummings Redwood City,PA

    Google Scholar 

  • Austin, B. 1988 Methods in Aquatic Bacteriology John Wiley and Sons Chichester, UK

    Google Scholar 

  • Azam, F. 1998 Microbial control of oceanic carbon flux: The plot thickens Science 280 694–696

    Article  CAS  Google Scholar 

  • Bak, F., and N. Pfennig. 1991 Microbial sulfate reduction in littoral sediment of Lake Constance FEMS Microbiol. Ecol. 85 31–42

    Article  CAS  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791

    PubMed  CAS  Google Scholar 

  • Bale, S. J., K. Goodman, P. A. Rochelle, J. R. Marchesi, J. C. Fry, A. J. Weightman, and R. J. Parkes. 1997 Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea Int. J. Syst. Bacteriol. 47 515–521

    Article  PubMed  CAS  Google Scholar 

  • Balestra, G. M., and I. L. Misaghi. 1997 Increasing the efficiency of the plate counting method for estimating bacterial diversity J. Microbiol. Meth. 30 111–117

    Article  Google Scholar 

  • Barer, M. R., and C. R. Harwood. 1999 Bacterial viability and culturability Adv. Microb. Physiol. 41 93–137

    Article  PubMed  CAS  Google Scholar 

  • Barns, S. M., R. E. Fundyga, M. W. Jeffries, and N. R. Pace. 1994 Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment Proc. Natl. Acad. Sci. 91 1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Barns, S. M., S. L. Takala, and C. R. Kuske. 1999 Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment Appl. Environ. Microbiol. 65 1731–1737

    PubMed  CAS  Google Scholar 

  • Baross, J. A., and R. Y. Morita. 1978 Microbial life at low temperatures: Ecological aspects In: D. J. Kushner (Ed.) Microbial Life in Extreme Environments Academic Press London, UK 9–17

    Google Scholar 

  • Bartlett, D., M. Wright, A. A. Yayanos, and M. Silverman. 1989 Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium Nature 342 572–574

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, D. H., E. Chi, and M. E. Wright. 1993 Sequence of the ompH gene from the deep-sea bacterium Photobacterium SS9 Gene 131 125–128

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, D. H., and T. J. Welch. 1995 ompH gene expression is regulated by multiple envirnmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9 J. Bacteriol. 177 1008–1016

    PubMed  CAS  Google Scholar 

  • Bartscht, K., H. Cypionka, and J. Overmann. 1999 Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community FEMS Microbiol. Ecol. 28 249–259

    Article  CAS  Google Scholar 

  • Bast, E. 2001 Mikrobiologische Methoden, 2nd ed Spektrum Akad. Verlag Berlin, Germany

    Google Scholar 

  • Bateson, M. M., and D. M. Ward. 1988 Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat Appl. Environ. Microbiol. 54 1738–1743

    PubMed  CAS  Google Scholar 

  • Battley, E. H. 1995 An apparent anomaly in the calculation of ash-free dry weights for the determination of cellular yields Appl. Environ. Microbiol. 61 1655–1657

    PubMed  CAS  Google Scholar 

  • Baxter, R. M., and N. E. Gibbons. 1962 Observations on the physiology of psychrophilism in a yeast Can. J. Microbiol. 8 511–517

    Article  CAS  Google Scholar 

  • Béjà;, O., L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong. 2000 Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea Science 289 1902–1906

    Article  PubMed  Google Scholar 

  • Béjà; O., M. T. Suzuki, J. F. Heidelberg, W. C. Nelson, C. M. Preston, T. Hamadas, J. A. Eisen, C. M. Fraser, and E. F. DeLong. 2002 Unsuspected diversity among marine aerobic anoxygenic phototrophs Nature 415 630–633

    Article  PubMed  Google Scholar 

  • Benz, M., B. Schink, and A. Brune. 1998 Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria Appl. Environ. Microbiol. 64 4507–4512

    PubMed  CAS  Google Scholar 

  • Bernhardt, G., H.-D. Lüdemann, R. Jaenicke, H. König, and K. O. Stetter. 1984 Biomolecules are unstable under “black smoker” conditions Naturwissenschaften 71 583–586

    Article  CAS  Google Scholar 

  • Beudeker, R. F., J. C. Gottschal, and J. G. Kuenen. 1982 Reactivity versus flexibility in thiobacilli Ant. v. Leeuwenhoek 48 39–51

    Article  CAS  Google Scholar 

  • Beunink, J., and H. J. Rehm. 1988 Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system Appl. Microbiol. Biotechnol. 29 72–80

    Article  CAS  Google Scholar 

  • Bhakoo, M., and R. A. Herbert. 1979 The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio spp Arch. Microbiol. 121 121–127

    Article  CAS  Google Scholar 

  • Bi, E., and J. Lutkenhaus. 1993 Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring J. Bacteriol. 175 1118–1125

    PubMed  CAS  Google Scholar 

  • Biebl, H., and N. Pfennig. 1978 Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Arch. Microbiol. 117 9–16

    Article  CAS  Google Scholar 

  • Binnerup, S. J., D. F. Jensen, H. Thordal-Christensen, and J. Sorgensen. 1993 Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique FEMS Microbiol. Ecol. 12 97–195

    Article  Google Scholar 

  • Biville, F., C. Laurent-Winter, and A. Danchin. 1996 In vivo positive effects of exogenous pyrophosphate on Escherichia coli cell growth and stationary phase survival Res. Microbiol. 147 597–608

    Article  PubMed  CAS  Google Scholar 

  • Blochl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H. W. Jannasch, and K. O. Stetter. 1997 Pyrolobus fumarii, gen. nov. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C Extremophiles 1 14–21

    Article  PubMed  CAS  Google Scholar 

  • Bolen, D. W. 2001 Protein stabilization by naturally occurring osmolytes Meth. Molec. Biol. 168 17–36

    CAS  Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980 Propionate degrading bacterium Syntrophobacter wolinii sp. nov., gen. nov. from methanogenic ecosystems Appl. Environ. Microbiol. 33 1162–1169

    Google Scholar 

  • Botsford, J. L., and J. G. Harman. 1992 Cyclic AMP in prokaryotes Microbiol. Rev. 56 100–122

    PubMed  CAS  Google Scholar 

  • Bovill, R. A., and B. M. Mackey. 1997 Resuscitation of “non-culturable” cells from aged cultures of Campylobacter jejuni Microbiology 143 1575–1581

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, J. L. Brown, P. D. Nichols, and T. A. McMeekin. 1997a Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens, gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats Int. J. Syst. Evol. Microbiol. 47 670–677

    CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. E. Nichols, and T. A. McMeekin. 1997b Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5w3) and grow anaerobically by dissimilatory Fe(III) reduction Int. J. Syst. Bacteriol. 47 1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, and J. H. Skerratt. 1997c Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes Microbiology 143 1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, J. L. Brown, and T. A. McMeekin. 1998a Glaciecola punicea gen. nov., sp. nov., and Glaciecola pallidula gen. nov., sp. nov.: Psychrophilic bacteria from Antarctic sea-ice habitats Int. J. Syst. Evol. Microbiol. 48 1213–1222

    Google Scholar 

  • Bowman, J. P., S. A. McCammon, T. Lewis, J. H. Skerratt, J. L. Brown, D. S. Nichols, and T. A. McMeekin. 1998b Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwandense gen. nov., comb. nov Microbiology 144 1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Boyaval, P. 1989 Lactic acid bacteria and metal ions Lait 69 87–113

    Article  CAS  Google Scholar 

  • Bozal, N., M. J. Montes, E. Tudela, F. Jimenez, and J. Guinea. 2002 Shewanella frigidimarina and Shewanella livingstonesis sp. nov. isolated from Antarctic coastal areas Int. J. Syst. Evol. Microbiol. 52 195–205

    PubMed  CAS  Google Scholar 

  • Braun V. 1997 Avoidance of iron toxicity through regulation of bacterial iron transport Biol. Chem. 378 779–786

    PubMed  CAS  Google Scholar 

  • Brefeld, O. 1881 Botanische Untersuchungen Über Schimmelpilze: Culturmethoden Leipzig, Germany

    Google Scholar 

  • Brewer, D. G., S. E. Martin, and Z. J. Ordal. 1977 Beneficial effects of catalase or pyruvate in a most-probable-number technique for the detection of Staphylococcus aureus Appl. Environ. Microbiol. 34 797–800

    PubMed  CAS  Google Scholar 

  • Brock, T. D., and K. O’Dea. 1977 Amorphous ferrous sulfide as a reducing agent for culture of anaerobes Appl. Environ. Microbiol. 33 254–256

    PubMed  CAS  Google Scholar 

  • Brock, T. D. 1978 Thermophilic Microorganisms and Life at High Temperatures Springer-Verlag New York,NY

    Book  Google Scholar 

  • Brock, T. D. 1987 Introduction: An overview of the thermophiles In: T. D. Brock (Ed.) Thermophiles: General Molecular and Applied Microbiology John Wiley and Sons New York,NY 1–16

    Google Scholar 

  • Broda, D. M., D. J. Saul, P. A. Lawson, R. G. Bell, and D. R. Musgrave. 2000 Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat Int. J. Syst. Evol. Microbiol. 50 107–118

    Article  PubMed  CAS  Google Scholar 

  • Bromke, B., and J. M. Hammel. 1987 Gelatin as a complete endogenous source of calcium for Serratia marcescens protease activity J. Microbiol. Meth. 6 253–256

    Article  CAS  Google Scholar 

  • Brooke, A. G., E. M. Watling, M. M. Attwood, and D. W. Tempest. 1989 Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains Arch. Microbiol. 151 268–273

    Article  CAS  Google Scholar 

  • Brown, A. D., and J. R. Simpson. 1972 Water relations of sugar-tolerant yeasts: The role of intracellular polyols J. Gen. Microbiol. 72 589–591

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. D. 1976 Microbial water stress Bacteriol. Rev. 40 803–846

    PubMed  CAS  Google Scholar 

  • Bruns, A., H. Cypionka, and J. Overmann. 2002 Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea Appl. Environ. Microbiol. 68 3978–3987

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1976 The microbiology of anaerobic degradation and methanogenesis with special reference to sewage In: H. W. Schlegel and J. Barnea (Eds.) Microbial Energy Conversion Erick Goltze KG Göttingen, The Netherlands 107–1167

    Google Scholar 

  • Bryson, V., and W. Szybalski. 1952 Microbial selection Science 116 45–51

    Article  Google Scholar 

  • Bull, A. T., and J. H. Slater. 1982 Microbial interactions and community structure In: A. T. Bull and J. H. Slater (Eds.) Microbial Interactions and Communities Academic Press London, UK 1 13–44

    Google Scholar 

  • Bulthuis, B. A., G. M. Koningstein, A. H. Stouthamer, and H. W. van Verseveld. 1989 A comparison between aerobic growth of Bacillus licheniformis in continuous culture and partial-recycling fermenter, with contributions to the discussion on maintenance energy demand Arch. Microbiol. 152 499–507

    Article  CAS  Google Scholar 

  • Bungay, H. R., and M. L. Bungay. 1968 Microbial interactions in continuous culture Adv. Appl. Microbiol. 10 269–290

    Article  PubMed  Google Scholar 

  • Bunt, J. G. 1961 Nitrogen-fixing blue-green algae in Australian rice soils Nature 192 479–480

    Article  Google Scholar 

  • Burchard, R. P. 1980 Gliding motility of bacteria BioScience 30 157–162

    Article  Google Scholar 

  • Burkhardt, F. 1992 Mikrobiologische Diagnostik Georg Thieme Verlag New York,NY

    Google Scholar 

  • Burnham, J. C., and S. F. Conti. 1984 Genus Bdellovibrio In: N. R. Krieg (Ed.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore,MD 1 118–124

    Google Scholar 

  • Bussmann, I., B. Philipp, and B. Schink. 2001 Factors influencing the cultivability of lake water bacteria J. Microbiol. Meth. 47 41–50

    Article  CAS  Google Scholar 

  • Button, D. K., F. Schut, P. Quang, R. Martin, and B. R. Robertson. 1993 Viability and isolation of marine bacteria by dilution culture: Theory, procedures, and initial results Appl. Environ. Microbiol. 59 881–891

    PubMed  CAS  Google Scholar 

  • Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000 Novel strains of Moorella thermoacetica form unusually heat-resistant spores Arch. Microbiol. 174 334–339

    Article  PubMed  CAS  Google Scholar 

  • Calcott, P. H., and J. R. Postgate. 1972a On substrate-accelerated death in Klebsiella aerogenes J. Gen. Microbiol. 70 115–122

    Article  PubMed  CAS  Google Scholar 

  • Calcott, P. H., W. Montague, and J. R. Postgate. 1972b The levels of cyclic AMP during substrate accelerated death J. Gen. Microbiol. 73 197–200

    Article  PubMed  CAS  Google Scholar 

  • Calcott, P. H. 1981a The construction and operation of continuous cultures In: P. H. Calcott (Ed.) Continuous Cultures of Cells CRC Press Boca Raton,FL 1 13–26

    Google Scholar 

  • Calcott, P. H., and T. J. Calvert. 1981b Characterization of 3’:5’cyclic AMP phosphdiesterase in Klebsiella aerogenes and its role in substrate accelerated death J. Gen. Microbiol. 122 313–321

    PubMed  CAS  Google Scholar 

  • Cangelosi, G. A., and W. H. Brabant. 1997 Depletion of pre-16S rRNA in starved Escherichia coli cells J. Bacteriol. 179 4457–4463

    PubMed  CAS  Google Scholar 

  • Carlsson, J., G. P. D. Granberg, G. K. Nyberg, and M.-B. K. Edlund. 1979 Bactericidal effect of cysteine exposed to atmospheric oxygen Appl. Environ. Microbiol. 37 383–390

    PubMed  CAS  Google Scholar 

  • Carpenter, E. J., S. Lin, and D. G. Capone. 2000 Bacterial activity in South Pole snow Appl. Environ. Microbiol. 66 4514–4517

    Article  PubMed  CAS  Google Scholar 

  • Castenholz, R. W. 1973 Movements In: N. G. Carr and B. A. Whitton (Eds.) The Biology of Blue-green Algae Blackwell Scientific Publications London, UK 320–339

    Google Scholar 

  • Cayley, S., M. T. Record, and B. A. Lewis. 1989 Accumulation of 3-[N-morpholino] propanesulfonate by osmotically stressed Escherichia coli K-12 J. Bacteriol. 171 3597–3602

    PubMed  CAS  Google Scholar 

  • Cayley, S., B. A. Lewis, and M. T. Record. 1992 Origins of osmoprotective properties of betaine and proline in Escherichia coli K-12 J. Bacteriol. 174 1586–1595

    PubMed  CAS  Google Scholar 

  • Chan, M., R. H. Himes, and J. M. Akagi. 1971 Fatty acid composition of thermophilic, mesophilic, and psychrophilic clostridia J. Bacteriol. 106 876–881

    PubMed  CAS  Google Scholar 

  • Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, and F. M. Hughson. 2002 Structural identification of a bacterial quorum-sensing signal containing boron Nature 415 545–549

    Article  PubMed  CAS  Google Scholar 

  • Chesbro, W. R., T. Evans, and R. Eifert. 1979 Very slow growth of Escherichia coli J. Bacteriol. 139 625–638

    PubMed  CAS  Google Scholar 

  • Chesbro, W. 1988 The domains of slow bacterial growth Can. J. Microbiol. 34 427–435

    Article  PubMed  CAS  Google Scholar 

  • Chi, E., D. H. Bartlett. 1995 An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium sp. strain SS9 Molec. Microbiol. 17 713–726

    Article  CAS  Google Scholar 

  • Christensen, B. B., J. A. J. Haagensen, A. Heydorn, and S. Molin. 2002 Metabolic commensalism and competition in a two-species microbial consortium Appl. Environ. Microbiol. 68 2495–2502

    Article  PubMed  CAS  Google Scholar 

  • Clark, C., and E. L. Schmidt. 1966 Effect of mixed culture on Nitrosomonas europaea simulated by uptake and utilization of pyruvate J. Bacteriol. 91 367–373

    PubMed  CAS  Google Scholar 

  • Cleland, N., and S. O. Enfors. 1983 Control of glucose fed batch cultivations of E.coli by means of an oxygen stabilized enzyme electrode Eur. J. Appl. Microbiol. Biotechnol. 18 141–147

    Article  CAS  Google Scholar 

  • Coates, J. D., D. J. Ellis, E. L. Blunt-Harris, C. V. Gaw, E. Roden, and D. R. Lovley. 1998 Recovery of humic-reducing bacteria from a diversity of environments Appl. Environ. Microbiol. 64 1504–1509

    PubMed  CAS  Google Scholar 

  • Coates, J. D., K. A. Cole, R. Chakraborty., S. M. O’Connor, and L. A. Achenbach. 2002 Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration Appl. Environ. Microbiol. 68 2445–2453

    Article  PubMed  CAS  Google Scholar 

  • Crocker, F. H., W. F. Guerin, and S. A. Boyd. 1995 Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay Environ. Sci. Technol. 29 2953–2958

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., I. de Jonge, and J. G. Kuenen. 1979 Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture Arch. Microbiol. 122 189–194

    Article  CAS  Google Scholar 

  • Cohn, F. 1872 Über Bacterien, die kleinsten lebenden Wesen Carl Habel Berlin, Germany

    Google Scholar 

  • Coolen, M. J. L., H. Cypionka, A. Smock, H. Sass, and J. Overmann. 2002 Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes Science 296 2407–2410

    Article  PubMed  CAS  Google Scholar 

  • Cottrell, M. T., and D. L. Kirchman. 2000 Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacteria cluster consuming low-and high-molecular-weight dissolved organic matter Appl. Environ. Microbiol. 66 1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Coveney, M. F. 1982 Bacterial uptake of photosynthetic carbon from freshwater phytoplankton Oikos 38 8–20

    Article  CAS  Google Scholar 

  • Csonka, L. N. 1989 Physiological and genetic responses of bacteria to osmotic stress Microbiol. Rev. 53 121–147

    PubMed  CAS  Google Scholar 

  • Csonka, L. N., and A. Hanson. 1991 Prokaryotic osmoregulation: Genetics and physiology Ann. Rev. Microbiol. 45 569–606

    Article  CAS  Google Scholar 

  • Csonka, L. N., and W. Epstein. 1996 Osmoregulation In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella, 2nd ed ASM Press Washington,DC 1210–1223

    Google Scholar 

  • Currie, D. J., and J. Kalff. 1984 Can bacteria outcompete phytoplankton for phosphorus? A chemostat test Microb. Ecol. 10 205–216

    Article  CAS  Google Scholar 

  • Cypionka, H., F. Widdel, and N. Pfennig. 1985 Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients FEMS Microbiol. Ecol. 31 39–45

    Article  CAS  Google Scholar 

  • Cypionka, H. 1986 Sulfide-controlled continuous culture of sulfate-reducing bacteria J. Microbiol. Meth. 5 1–9

    Article  CAS  Google Scholar 

  • Cypionka, H. 1999 Grundlagen der Mikrobiologie Springer-Verlag New York,NY

    Google Scholar 

  • Czeczuga, B. 1968 An attempt to determine the primary production of the green sulphur bacteria, Chlorobium limicola Nads, (Chlorobacteriaceae) Hydrobiologia 31 317–333

    Google Scholar 

  • Dalluge, J. J., T. Hamamoto, K. Horikoshi, R. Y. Morita, K. O. Stetter, and J. A. McCloskey. 1997 Posttranscriptional modification of tRNA in psychrophilic bacteria J. Bacteriol. 179 1918–1923

    PubMed  CAS  Google Scholar 

  • Damoglou, A. P., and E. A. Dawes. 1968 Studies on the lipid content and phosphate requirement for glucose-and acetate-grown Escherichia coli Biochem. J. 110 775–781

    PubMed  CAS  Google Scholar 

  • Dawson, M. W., I. S. Maddox, I. F. Boag, and J. D. Brooks. 1988 Application of fed-batch culture to citric acid production by Aspergillus niger: The effects of dilution rate and dissolved oxygen tension Biotechnol. Bioeng. 32 220–226

    Article  PubMed  CAS  Google Scholar 

  • De Bary, A. 1879 Die Erscheinung der Symbiose Naturforschung Versammlung Cassel

    Google Scholar 

  • de Freitas, M. J., and A. G. Fredrickson. 1978 Inhibition as a factor in the maintenance of the diversity of microbial ecosystems J. Gen. Microbiol. 106 307–320

    Article  Google Scholar 

  • de la Broise, D., and A. Durand. 1989 Osmotic, biomass, and oxygen effects on the growth rate of Fusarium oxysporum using a dissolved oxygen controlled turbidstat Biotechnol. Bioeng. 33 699–705

    Article  PubMed  Google Scholar 

  • DeLong, E. F., and A. A. Yayamos. 1986 Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes Appl. Environ. Microbiol. 51 730–737

    PubMed  CAS  Google Scholar 

  • DeLong, E. F., K. Ying Wu, B. B. Prézelin, and R. V. M. Jovine. 1994 High abundance of Archaea in Antarctic marine picoplankton Nature 371 695–697

    Article  Google Scholar 

  • DeLong, E. F., D. G. Franks, and A. A. Yayanos. 1997 Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria Appl. Environ. Microbiol. 63 2105–2108

    Google Scholar 

  • Deming, J. W., and R. R. Colwell. 1985 Observations of barophilic microbial activity in samples of sediments and intercepted particulates from the Demerara abyssal plain Appl. Environ. Microbiol. 50 1002–1006

    PubMed  CAS  Google Scholar 

  • Deming, J. W. 1986 Ecological strategies of barophilic bacteria in the deep ocean Microbiol. Sci. 3 205–207

    PubMed  CAS  Google Scholar 

  • Deming, J. W., L. W. Somers, W. L. Straube, D. G. Swartz, and M. T. MacDonell. 1988 Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov Syst. Appl. Microbiol. 10 152–160

    Article  Google Scholar 

  • Deutsche Sammlung für Mikroorganismen und Zellkulturen. 2002 Bacterial nomenclature up-to-date [{http://www.dsmz.de/bactnom/bactname.htm}]

    Google Scholar 

  • De Wit, R., and H. van Gemerden. 1988 Interactions between phototrophic bacteria in sediment ecosystems Hydrobiol. Bull. 22 135–145

    Article  Google Scholar 

  • Dobell, C. 1932 Anthony van Leeuwenhoek and His “Little Animals.” Harcourt, Brace New York,NY

    Google Scholar 

  • Dolfing, J., and J. M. Tiedje. 1986 Hydrogen cycling in a three-tiered foodweb growing on the methanogenic conversion of 3-chlorobenzoate FEMS Microbiol. Ecol. 38 293–298

    Article  CAS  Google Scholar 

  • Douglas, A. E. 1998 Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera Annu. Rev. Entomol. 43 17–37

    Article  PubMed  CAS  Google Scholar 

  • Driessen, F. M. 1981 Protocooperation of yoghurt bacteria in continuous cultures In: M. E. Buschell and J. H. Slater (Eds.) Mixed Culture Fermentations Academic Press London, UK 99–120

    Google Scholar 

  • Dubilier, N., O. Giere, D. L. Distel, and C. M. Cavanaugh. 1995 Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization Appl. Environ. Microbiol. 61 2346–2350

    PubMed  CAS  Google Scholar 

  • Dubinina, G. A., N. V. Leshcheva, and M. Y. Grabovich. 1993 The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens Microbiology 62 432–444

    Google Scholar 

  • Dukan, S., and T. Nyström. 1998 Bacterial senescence: Stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon Genes Develop. 12 3431–3441

    Article  PubMed  CAS  Google Scholar 

  • Dunfield, P. F., W. Liesack, T. Henckel, R. Knowles, and R. Conrad. 1999 High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph Appl. Environ. Microbiol. 65 1009–1014

    PubMed  CAS  Google Scholar 

  • Dwyer, D. F., E. Weeg-Aerssens, D. R. Shelton, and J. M. Tiedje. 1988 Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen oxidizing methanogenic and sulfidogenic bacteria Appl. Environ. Microbiol. 54 1354–1359

    PubMed  CAS  Google Scholar 

  • Dykhuizen, D., and M. Davies. 1980 An experimental model: Bacterial specialists and generalists competing in chemostats Ecology 61 1213–1227

    Article  Google Scholar 

  • Egli, T., N. D. Lindley, and J. R. Quayle. 1983 Regulation of enzyme synthesis and variation of residual methanol concentration during carbon limited growth of Kloeckera ap. 2201 on mixtures of methanol and glucose J. Gen. Microbiol. 129 1269–1281

    CAS  Google Scholar 

  • Eguchi, M., M. Ostrowski, F. Fegatella, J. Bowman, D. Nichols, T. Nishino, and R. Cavicchioli. 2001 Sphingomonas alaskensis AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific Appl. Environ. Microbiol. 67 4945–4954

    Article  PubMed  CAS  Google Scholar 

  • Eilers, H., J. Pernthaler, J. Peplies, F. O. Glöckner, G. Gerdts, and R. Amann. 2001 Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton Appl. Environ. Microbiol. 67 5134–5142

    Article  PubMed  CAS  Google Scholar 

  • Emde, R., A. Swain, and B. Schink. 1989 Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system Appl. Microbiol. Biotechnol. 32 170–175

    Article  CAS  Google Scholar 

  • Emde R., and B. Schink. 1990 Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system Arch. Microbiol. 153 506–512

    Article  CAS  Google Scholar 

  • Epstein, W., L. B. Rothman-Denes, J. Hesse. 1975 Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli Proc. Natl. Acad. Sci. 72 2300–2304

    Article  PubMed  CAS  Google Scholar 

  • Epstein, W. 1986 Osmoregulation by potassium transport in Escherichia coli FEMS Microbiol. Rev. 39 73–78

    Article  CAS  Google Scholar 

  • Esener, A. A., J. A. Roels, and N. W. Kossen. 1981 Fed batch culture: Modelling and application in the study of microbial energetics Biotechnol. Bioeng. 22 1851–1871

    Article  Google Scholar 

  • Euzéby, J. P. 2001 List of bacterial names with standing in nomenclature [{http://www.bacterio.cict.fr}]

    Google Scholar 

  • Evans, C. G., D. Herbert, and D. W. Tempest. 1970 The continuous cultivation of microorganisms. 2. Construction of a chemostat In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press London, UK 2 277–327

    Google Scholar 

  • Feller, G., E. Narinx, J. L. Arpigny, Z. Zekhnini, J. Swings, and C. Gerday. 1994a Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria Appl. Microb. Biotechnol. 41 477–479

    Article  CAS  Google Scholar 

  • Feller, G., F. Payan, F. Theys, M. Quian, R. Haser, and C. Gerday. 1994b Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23 Eur. J. Biochem. 222 441–447

    Article  PubMed  CAS  Google Scholar 

  • Felske, A., A. Wolterink, R. van Lis, and A. D. L. Akkermans. 1998 Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands) Appl. Environ. Microbiol. 64 871–879

    PubMed  CAS  Google Scholar 

  • Felske, A. A. Wolterink, R. van Lis, W. M. de Vos, and A. D. L. Akkermans. 1999 Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation FEMS Microbiol. Ecol. 30 137–145

    Article  PubMed  CAS  Google Scholar 

  • Ferchichi, M., D. Hemme, and C. Bouillaune. 1986 Influence of oxygen and pH on methanethiol production from L-methionine by Brevibacterium linens CNRZ 918 Appl. Environ. Microbiol. 51 725–729

    PubMed  CAS  Google Scholar 

  • Ferris, M. J., A. L. Ruff-Roberts, E. D. Kopczynski, M. M. Bateson, and D. M. Ward. 1996 Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat Appl. Environ. Microbiol. 62 1045–1050

    PubMed  CAS  Google Scholar 

  • Fleming, A. 1929 On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae Brit. J. Exp. Pathol. 10 226–236

    CAS  Google Scholar 

  • Fogg, G. E. 1971 Extracellular products of algae in freshwater Arch. Hydrobiol. 5 1–25

    Google Scholar 

  • Forsberg, C. W. 1987 Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species Appl. Environ. Microbiol. 53 639–643

    PubMed  CAS  Google Scholar 

  • Francis, C. A., and B. M. Tebo. 2002 Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species Appl. Environ. Microbiol. 68 874–880

    Article  PubMed  CAS  Google Scholar 

  • Franzmann, P. D., P. Höpfl, N. Weiss, and B. J. Tindall. 1991 Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica: Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov Arch. Microbiol. 156 255–262

    Article  PubMed  CAS  Google Scholar 

  • Franzmann, P. D., N. Springer, W. Ludwig, E. Conway de Macario, and M. Rohde. 1992 A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov Syst. Appl. Microbiol. 15 573–581

    Article  Google Scholar 

  • Fredrickson, A. G. 1977 Behaviour of mixed cultures of microorganisms Ann. Rev. Microbiol. 31 63–87

    Article  CAS  Google Scholar 

  • Fredrickson, A. G., and G. Stephanopoulos. 1981 Microbial competition Science 213 972–979

    Article  PubMed  CAS  Google Scholar 

  • Fritsche, T. R., D. Sobek, and R. K. Gautom. 1998 Enhancement of in vitro cytophathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts FEMS Microbiol. Lett. 166 231–236

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich, J., and H. König. 1999 Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator Syst. Appl. Microbiol. 22 249–257

    Article  PubMed  Google Scholar 

  • Fröstl, J. M., and J. Overmann. 1998 Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum.” Arch. Microbiol. 169 129–135

    Article  PubMed  Google Scholar 

  • Fröstl, J. M., and J. Overmann. 2000 Phylogenetic affiliation of the bacteria that constitute phototrophic consortia Arch. Microbiol. 174 50–58

    Article  PubMed  Google Scholar 

  • Fry, J. C. 1990 Direct methods and biomass estimation In: R. Grigorova and J. R. Norris (Eds.) Methods in Microbiology Academic Press London, UK 22 41–85

    Google Scholar 

  • Fuhrman, J. A., K. McCallum, and A. A. Davis. 1992 Novel major archaebacterial group from marine plankton Nature 356 148–149

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., K. McCallum, and A. A. Davis. 1993 Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans Appl. Environ. Microbiol. 59 1294–1302

    PubMed  CAS  Google Scholar 

  • Funk, H. B., and T. A. Krulwich. 1964 Preparation of clear silica gels that can be streaked J. Bacteriol. 88 1200–1201

    PubMed  CAS  Google Scholar 

  • Fuqua, C., and E. P. Greenberg. 1998 Self perception in bacteria: Quorum sensing with acylated homoserine lactones Curr. Opin. Microbiol. 1 50–58

    Article  Google Scholar 

  • Galinski, E. A., and H. G. Trüper. 1994 Microbial behaviour in salt-stressed ecosystems FEMS Microbiol. Rev. 15 95–108

    Article  CAS  Google Scholar 

  • Gangola, P., and B. P. Rosen. 1987 Maintenance of intracellular calcium in Escherichia coli J. Biol. Chem. 262 12570–12574

    PubMed  CAS  Google Scholar 

  • Garcia-Lara, J., L. H. Shang, and L. I. Rothfield. 1996 An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli J. Bacteriol. 178 2742–2748

    PubMed  CAS  Google Scholar 

  • Graumann, P., and M. A. Marahiel. 1996 Some like it cold: Response of microorganisms to cold shock Arch Microbiol. 166 293–300

    Article  PubMed  CAS  Google Scholar 

  • Gause, G. F. 1934 The Struggle for Existence Williams and Wilkins Baltimore,MD

    Book  Google Scholar 

  • Gerhardt, P., R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips. 1981 Manual of Methods for General Bacteriology American Society for Microbiology Washington,DC

    Google Scholar 

  • Gich, F., J. Garcia-Gil, and J. Overmann. 2001 Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes Arch. Microbiol. 177 1–10

    Article  PubMed  CAS  Google Scholar 

  • Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Perthaler, and R. Amann. 2000 Comparative 16S rRNA analysis of lake bacterioplankton revreals globally distributed phylogenetic clusters including an abundant group of actinoabcteria Appl. Environ. Microbiol. 66 5053–5065

    Article  PubMed  Google Scholar 

  • Gond, O., J. M. Engasser, C. Matta-El-Amouri, and H. Petitdemange. 1986 The acetone butanol fermentation on glucose and xylose. II: Regulation and kinetics in fed batch cultures Biotechnol. Bioeng. 28 167–175

    Article  Google Scholar 

  • González, J. M., F. Mayer, M. A. Moran, R. E. Hodson, and W. B. Withman. 1997 Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment Int. J. Syst. Bacteriol. 47 773–780

    Article  PubMed  Google Scholar 

  • Goodfellow, M. 1992a The family Nocardiaceae In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 1188–1213

    Google Scholar 

  • Goodfellow, M. 1992b The family Streptosporangiaceae In: A Balows, H G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 1115–1138

    Google Scholar 

  • Görtz, H.-D., and T. Brigge. 1998 Intracellular bacteria in Protozoa Naturwissenschaften 85 359–368

    Article  PubMed  Google Scholar 

  • Gosink, J. J., and J. T. Staley. 1995 Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water Appl. Environ. Microbiol. 61 3486–3489

    PubMed  CAS  Google Scholar 

  • Gosink, J. J., C. R. Woese, and J. T. Staley. 1998 Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus so. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus comb. nov Int. J. Syst. Evol. Microbiol. 48 223–235

    Google Scholar 

  • Gottschal, J. C., S. de Vries, and J. G. Kuenen. 1979 Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates Arch. Microbiol. 121 241–249

    Article  CAS  Google Scholar 

  • Gottschal, J. C., and J. G. Kuenen. 1980 Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture FEMS Microbiol. Lett. 7 241–247

    Article  CAS  Google Scholar 

  • Gottschal, J. C., and J. G. Morris. 1981 The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate FEMS Microbiol. Lett. 12 385–389

    Article  CAS  Google Scholar 

  • Gottschal, J. C. 1986 Mixed substrate utilization by mixed cultures In: E. R. Leadbetter and J. S. Poindexter (Eds.) Bacteria in Nature Plenum Press New York,NY 2 261–292

    Google Scholar 

  • Gottschal, J. C., and L. Dijkhuizen. 1988 The place of the continuous culture in ecological research In: J. W. T. Wimpenny (Ed.) Handbook of Laboratory Model Systems for Microbial Ecosystems CRC Press Boca Raton,FL 1 19–79

    Google Scholar 

  • Gottschal, J. C. 1990 Different types of continuous culture in ecological studies In: J. R. Norris and R. Grigorova (Eds.) Methods in Microbiology Academic Press London, UK 22 87–124

    Google Scholar 

  • Gottschal, J. C., W. Harder, and R. A. Prins. 1991 Principles of enrichment, isolation, cultivation, and preservation In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 149–196

    Google Scholar 

  • Gottschalk, G. 1985 Bacterial Metabolism Springer-Verlag New York,NY

    Google Scholar 

  • Gottwald, M., and G. Gottschalk. 1985 The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation Arch. Microbiol. 143 42–46

    Article  CAS  Google Scholar 

  • Graham, A. F., and B. M. Lund. 1983 The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp J. Gen. Microbiol. 129 2429–2435

    CAS  Google Scholar 

  • Grant, W. D., and B. J. Tindall. 1986 The alkaline saline environment In: R. A. Herbert and G. A. Codd (Eds.) Microbes in Extreme Environments Academic Press London, UK 25–54

    Google Scholar 

  • Gray, N. D., R. Howarth, R. W. Pickup, J. G. Jones, and I. M. Head. 2000 Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium Appl. Environ. Microbiol. 66 4518–4522

    Article  PubMed  CAS  Google Scholar 

  • Groeschel, D. H. M. 1982 The etiology of tuberculosis: A tribute to Robert Koch on the occasion of the centenary of his discovery of the tubercle bacillus ASM News 48 248–250

    Google Scholar 

  • Gross, C. A. 1996 Function and regulation of the heat shock proteins In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella, 2nd ed ASM Press Washington,DC 1382–1399

    Google Scholar 

  • Grosser, R. J., M. Friedrich, D. M. Ward, and W. P. Inskeep. 2000 Effect of model sorptive phases on phenanthrene biodegradation: Different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates Appl. Environ. Microbiol. 66 2695–2702

    Article  PubMed  CAS  Google Scholar 

  • Guerin, W. F., and S. A. Boyd. 1997 Bioavailability of naphthalene associated with natural and synthetic sorbents Water Res. 51 1504–1512

    Article  Google Scholar 

  • Guerrero, R., C. Pedros-Alió C., I. Esteve., J. Mas, D. Chase, and L. Margulis. 1986 Predatory prokaryotes: Predation and primary consumption evolved in bacteria Proc. Natl. Acad. Sci. USA 83 2138–2142

    Article  PubMed  CAS  Google Scholar 

  • Hackstein, J. H., A. Akhmanova, B. Boxma, H. R. Harhangi, and F. G. Voncken. 1999 Hydrogenosomes: Eukaryotic adaptations to anaerobic environments Trends. Microbiol. 7 441–447

    Article  PubMed  CAS  Google Scholar 

  • Harder, W., and H. Veldkamp. 1971 Competition of marine psychrophilic bacteria at low temperatures Ant. v. Leeuwenhoek 37 51–63

    Article  CAS  Google Scholar 

  • Harder, W., J. G. Kuenen, and A. Matin. 1977 Microbial selection in continuous culture J. Appl. Bacteriol. 43 1–24

    Article  PubMed  CAS  Google Scholar 

  • Harder, W., and L. Dijkhuizen. 1982 Strategies of mixed substrate utilization in microorganisms Phil. Trans. R. Soc. Lond. B 297 459–480

    Article  CAS  Google Scholar 

  • Hardin, G. 1960 The competitive exclusion principle Science 131 1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Harms, H., and A. J. B. Zehnder. 1995 Bioavailability of sorbed 3-chlorodibenzofuran Appl. Environ. Microbiol. 61 27–33

    PubMed  CAS  Google Scholar 

  • Harris, J. E. 1985 Gelrite as an agar substitute for the cultivation of mesophilic Methanobacter and Methanobrevibacter species Appl. Environ. Microbiol. 50 1107–1109

    PubMed  CAS  Google Scholar 

  • Hastings, R. C., J. R. Saunders, G. H. Hall, R. W. Pickup, and A. J. McCarthy. 1998 Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake Appl. Environ. Microbiol. 64 3674–3682

    PubMed  CAS  Google Scholar 

  • Herbert, D., R. Elsworth, R. C. Telling. 1956 The continuous culture of bacteria: A theoretical and experimental study J. Gen. Microbiol. 14 601–622

    Article  PubMed  CAS  Google Scholar 

  • Herbert, R. A. 1986 The ecology and physiology of psychrophilic microorganisms In: RA herbert and GA Codd (eds.) Microbes in extreme environments Academic Press London, England 1–23

    Google Scholar 

  • Hespell, R. B., and M. P. Bryant. 1981 The genera Butyrivibrio, Succinivibrio, Lachnospira and Selenomonas In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag New York,NY 1479–1494

    Google Scholar 

  • Hinrichs, K.-U., J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong. 1999 Methane-consuming archaebacteria in marine sediments Nature 398 802–805

    Article  PubMed  CAS  Google Scholar 

  • Hiorns, W. D., B. A. Methé S. A. Nierzwicki-Bauer, and J. P. Zehr. 1997 Bacterial diversity in Adirondack Mountain lakes as revealed by 16S rRNA gene sequence analysis Appl. Environ. Microbiol. 63 2957–2960

    PubMed  CAS  Google Scholar 

  • Hirsch, P. 1984 Microcolony formation and consortia In: K. C. Marshall (Ed.) Microbial Adhesion and Aggregation: Dahlem Konferenzen Springer-Verlag New York,NY 373–393

    Chapter  Google Scholar 

  • Hochachka, P. W., T. W. Moon, and T. Mustafa. 1972 The adaptation of enzymes to pressure in abyssal and midwater fishes In: M. A. Sleigh and A. G. Macdonald (Eds.) The Effects of Pressure on Living Organisms Academic Press London, UK 175–195

    Google Scholar 

  • Holmes, A. J., P. Roslev, I. R. McDonald, N. Iversen, K. Henriksen, and J. C. Murrell. 1999 Characterization of methanotrophic bacterial populations in soil showing atmospheric methane uptake Appl. Environ. Microbiol. 65 3312–3318

    PubMed  CAS  Google Scholar 

  • Hommes, R. W. J., P. W. Postma, D. W. Tempest, and O. M. Neijssel. 1989 The influence of the culture pH value on the direct glucose oxidation pathway in Klebsiella pneumoniae NCTC 418 Arch. Microbiol. 151 261–267

    Article  PubMed  CAS  Google Scholar 

  • Hooke, R. 1665 Micrographia: Or some physiological descriptions of minute bodies made by magnifying glasses with observations and inqueries thereupon John Martyn and James Allestry London, UK

    Book  Google Scholar 

  • Horikoshi, K., and T. Akiba. 1982 Alkalophilic Microorganisms Springer-Verlag New York,NY

    Google Scholar 

  • Huang, L., C. W. Forsberg, and L. N. Gibbins. 1986 Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products Appl. Environ. Microbiol. 51 1230–1234

    PubMed  CAS  Google Scholar 

  • Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter. 2002 A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont Nature 417 63–67

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998 Novel division level bacterial diversity in a yellowstone hot spring J. Bacteriol. 180 366–376

    PubMed  CAS  Google Scholar 

  • Humphry, D. R., A. George, G. W. Black, and S. P. Cummings. 2001 Flavobacterium frigidarium sp. nov., an aerobic psychrophilic, xylanolytic and laminariolytic bacterium from Antarctica Int. J. Syst. Evol. Microbiol. 51 1235–1243

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1950 The anaerobic mesophilic cellulolytic bacteria Bacteriol. Rev. 14 1–49

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1960 Microbial ecology of the rumen. Symposium: Selected topics in microbial ecology Ann. Meeting. Soc. Amer. Bact. Philadelphia 24 353–364

    CAS  Google Scholar 

  • Hungate, R. E. 1966 The Rumen and its Microbes Academic Press New York,NY

    Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. R. Norris and W. D. Ribbons (Eds.) Methods in Microbiology Academic Press London, UK 3B 117–132

    Google Scholar 

  • Hungate, R. E. 1985 Anaerobic biotransformations of organic matter In: E. R. Leadbetter and J. S. Poindexter (Eds.) Bacteria in Nature Plenum Press New York,NY 1 39–96

    Chapter  Google Scholar 

  • Huston, A. L., B. B. Krieger-Brockett, and J. W. Deming. 2000 Remarkably low temperature optima for extracellular enzyme activity form Arctic bacteria and sea ice Environ. Microbiol. 2 383–388

    Article  PubMed  CAS  Google Scholar 

  • Ianotti, E. L., D. Kafkewitz, M. J. Wolin, and M. P. Bryant. 1973 Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes J. Bacteriol. 114 1231–1240

    Google Scholar 

  • Imhoff, J. F. 1986 Osmoregulation and compatible solutes in eubacteria FEMS Microbiol. Rev. 39 57–66

    CAS  Google Scholar 

  • Ingraham, J. L. 1962 Temperature relationships In: I. C. Gunsalus and R. Y. Stanier (Eds.) The Bacteria Academic Press New York,NY 4 265–296

    Google Scholar 

  • Ingraham, J. L., and A. G. Marr. 1996 Effect of temperature, pressure, pH, and osmotic stress on growth In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella typhimurium ASM Press Washington,DC 1570–1578

    Google Scholar 

  • Irgens, R. L., J. J. Gosink, and J. T. Staley. 1996 Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine gas vacuolate bacterium from Antarctica Int. J. Syst. Evol. Microbiol. 46 822–826

    CAS  Google Scholar 

  • Isaksen, M. F., and B. B. Jørgensen. 1996 Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments Appl. Environ. Microbiol. 62 408–414

    PubMed  CAS  Google Scholar 

  • Jackson, B. E., and M. J. McInerney. 2002 Anaerobic microbial metabolism can proceed close to thermodynamic limits Nature 415 454–456

    Article  PubMed  CAS  Google Scholar 

  • Jacobi, C. A., B. Aßmus, H. Reichenbach, and E. Stackebrandt. 1997 Molecular evidence for association between the Sphingobacterium-like organism “Candidatus comitans” and the myxobacterium Chondromyces crocatus Appl. Environ. Microbiol. 63 719–723

    PubMed  CAS  Google Scholar 

  • Jaenicke, R. 1988 Molecular mechanisms of adaptation of bacteria to extreme environments Forum Microbiol. 11 435–440

    CAS  Google Scholar 

  • Jannasch, H. W. 1967a Enrichment of aquatic bacteria in continuous culture Arch. Mikrobiol. 59 165–173

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W. 1967b Growth of marine bacteria at limiting concentrations of organic carbon in seawater Limnol. Oceanogr. 12 264–271

    Article  CAS  Google Scholar 

  • Jannasch, H. W., and R. I. Mateles. 1974 Experimental bacterial ecology studied in continuous culture Adv. Microb. Physiol. 11 165–212

    Article  Google Scholar 

  • Jannasch, H. W., C. O. Wirsen, and C. D. Taylor. 1976 Undecompressed microbial populations from the deep sea Appl. Environ. Microbiol. 32 360–367

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., and C. D. Taylor. 1984 Deep-sea microbiology Ann. Rev. Microbiol. 38 487–514

    Article  CAS  Google Scholar 

  • Jannasch, H. W., C. O. Wirsen, and K. W. Doherty. 1996 A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria Appl. Environ. Microbiol. 62 1593–1596

    PubMed  CAS  Google Scholar 

  • Janssen P. H., A. Schuhmann, E. Mörschel, and F. A. Rainey. 1997 Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial decent isolated by dilution culture from anoxic rice paddy soil Appl. Environ. Microbiol. 63 1382–1388

    PubMed  CAS  Google Scholar 

  • Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait. 2002 Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia Appl. Environ. Microbiol. 68 2391–2396

    Article  PubMed  CAS  Google Scholar 

  • Jaspers, E., K. Nauhaus, H. Cypionka, and J. Overmann. 2001 Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton FEMS Microbiol. Ecol. 36 153–164

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. K. 1982 The interaction of algae and bacteria In: A. T. Bull and J. H. Slater (Eds.) Microbial Interactions and Communities Academic Press London, UK 189–247

    Google Scholar 

  • Jones, S. L., P. Drouin, B. J. Wilkinson, and P. D. Morse. 2002 Correlation of long-rang membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes Arch. Microbiol. 177 217–222

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, B. B. 1982 Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments Phil. Trans. R. Soc. Lond. B 298 543–561

    Article  Google Scholar 

  • Jost, J. L., J. F. Drake, A. G. Fredrickson, and H. M. Tsuchiya. 1973 Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii and glucose in a minimal medium J. Bacteriol. 113 834–840

    PubMed  CAS  Google Scholar 

  • Jung, L., R. Jost, E. Stoll, and H. Zuber. 1974 Metabolic differences in Bacillus stearothermophilus grown at 55°C and 37°C Arch. Microbiol. 95 125–138

    Article  CAS  Google Scholar 

  • Kalmbach, S., W. Manz, and U. Szewyk. 1997 Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes Appl. Environ. Microbiol. 63 4164–4170

    PubMed  CAS  Google Scholar 

  • Kämpfer, P., F. A. Rainey, M. A. Andersson, E. L. Nurmiaho Lassila, U. Ulrych, H. J. Busse, N. Weiss, R. Mikkola, and M. Salkinoja-Salonen. 2000 Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae Int. J. Syst. Evol. Microbiol. 50 355–363

    Article  PubMed  Google Scholar 

  • Kane, M. D., L. K. Poulsen, and D. A. Stahl. 1993 Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide probes designed from environmentally derived 16S rRNA sequences Appl. Environ. Microbiol. 59 682–686

    PubMed  CAS  Google Scholar 

  • Kaneda, T. 1991 Iso-fatty and anteiso-fatty acids in bacteria-biosynthesis, function, and taxonomic significance Microbiol. Rev. 55 288–302

    PubMed  CAS  Google Scholar 

  • Kaprelyants, A. S., and D. B. Kell. 1993 Dormancy in stationary-phase cultures of Micrococcus luteus—flow cytometric analysis of starvation and resuscitation Appl. Environ. Microbiol. 59 3187–3196

    PubMed  CAS  Google Scholar 

  • Kaprelyants, A. S., G. V. Mukamolova, and D. B. Kell. 1994 Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell free spent culture medium at high dilution FEMS Microbiol. Lett. 115 347–352

    Article  Google Scholar 

  • Kaprelyants, A. S., G. V. Mukamolova, H. M. Davey, and D. B. Kell. 1996 Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting Appl. Environ. Microbiol. 62 1311–1316

    PubMed  CAS  Google Scholar 

  • Karner, M., and J. A. Fuhrman. 1997 Determination of active bacterioplankton: A comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining Appl. Environ. Microbiol. 63 1208–1213

    PubMed  CAS  Google Scholar 

  • Kato, Y., R. M. Sakala, H. Hayashidani, A. Kiuchi, C. Kaneuchi, and M. Ogawa. 2000 Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef Int. J. Syst. Evol. Microbiol. 50 1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Keith, S. M., and R. A. Herbert. 1985 The application of compound bi-directional flow diffusion chemostats to the study of microbial interactions FEMS Microbiol Ecol. 31 239–248

    Article  CAS  Google Scholar 

  • King, D., and D. B. Nedwell. 1984 Changes in the nitrate-reducing community of an anaerobic saltmarsh sediment in response to seasonal selection by temperature J. Gen. Microbiol. 130 2935–2941

    CAS  Google Scholar 

  • King, G. M. 1984 Utilization of hydrogen, acetate, and “noncompetitive” substrates by methanogenic bacteria in marine sediments Geomicrob. J. 3 275–306

    Article  CAS  Google Scholar 

  • Kjaergaard, L., and B. B. Jørgensen. 1979 Redox potential as a state variable in fermentation systems Biotechnol. Bioeng. Symp. 9 85–94

    Google Scholar 

  • Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1982 Effect of interfaces on small, starved bacteria Appl. Environ. Microbiol. 43 1166–1172

    PubMed  CAS  Google Scholar 

  • Kjelleberg, S., K. B. G. Flardh, T. Nystrom, D. J. W. Moriarty. 1993 Growth limitation and stravation in bacteria In: T. E. Ford (Ed.) Aquatic Microbiology: An Ecological Approach Blackwell Scientific Publications Oxford, UK 298–320

    Google Scholar 

  • Kluyver, A. J., and H. J. L. Donker. 1926 Unity in biochemistry Chemie der Zelle und Gewebe 13 134–190

    CAS  Google Scholar 

  • Knoblauch, C., and B. B. Jørgensen. 1999a Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments Environ. Microbiol. 1 457–467

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch, C., B. B. Jørgensen, and J. Harder. 1999b Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments Appl. Environ. Microbiol. 65 4230–4233

    PubMed  CAS  Google Scholar 

  • Kogure, K., U. Simidu, and N. Taga. 1979 A tentative direct microscopic method for counting living marine bacteria Can. J. Microbiol. 25 415–420

    Article  PubMed  CAS  Google Scholar 

  • Kole, M. M., I. Draper, and D. F. Gerson. 1988 Protease production by Bacillus subtilis in oxygen controlled, glucose fed-batch fermentations Appl. Microbiol. Biotechnol. 28 404–408

    Article  CAS  Google Scholar 

  • Kolenbrander, P. E., and J. London. 1993 Adhere today, here tomorrow: Oral bacterial adherence J. Bacteriol. 175 3247–3252

    PubMed  CAS  Google Scholar 

  • Kolter, R., D. A. Siegele, and A. Tormo. 1993 The stationary phase of the bacterial life cycle Ann. Rev. Microbiol. 47 855–874

    Article  CAS  Google Scholar 

  • Krembs, C., A. R. Juhl, R. A. Long, and F. Azam. 1998 Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method Limnol. Oceanogr. 43 307–314

    Article  Google Scholar 

  • Kristjansson, J. R., P. Schönheit, and R. K. Thauer. 1982 Different Km values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate Arch. Microbiol. 131 278–282

    Article  CAS  Google Scholar 

  • Krulwich, T. A., and A. A. Guffanti. 1983 Physiology of acidophilic and alkalophilic bacteria Adv. Microb. Physiol. 24 173–214

    Article  PubMed  CAS  Google Scholar 

  • Krulwich, T. A., and A. A. Guffanti. 1989 Alkalophilic bacteria Ann. Rev. Microbiol. 43 435–463

    Article  CAS  Google Scholar 

  • Kuenen, J. G., and J. C. Gottschal. 1982a Competition among chemolithotrophs and methylotrophs and their interactions with heterotrophic bacteria In: A. T. Bull and J. H. Slater (Eds.) Microbial Interactions and Communities Academic Press London, UK 1 153–187

    Google Scholar 

  • Kuenen, J. G., and W. Harder. 1982b Microbial competition in continuous culture In: R. G. Burns and J. H. Slater (Ed.) Experimental Microbial Ecology Blackwell Scientific Publications Oxford, UK 342–367

    Google Scholar 

  • Kuenen, J. G., and L. A. Robertson. 1984 Competition among chemolithotrophic bacteria under aerobic and anaerobic conditions In: M. J. Klug and C. A. Reddy (Eds.) Current Perspectives in Microbial Ecology ASM Press Washington,DC 306–313

    Google Scholar 

  • Kuenen, J. G., L. A. Robertson, and H. van Gemerden. 1985 Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria Adv. Microb. Ecol. 8 1–59

    Article  CAS  Google Scholar 

  • Kushner, D. J. 1978 Life in high salt and solute concentrations: Halophilic bacteria In: D. J. Kushner (Ed.) Microbial Life in Extreme Environments Academic Press London, UK 318–368

    Google Scholar 

  • Kuske, C. R., S. M. Barns, and J. D. Busch. 1997 Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographical regions Appl. Environ. Microbiol. 63 3614–3621

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S. I., G. A. Dubinina, and N. A. Laptev. 1979 Biology of oligotrophic bacteria Ann. Rev. Microbiol. 33 377–387

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., A. J. Smit, G. Klein Nulend, and H. Veldkamp. 1979 Competition for L-glutamate between specialized and versatile Clostridium species Arch. Microbiol. 120 61–66

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek, H. J., and H. Veldkamp. 1982 Microbial interactions in sediment communities Phil.Trans. R. Soc. Lond. B 297 533–550

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., H. J. Geerlings, A. A. C. M. Peynenburg, and J. Siesling. 1983 Competition for L-lactate between Desulfovibrio, Veillonella, and Acetobacterium species isolated from anaerobic intertidal sediments Microb. Ecol. 9 341–354

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., H. J. Geerlings, L. Sijtsma, and H. Veldkamp. 1984 Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments Appl. Environ. Microbiol. 47 329–334

    PubMed  CAS  Google Scholar 

  • Lange, W. 1971 Enhancement of algal growth in cyanophyta-bacteria systems by carbonaceous compounds Can. J. Microbiol. 17 303–314

    Article  PubMed  CAS  Google Scholar 

  • Lange, R., and R. Hengge-Aronis. 1991 Identification of a central regulator of stationary-phase gene expression in Escherichia coli Molec. Microbiol. 5 49–59

    Article  CAS  Google Scholar 

  • Langworthy, T. A. 1978 Microbial life in extreme pH values In: D. J. Kushner (Ed.) Microbial Life in Extreme Environments Academic Press New York,NY 279–317

    Google Scholar 

  • Larsen, H. 1986 Halophilic and halotolerant microorganisms–an overview and historical perspective FEMS Microbiol. Rev. 39 3–7

    Article  CAS  Google Scholar 

  • Law, A. T., and D. K. Button. 1977 Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium J. Bacteriol. 129 115–123

    PubMed  CAS  Google Scholar 

  • Lee, I. H., A. G. Fredrickson, and H. M. Tsuchiya. 1976 Dynamics of mixed cultures of Lactobacillus plantarum and Propionibacterium shermanii Biotechnol. Bioeng. 18 513–526

    Article  PubMed  CAS  Google Scholar 

  • Lee, N., P. H. Nielsen, K. H. Andrasen, S. Juretschko, J. L. Nielsen., K.-H. Schleifer, and M. Wagner. 1999 Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure: Function analyses in microbial ecology Appl. Environ. Microbiol. 65 1289–1297

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., and R. B. Hespell. 1980 Differential carbohydrate media and anaerobic replica plating technique in delineating carbohydrate utilizing subgroups in rumen bacterial populations Appl. Environ. Microbiol. 39 709–719

    PubMed  CAS  Google Scholar 

  • Legan, J. D., J. D. Owens, and G. A. Chilvers. 1987 Competition between specialist and generalist methylotrophic bacteria for an intermittent supply of methylamine J. Gen. Microbiol. 133 1061–1073

    CAS  Google Scholar 

  • Legan, J. D., and J. D. Owens. 1988 Bacterial competition for methylamine: Computer simulation of a three-strain continuous culture supplied continuously or alternatively with two nutrients FEMS Microbiol. Ecol. 53 307–314

    Article  CAS  Google Scholar 

  • Lengeler, J. W., G. Drews, and H. G. Schlegel. 1999 Biology of the Prokaryotes Thieme New York,NY

    Google Scholar 

  • Li, L., C. Kato, Y. Nogi, and K. Horikoshi. 1998 Distribution of the pressure-regulated operons in dep-sea bacteria FEMS Microbiol. Lett. 159 159–166

    Article  PubMed  CAS  Google Scholar 

  • Licht, T. R., T. Tolker-Nielsen, K. Holmstroslash;m, K. A. Krogfelt, and S. Molin. 1999 Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents Environ. Microbiol. 1 23–32

    Article  PubMed  CAS  Google Scholar 

  • Liesack, W., P. H. Janssen, F. A. Rainey, N. L. Ward-Rainey, and E. Stackebrandt. 1997 Microbial diversity in soil: The need for a combined approach using molecular and cultivation techniques In: J. D. van Elsas, J. T. Trevors, and E. M. H. Wellington (Eds.) Modern Soil Microbiology Marcel Dekker New York,NY 375–439

    Google Scholar 

  • Lins, U., and M. Farina. 1999 Organization of cells in magnetotactic multicellular aggregates Microbiol. Res. 154 9–13

    Article  Google Scholar 

  • Little, B., S. Gerchakov, and L. Udey. 1987 A method for sterilization of natural seawater J. Microbiol. Meth. 7 193–200

    Article  CAS  Google Scholar 

  • Loewen, P. C., and R. Hengge-Aronis. 1994 The role of the sigma factor σ6 (Kat F) in bacterial global regulation Ann. Rev. Microbiol. 48 53–80

    Article  CAS  Google Scholar 

  • Loewen, P. C., B. Hu, J. Stutinsky, and R. Sparling. 1998 Regulation in the rpoS regulon of Escherichia coli Can. J. Microbiol. 44 707–717

    PubMed  CAS  Google Scholar 

  • Lonhienne, T., C. Gerday, and G. Feller. 2000 Psychrophilic enzymes: Revisiting the thermodynamic parameters of activation may explain local flexibility Biochim. Biophys. Acta 1543 1–10

    Article  PubMed  CAS  Google Scholar 

  • Loomis, W. D., and R. W. Durst. 1992 Chemistry and biology of boron Biofactors 3 229–239

    PubMed  CAS  Google Scholar 

  • Loveland-Curtze, J., P. P. Sheridan, K. R. Gutshall, and J. E. Brenchley. 1999 Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov Arch. Microbiol. 171 355–363

    Article  PubMed  CAS  Google Scholar 

  • Lovitt, R. W., and J. W. T. Wimpenny. 1981 The gradostat: A bidirectional compound chemostat and its application in microbiological research J. Gen. Microbiol. 127 261–268

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982 Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments Appl. Environ. Microbiol. 43 1373–1379

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996a Humic substances as electron acceptors for microbial respiration Nature 382 445–448

    Article  CAS  Google Scholar 

  • Lovley, D. R., J. C. Woodward, and F. H. Chapelle. 1996b Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms Appl. Environ. Microbiol. 62 288–291

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and E. L. Blunt-Harris. 1999a Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction Appl. Environ. Microbiol. 65 4252–4254

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. L. Fraga, J. D. Coates, and E. L. Blunt-Harris. 1999b Humics as an electron donor for anaerobic respiration Environ. Microbiol. 1 89–98

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., S. H. Bauer, H. Bauer, I. Held, G. Kirchhof, R. Schulze, I. Huber, S. Spring, A. Hartmann, and K.-H. Schleifer. 1997 Detection and in situ identification of representatives of a widely distributed bacterial phylum FEMS Microbiol. Lett. 153 181–190

    Article  PubMed  CAS  Google Scholar 

  • Lum, K. T., and P. D. Meers. 1989 Boric acid converts urine into an effective bacteriostatic transport medium J. Infect. 18 51–58

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, A. G. 1984 The effects of pressure on the molecular structure and physiological functions of cell membranes Phil. Trans. R. Soc. Lond. B 304 47–68

    Article  CAS  Google Scholar 

  • Macy, J. M., J. E. Snellen, and R. E. Hungate. 1972 Use of syringe methods for anaerobiosis Am. J. Clin. Nutr. 25 1318–1323

    PubMed  CAS  Google Scholar 

  • Madigan, M. T. 1998 Isolation and characterization of psychrophilic purple bacteria from Antarctica In: G. A. Peschek, W. Löffelhardt, and G. Schmetterer (Eds.) The Phototrophic Prokaryotes Kluwer Academic/Plenum New York,NY 699–706

    Google Scholar 

  • Madigan, M. T., J. M. Martinko, and J. Parker. 2000a Biology of Microorganisms Prentice-Hall International Upper Saddle River,NJ

    Google Scholar 

  • Madigan, M. T., D. O. Jung, C. R. Woese, and L. A. Achenbach. 2000b Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat Arch. Microbiol. 173 269–277

    Article  PubMed  CAS  Google Scholar 

  • Mannisto, M. K., P. Schumann, F. A. Rainey, P. Kampfer, I. Tsitko, M. A. Tiirola, and M. S. Salkinoja-Salonen. 2000 Subtercola boreus gen. nov., sp. nov., and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater Int. J. Syst. Evol. Microbiol. 50 1731–1739

    PubMed  CAS  Google Scholar 

  • Margulis, L. 1981 Symbiosis in Cell Evolution Freeman San Francisco,CA

    Google Scholar 

  • Marquis, R. E. 1976 High pressure microbial physiology Adv. Microb. Physiol. 14 159–239

    Article  PubMed  CAS  Google Scholar 

  • Marquis, R. E., and P. Matsumura. 1978 Microbial life under pressure In: D. J. Kushner (Ed.) Microbial Life in Extreme Environments Academic Press London, UK 105–158

    Google Scholar 

  • Martin, G. A., and W. P. Hempfling. 1976a A method for the regulation of microbial population density during continuous culture at high growth rates Arch. Microbiol. 107 41–47

    Article  PubMed  CAS  Google Scholar 

  • Martin, S. E., R. S. Flowers, and Z. J. Ordal. 1976b Catalase: Its effect on microbial enumeration Appl. Environ. Microbiol. 32 731–734

    PubMed  CAS  Google Scholar 

  • Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura, and T. Higashihara. 2000 Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov Int. J. Syst. Evol. Microbiol. 50 835–846

    Article  PubMed  CAS  Google Scholar 

  • Mason, C. A., and T. Egli. 1993 Dynamics of microbial growth in the decelerating and stationary phase of batch culture In: S. Kjelleberg (Ed.) Starvation in Bacteria Plenum Press New York,NY 81–98

    Google Scholar 

  • Matin, A., and H. Veldkamp. 1978 Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment J. Gen. Microbiol. 105 187–197

    Article  PubMed  CAS  Google Scholar 

  • Matin, A. 1981 Regulation of enzyme synthesis as studied in continuous culture In: P. H. Calcott (Ed.) Continuous Culture of Cells CRC Press Boca Raton,FL 2 69–97

    Google Scholar 

  • Matin, A. 1990 Keeping a neutral cytoplasm: The bioenergetics of obligate acidophiles FEMS Microbiol. Rev. 75 307–318

    Article  CAS  Google Scholar 

  • Mazur, P. 1980 Limits to life at low temperatures and at reduced water contents and water activities Orig. Life 10 137–159

    Article  PubMed  CAS  Google Scholar 

  • McInerney, M. J., M. D. Bryant, and N. Pfennig. 1979 Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens Arch. Microbiol. 122 129–135

    Article  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039

    PubMed  CAS  Google Scholar 

  • Meers, J. L. 1973 Growth of bacteria in mixed cultures CRC Crit. Rev. Microbiol. 2 139–184

    Article  CAS  Google Scholar 

  • Megee 3rd, R. D., J. F. Drake, A. G. Fredrickson, and H. M. Tsuchiya. 1972 Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei Can. J. Microbiol. 18 1733–1742

    Article  PubMed  Google Scholar 

  • Meldrum, F. C., B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski. 1993 Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium Proc. R. Soc. Lond. B 251 231–236

    Article  Google Scholar 

  • Meyer, J. S., H. M. Tsuchiya, and A. G. Fredrickson. 1975 Dynamics of mixed populations having complementary metabolism Biotechnol. Bioeng. 17 1065–1081

    Article  Google Scholar 

  • Michels, P. A. M., J. P. J. Michels, J. Boonstra, and W. N. Konings. 1979 Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end-products FEMS Microbiol. Lett. 5 357–364

    Article  CAS  Google Scholar 

  • Mikx, F. J. M., and J. S. van der Hoeven. 1975 Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures Arch. Oral Biol. 20 407–410

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1974 A serum bottle modification of the Hungate technique for cultivating obligate anaerobes Appl. Microbiol. 27 985–987

    PubMed  CAS  Google Scholar 

  • Miura, Y., H. Tanaka, and M. Okazaki. 1980 Stability analysis of commensal and mutual relations with competitive assimilation in continuous mixed culture Biotechnol. Bioeng. 22 929–948

    Article  Google Scholar 

  • Mizunoe, Y., S. N. Wai, A. Takade, and S. Yoshida. 1999 Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by using H2O2-degrading compounds Arch. Microbiol. 172 63–67

    Article  PubMed  CAS  Google Scholar 

  • Moench, T. T., and J. G. Zeikus. 1983 An improved preparation method for a titanium (III) media reductant J. Microbiol. Meth. 1 199–202

    Article  CAS  Google Scholar 

  • Moissl, C., C. Rudolph, and R. Huber. 2002 Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: Molecular analysis of the bacterial partners Appl. Environ. Microbiol. 68 933–937

    Article  PubMed  CAS  Google Scholar 

  • Monod, J. 1942 Recherches sur la Croissance des Cultures Bacteriennes Hermann Paris,France

    Google Scholar 

  • Monod, J. 1950 La technique de culture continue: Théorie et applications Ann. Inst. Pasteur 79 390–410

    CAS  Google Scholar 

  • Morita, R. Y. 1975 Psychrophilic bacteria Bacteriol. Rev. 39 144–167

    PubMed  CAS  Google Scholar 

  • Morita, R. Y. 1982 Starvation-survival of heterotrophs in the marine environment Adv. Microb. Ecol. 6 171–178

    Article  Google Scholar 

  • Morita, R. Y. 1986 Pressure as an extreme environment In: R. A. Herbert and G. A. Codd (Eds.) Microbes in Extreme Environments Academic Press London, UK 171–185

    Google Scholar 

  • Mossel D. A. A., A. Veldman, and I. Eelderink. 1980 Comparison of the effects of liquid medium repair and the incorporation of catalase in Macconkey type media on the recovery of Enterobacteriaceae sublethally stressed by freezing J. Appl. Bacteriol. 49 405–419

    Article  PubMed  CAS  Google Scholar 

  • Mountfort, D. O., and M. P. Bryant. 1985 Isolation and characterization of an anaerobic syntrophic benzoate degrading bacterium from sewage sludge Arch. Microbiol. 133 249–256

    Article  Google Scholar 

  • Mountfort, D. O., and R. A. Asher. 1986 Isolation from a methanogenic ferulate degrading consortium of an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids Arch. Microbiol. 144 55–61

    Article  CAS  Google Scholar 

  • Mountfort, D. O., F. A. Rainey, J. Burghardt, H. F. Kaspar, and E. Stackebrandt. 1997 Clostridium vincentii sp. nov., a new anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo ice shelf, Antarctica Arch. Microbiol. 167 54–60

    Article  PubMed  CAS  Google Scholar 

  • Mountfort, D. O., F. A. Rainey, J. Burghardt, H. F. Kaspar, and E. Stackebrandt. 1998 Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica Arch. Microbiol. 169 231–238

    Article  PubMed  CAS  Google Scholar 

  • Mukamolova, G. V., A. S. Kaprelyants, D. I. Young, M. Young, and D. B. Kell. 1998 A bacterial cytokine Proc. Natl. Acad. Sci. USA 95 8916–8921

    Article  PubMed  CAS  Google Scholar 

  • Müller, R. H., and W. Babel. 1996 Measurement of growth at very low rates (µ ≧ 0), an approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134 Appl. Environ. Microbiol. 62 147–151

    PubMed  Google Scholar 

  • Munro, P. M., G. N. Flatau, R. L. Clément, and M. J. Gauthier. 1995 Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater Appl. Environ. Microbiol. 61 1853–1858

    PubMed  CAS  Google Scholar 

  • Mur, L. R., H. J. Gons, and L. van Liere. 1977 Some experiments on the competition between green algae and blue-green bacteria in light-limited environments FEMS Microbiol. Lett. 1 335–338

    Article  Google Scholar 

  • Murray, D. R. 1989 Biology of Food Radiation John Wiley and Sons Chichester, UK

    Google Scholar 

  • Myers, J., and L. B. Clark. 1944 Culture conditions and the development of the photosynthetic mechanism. II: An apparatus for the continuous culture of Chlorella J. Gen. Physiol. 28 103–112

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, I., K. Ogimoto, and H. Izumu. 1995 ATP-dependent calcium release from binding site in Streptococcus bovis: Bound versus free pools J. Gen. Appl. Microbiol. 41 389–398

    Article  CAS  Google Scholar 

  • Nakasone, K., A. Ikegami, C. Kato, R. Usami, and K. Horikoshi. 1998 Mechanisms of gene expression controlled by pressure in deep-sea microorganisms Extremophiles 2 149–154

    Article  PubMed  CAS  Google Scholar 

  • Nedwell, D. B. 1984 The input and mineralization of organic carbon in anaerobic aquatic sediments Adv. Microb. Ecol. 7 93–131

    Article  CAS  Google Scholar 

  • Nedwell, D. B., and M. Rutter. 1994 Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: Low temperature diminishes affinity for substrate uptake Appl. Environ. Microbiol. 60 1984–1992

    PubMed  CAS  Google Scholar 

  • Neidhardt, F. C., and H. E. Umbarger. 1996 Chemical composition of Escherichia coli In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella, 2nd ed ASM Press Washington,DC 13–16

    Google Scholar 

  • Nelson, D. C., B. B. Jørgensen, and N. P. Revsbech. 1986 Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients Appl. Environ. Microbiol. 52 225–233

    PubMed  CAS  Google Scholar 

  • Neuhard, J., and R. A. Kelln. 1996 Biosynthesis and conversions of pyrimidines In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella, 2nd ed ASM Press Washington,DC 580–599

    Google Scholar 

  • Nichols, D. S., A. R. Greenhill, C. T. Shadbolt, T. Ross, and T. A. McMeekin. 1999 Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611T and Gelidibacter sp. strain IC158 Appl. Environ. Microbiol. 65 3757–3760

    PubMed  CAS  Google Scholar 

  • Niehaus, F., K. Hantke, and G. Unden. 1991 Iron content and FNR-dependent gene regulation in Escherichia coli FEMS Microbiol. Lett. 84 319–324

    Article  CAS  Google Scholar 

  • Nielsen, P. H., M. A. de Muro, and J. L. Nielsen. 2000 Studies on the in situ physiology of Thiothrix spp. present in activated sludge Environ. Microbiol. 2 389–398

    Article  PubMed  CAS  Google Scholar 

  • Nogales, B., R. Guerrero, and I. Esteve. 1997 A heterotrophic bacterium inhibits growth of several species of the genus Chlorobium Arch. Microbiol. 167 396–399

    Article  CAS  Google Scholar 

  • Nogales, B., E. R. B. Moore, W. R. Abraham, and K. N. Timmis. 1999 Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil Environ. Microbiol. 1 199–212

    Article  PubMed  CAS  Google Scholar 

  • Norland, S., K. M. Fagerbakke, and M. Heldal. 1995 Light element analysis of individual bacteria by X-ray microanalysis Appl. Environ. Microbiol. 61 1357–1362

    PubMed  CAS  Google Scholar 

  • Norris, J. R., and D. W. Ribbons. 1970a Methods in Microbiology Academic Press New York,NY 3a 1–506

    Google Scholar 

  • Norris, J. R., and D. W. Ribbons. 1970b Methods in Microbiology Academic Press New York,NY 3b 1–369

    Google Scholar 

  • Notley, L., and T. Ferenci. 1996 Induction of RpoS-dependent functions in glucose-limited continuous culture: What levels of nutrient limitation induces the stationary phase of Escherichia coli J. Bacteriol. 178 1465–1468

    PubMed  CAS  Google Scholar 

  • Novick, A., and L. Szilard. 1950 Description of the chemostat Science 112 715–716

    Article  PubMed  CAS  Google Scholar 

  • Nozhevnikova, A. N., M. V. Simankova, S. N. Parshina, and O. R. Kotsyurbenko. 2001 Temperature characteristics of methanogneic archaea and acetogenic bacteria isolated from cold environments Water Sci. Technol. 44 41–48

    PubMed  CAS  Google Scholar 

  • Nurmikko, V. 1956 Biochemical factors affecting symbiosis among bacteria Experientia 12 245–249

    Article  PubMed  CAS  Google Scholar 

  • Oerther, D. B., J. Pernthaler, A. Schramm, R. Amann, and L. Raskin. 2000 Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems Appl. Environ. Microbiol. 66 2154–2165

    Article  PubMed  CAS  Google Scholar 

  • Ohmura, N., N. Matsumoto, K. Sasaki, and H. Saiki. 2002 Electrochemical regenration of Fe(III) to support growth on anaerobic iron respiration Appl. Environ. Microbiol. 68 405–407

    Article  PubMed  CAS  Google Scholar 

  • Okada, T., K. Ueyama, S. Niya, H. Kanazawa, M. Futai, and T. Tsuchiya. 1981 Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli J. Bacteriol. 146 1030–1037

    PubMed  CAS  Google Scholar 

  • Oliver, J. D. 1995 The viable but non-culturable state in the human pathogen Vibrio vulnificus FEMS Microbiol. Lett. 133 203–208

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R. A., and L. R. Bakken. 1987 Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups Microb. Ecol. 13 59–74

    Article  Google Scholar 

  • Oltmann, L. F., G. S. Schoenmaker, W. N. M. Reijnders, and A. H. Stouthamer. 1978 Modification of the pH auxostat culture method for the mass cultivation of bacteria Biotechnol. Bioeng. 20 921–925

    Article  PubMed  CAS  Google Scholar 

  • Orcutt, K. M., U. Rasmussen, E. A. Webb, J. B. Waterbury, K. Gundersen, and B. Bergman. 2002 Characterization of Trichodesmium spp. by genetic techniques Appl. Environ. Microbiol. 68 2236–2245

    Article  PubMed  CAS  Google Scholar 

  • Oremland, R. S. 1988 Biogeochemistry of methanogenic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons New York,NY 641–706

    Google Scholar 

  • Oren, A. 1986 Intracellular salt concentrations of the halophilic eubacteria Haloaerobium praevalens and Halobacteroides halobius Can. J. Microbiol. 32 4–9

    Article  CAS  Google Scholar 

  • Oren, A. 1999 Bioenergetic aspects of halophilism Microbiol. Molec. Biol. Rev. 63 334–348

    CAS  Google Scholar 

  • Ostrowski, M., R. Cavicchioloi, M. Blaauw, and J. C. Gottschal. 2001 Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256 Appl. Environ. Microbiol. 67 1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Ott, J. A., R. Novak, F. Schiemer, U. Hentschel, M. Nebelsiek, and M. Polz. 1991 Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic ectosymbionts Marine Ecol. 12 261–279

    Article  Google Scholar 

  • Otto, R., J. Hugenholtz, W. N. Konings, and H. Veldkamp. 1980 Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed culture FEMS Microbiol. Lett. 9 85–88

    Article  CAS  Google Scholar 

  • Ouverney, C. C., and J. A. Fuhrman. 2000 Marine planktonic Arhcaea take up amino acids Appl. Environ. Microbiol. 66 4829–4833

    Article  PubMed  CAS  Google Scholar 

  • Overmann, J., and N. Pfennig. 1989 Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies Arch. Microbiol. 152 401–406

    Article  CAS  Google Scholar 

  • Overmann, J., S. Lehmann, and N. Pfennig. 1991 Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria) Arch. Microbiol. 157 29–37

    Article  CAS  Google Scholar 

  • Overmann, J., and N. Pfennig. 1992 Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations Arch. Microbiol. 158 59–67

    Article  CAS  Google Scholar 

  • Overmann, J., J. T. Beatty, and K. J. Hall. 1996 Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake Appl. Environ. Microbiol. 62 3251–3258

    PubMed  CAS  Google Scholar 

  • Overmann, J., C. Tuschak, J. Fröstl, and H. Sass. 1998 The ecological niche of the consortium “Pelochromatium roseum.” Arch. Microbiol. 169 120–128

    Article  PubMed  CAS  Google Scholar 

  • Overmann, J., and H. van Gemerden. 2000 Microbial interactions involving sulfur bacteria: Implications for the ecology and evolution of bacterial communities FEMS Microbiol. Rev. 24 591–599

    Article  PubMed  CAS  Google Scholar 

  • Overmann, J. 2002a Phototrophic consortia: A tight cooperation between non-related eubacteria In: J. Seckbach (Ed.) Symbiosis. Mechanisms and Model Systems Kluwer Dordrecht, The Netherlands 239–255

    Google Scholar 

  • Overmann, J., and K. Schubert. 2002b Phototrophic consortia: Model systems for symbiotic interrelations between prokaryotes Arch. Microbiol. 177 201–208

    Article  PubMed  CAS  Google Scholar 

  • Padan, E., and S. Schuldinger. 1986 Intracellular pH regulation in bacterial cells Meth. Enzymol. 125 337–352

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. 1978 Role of heterotrophic bacteria in promoting N2-fixation by Anabaena in aquatic habitats Microb. Ecol. 4 215–231

    Article  CAS  Google Scholar 

  • Paerl, H. W. 1982 Interactions with bacteria In: N. G. Carr and N. G. Whitton (Eds.) The Biology of Cyanobacteria University of California Press Los Angeles,CA 441–461

    Google Scholar 

  • Parkes, R. J., and E. Senior. 1988 Multistage chemostats and other models for studying anoxic ecosystems In: J. W. T. Wimpenny (Ed.) Handbook of Laboratory Model Systems for Microbial Ecosystems CRC Press Boca Raton,FL 1 51–71

    Google Scholar 

  • Pastan, I., and R. Perlman. 1969 Repression of β-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli. Repression in the absence of glucose phosphorylation J. Biol. Chem. 244 5836–5842

    PubMed  CAS  Google Scholar 

  • Pasteur, L. 1862 Mémoire sur les corpuscules qui existent dans l’atmosphère: Examen de la doctrine des génerations spontanées Ann. Chémie Physique 64 5–110

    Google Scholar 

  • Pernthaler J., T. Posch, K. Simek, J. Vrba, A. Pernthaler, F. O. Glöckner, U. Nübel, R. Psenner, and R. Amann. 2001 Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture Appl. Environ. Microbiol. 67 2145–2155

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. 1980 Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: A review In: G. Gottschalk, N. Pfennig, and Werner (Eds.) Anaerobes and Anaerobic Infections Fischer Stuttgart, Germany 127–131

    Google Scholar 

  • Pfennig N., Trüper HG. 1989 Anoxygenic phototrophic bacteria In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins Baltimore,MD 3 1635–1709

    Google Scholar 

  • Pfennig, N. 1993 Reflections of a microbiologist, or how to learn from the microbes Ann. Rev. Microbiol. 47 1–29

    Article  CAS  Google Scholar 

  • Pietzsch, O. 1967 Ein Nährboden zur Schwärmhemmung und gleichzeitigen Unterscheidung der Proteuskeime von Salmonellen Fleischwirtschaft 1 31–32

    Google Scholar 

  • Pinhassi, J., U. L. Zweifel, and Å. Hagström. 1997 Dominant marine bacterioplankton species found among colony-forming bacteria Appl. Environ. Microbiol. 63 3359–3366

    PubMed  CAS  Google Scholar 

  • Pirt, S. J. 1974 The theory of fed batch culture with reference to the penicillin fermentation J. Appl. Chem. Biotechnol. 24 415–4224

    Article  CAS  Google Scholar 

  • Pirt, S. J. 1975 Principles of Microbe and Cell Cultivation Blackwell Oxford, UK

    Google Scholar 

  • Ploug, H., H. P. Grossart, F. Azam, and B. B. Jørgensen. 1999 Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean Marine Ecol. Prog. Ser. 179 1–11

    Article  CAS  Google Scholar 

  • Poindexter, J. S., and E. R. Leadbetter. 1986 Enrichment cultures in bacterial ecology In: J. S. Poindexter and E. R. Leadbetter (Eds.) Bacteria in Nature Plenum Press New York,NY 2 229–260

    Google Scholar 

  • Poindexter, J. S. 1992 Dimorphic protshecate bacteria: The genera Caulobacter, Asticacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron In: A. Balows, H. G. Tr˙per, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 2176–2196

    Google Scholar 

  • Porter, J. R. 1976 Antony van Leeuwenhoek: Tercentenary of is discovery of bacteria Microbiol. Rev. 40 260–269

    CAS  Google Scholar 

  • Pörtner, R., and H. Märkl. 1998 Dialysis cultures Appl. Microbiol. Biotechnol. 50 403–414

    Article  PubMed  Google Scholar 

  • Postgate, J. R., and J. R. Hunter. 1963 Acceleration of bacterial death by growth substrates Nature 198 273–280

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J. R., and J. R. Hunter. 1964 Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates J. Gen. Microbiol. 34 459–473

    Article  PubMed  CAS  Google Scholar 

  • Powell, E. O. 1958 Criteria for the growth of contaminants and mutants in continuous culture J. Gen. Microbiol. 18 259–268

    Article  PubMed  CAS  Google Scholar 

  • Pratuangdejkul, J., and S. Dharmsthiti. 2000 Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009 Microbiol. Res. 155 95–100

    Article  PubMed  CAS  Google Scholar 

  • Price, B. 2000 A habitat for psychrophiles in deep Antarctic ice Proc. Natl. Acad. Sci. USA 97 1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Pringault, O., and R. de Wit, and P. Caumette. 1996 A benthic gradient chamber for cultering phototrophic sulfur bacteria on reconstituted sediments FEMS Microbiol. Ecol. 20 237–250

    Article  CAS  Google Scholar 

  • Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaefer. 1997 A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides J. Bacteriol. 179 7530–7537

    PubMed  CAS  Google Scholar 

  • Radajewski, S., P. Ineson, N. R. Parekh, and J. C. Murrell. 2000 Stable-isotope probing as a tool in microbial ecology Nature 403 646–649

    Article  PubMed  CAS  Google Scholar 

  • Ratkowsky, P. A., R. R. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983 Model for bacterial culture growth rate throughout the entire biokinetic temperature range J. Bacteriol. 154 1222–1226

    PubMed  CAS  Google Scholar 

  • Reddy, G. S., R. K. Aggarwal, G. I. Matsumoto, and S. Shivaji. 2000 Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica Int. J. Syst. Evol. Microbiol. 50 1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Reed, R. H., and A. E. Walsby. 1985 Changes in turgor pressure in response to increases in external NaCl concentation in the gas-vacuolate cyanobacterium Microcystis sp Arch. Microbiol. 143 290–296

    Article  CAS  Google Scholar 

  • Reichenbach, H. 1984 Myxobacteria: A most peculiar group of social prokaryotes In: E. Rosenberg (Ed.) Myxobacteria: Development and Cell Interactions Springer-Verlag New York,NY 1–50

    Google Scholar 

  • Reusse, U., and A. Meyer. 1972 Der “Pril-Mannit-Agar” in der Salmonellen-Diagnostik Zbl. Bakt. I. Abt. Orig. 219 555–557

    CAS  Google Scholar 

  • Revsbech, N. P., and B. B. Jørgensen. 1986 Microelectrodes: Their use in microbial ecology Adv. Microb. Ecol. 9 293–352

    Google Scholar 

  • Rhee, G. Y. 1972 Competition between an algae and an aquatic bacterium for phosphate Limnol. Oceanogr. 17 505–514

    Article  CAS  Google Scholar 

  • Ricica, J., and P. Dobersky. 1981 Complex systems In: P. H. Calcott (Ed.) Continuous Cultures of Cells CRC Press Boca Raton,FL 1 63–96

    Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1984 Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions Arch. Microbiol. 137 26–32

    Article  CAS  Google Scholar 

  • Roeßler, M., and V. Müller. 1998 Quantitative and physiological analyses of chloride dependence of growth of Halobacillus halophilus Appl. Environ. Microbiol. 64 3813–3817

    PubMed  Google Scholar 

  • Rose, A. H., and L. M. Evison. 1965 Studies on the biochemical basis of the minimum temperature for growth of certain psychrophilic and mesophilic microorganisms J. Gen. Microbiol. 38 131–141

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, E., K. H. Keller, and M. Dworkin. 1977 Cell-density dependent growth of Myxococcus xanthus on casein J. Bacteriol. 129 770–777

    PubMed  CAS  Google Scholar 

  • Roslev, P., and N. Iversen. 1999 Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils Appl. Environ. Microbiol. 65 4064–4070

    PubMed  CAS  Google Scholar 

  • Roszak, D. B., and R. R. Colwell. 1987 Survival strategies of bacteria in the natural environment Microbiol. Rev. 51 365–379

    PubMed  CAS  Google Scholar 

  • Ruger, H. J., D. Fritze., and C. Sproer. 2000 New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species Int. J. Syst. Evol. Microbiol. 50 1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Russel, N. J. 1984 Mechanisms of thermal adaptation in bacteria: Blueprints for survival TIBS: Trends in Biological Sciences 9 108–112

    Article  Google Scholar 

  • Russel, N. J., and N. Fukunaga. 1990 A comparison of thermal adaptation of memebrane lipids in psychrophilic and thermophilic bacteria FEMS Microbiol. Rev. 74 171–182

    Google Scholar 

  • Russel, N. J. 2000 Toward a molecular understanding of cold activity of enzymes from psychrophiles Extremophiles 4 83–90

    Article  Google Scholar 

  • Sambanis, A., and A. G. Fredrickson. 1987 Long-term studies of ciliate-bacterial interactions: Use of a chemostat fed with bacteria grown in a separate chemostat J. Gen. Microbiol. 133 1619–1630

    Google Scholar 

  • Sánchez, O., H. van Gemerden, and J. Mas. 1996 Description of a redox-controlled sulfidostat fro the growth of sulfide-oxidizing phototrophs Appl. Environ. Microbiol. 62 3640–3645

    PubMed  Google Scholar 

  • Sandaa, R.-A., V. Torsvik, Ø. Enger, F. L. Daae, T. Castberg, and D. Hahn. 1999 Analysis of bacterial communitiues in heavy metal-contaminated soils at different levels of resolution FEMS Microbiol. Ecol. 30 237–251

    Article  PubMed  CAS  Google Scholar 

  • Sass, A., H. Sass, M. J. L. Coolen, H. Cypionka, and J. Overmann. 2001 Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea) Appl. Environ. Microbiol. 67 5392–5402

    Article  PubMed  CAS  Google Scholar 

  • Schauer, N. L., D. P. Brown, and J. G. Ferry. 1982 Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei Appl. Environ. Microbiol. 44 549–554

    PubMed  CAS  Google Scholar 

  • Shindler, D. B., R. M. Wydro, and D. J. Kushner. 1977 Cell-bound cations in the moderately halophilic bacterium Vibrio costicola J. Bacteriol. 130 698–703

    PubMed  CAS  Google Scholar 

  • Schink, B. 1991 Syntrophism among prokaryotes In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 276–299

    Google Scholar 

  • Schink, B. 1997 Energetics of syntrophic cooperation in methanogenic degradation Microbiol. Molec. Biol. Rev. 61 262–280

    CAS  Google Scholar 

  • Schink, B., and M. Friedrich. 2000 Phosphite oxidation by sulphate reduction Nature 406 37

    Article  PubMed  CAS  Google Scholar 

  • Schink, B., V. Thiemann, H. Laue, and M. W. Friedrich. 2002 Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate Arch. Microbiol. 177 381–391

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, H. G., and H. W. Jannasch. 1967 Enrichment cultures Ann. Rev. Microbiol. 21 49–70

    Article  CAS  Google Scholar 

  • Schlesner, H. 1986 Pirellula marina sp. nov., a budding peptidoglycanless bacterium from brackish water Syst. Appl. Microbiol. 8 177–180

    Article  Google Scholar 

  • Schmid, M., S. Schmitz-Esser, M. Jetten, and M. Wagner. 2001 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: Implications for phylogeny and in situ detection Environ. Microbiol. 3 450–459

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, G. B., C. L. Rosano, and C. Hurwitz. 1971 Evidence for a magnesium pump in Bacillus cereus T J. Bacteriol. 105 150–155

    PubMed  CAS  Google Scholar 

  • Schober, A., R. Günther, A. Schwienhorst., M. Döring, and B. F. Lindemann. 1993 Accurate high-speed liquid handling of very small biological samples BioTechniques 15 324–329

    PubMed  CAS  Google Scholar 

  • Scholten, J. C. M., and R. Conrad. 2000 Energetics of syntrophic propionate oxidation in defined batch and chemostat cultures Appl. Environ. Microbiol. 66 2934–2942

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, P., and A. Brennicke. 1999 Pflanzenphysiologie, 5th ed Springer-Verlag New York,NY

    Google Scholar 

  • Schramm, A., D. de Beer, J. C. van den Heuvel, S. Ottengraf, and R. Amann. 1999 Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microsensors Appl. Environ. Microbiol. 65 3690–3696

    PubMed  CAS  Google Scholar 

  • Schulten, H. R., B. Plage, and M. Schnitzer. 1991 A chemical structure for humic substances Naturwissenschaften 78 31–312

    Article  Google Scholar 

  • Schulz, E., H.-D. Lüdemann, and R. Jaenicke. 1976 High-pressure equilibrium studies on the dissociation-association of E. coli ribosomes FEBS Lett. 64 40–43

    Article  PubMed  CAS  Google Scholar 

  • Schut, F., E. J. de Vries, J. C. Gottschal, B. R. Robertson, W. Harder, R. A. Prins, and D. K. Button. 1993 Isolation of typical marine bacteria by dilution culture: Growth, maintenance, and characteristics of isolates under laboratory conditions Appl. Environ. Microbiol. 59 2150–2160

    PubMed  CAS  Google Scholar 

  • Schut, F., M. Jansen, T. M. Pedro Gomes, J. C. Gottschal, W. Harder, and R. A. Prins. 1995 Substrate uptake and utilization by a marine ultramicrobacterium Microbiology 141 351–361

    Article  PubMed  CAS  Google Scholar 

  • Schut, F., R. A. Prins, and J. C. Gottschal. 1997 Oligotrophy and pelagic marine bacteria: Facts and fiction Aquat. Microb. Ecol. 12 177–202

    Article  Google Scholar 

  • Scott, D. T., D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, and D. R. Lovley. 1998 Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms Environ. Sci. Technol. 32 2984–2989

    Article  CAS  Google Scholar 

  • Seitz, A. P., T. H. Nielsen, and J. Overmann. 1993 Physiology of purple sulfur bacteria forming macroscopic aggregates in Great Sippewissett Salt Marsh, Massachusetts FEMS Microbiol. Ecol. 12 225–236

    Article  CAS  Google Scholar 

  • Sekiguchi, Y., H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada. 2001 In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: A novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I Appl. Environ. Microbiol. 67 5740–5749

    Article  PubMed  CAS  Google Scholar 

  • Shilo, M. 1984 Bdellovibrio as a predator In: M. J. Klug and C. A. Reddy (Eds.) Current Perspectives in Microbial Ecology ASM Press Washington,DC 334–339

    Google Scholar 

  • Shockey, W. L., and B. A. Dehority. 1989 Comparison of two methods for enumeration of anaerobe numbers on forages and evaluation of ethylene oxide treatment for forage sterilization Appl. Environ. Microbiol. 55 1766–1768

    PubMed  CAS  Google Scholar 

  • Siebert, J., and P. Hirsch. 1988 Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land) Polar Biol. 9 37–44

    Article  PubMed  CAS  Google Scholar 

  • Simankova, M. V., O. R. Kotsyurbenko, E. Stackebrandt, N. A. Kostrikina, A. M. Lysenko, G. A. Osipov, and A. N. Nozhevnikova. 2000 Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil Arch. Microbiol. 174 440–447

    Article  PubMed  CAS  Google Scholar 

  • Simek, K., J. Vrba, J. Pernthaler, T. Posch, P. Hartman, J. Nedoma, and R. Psenner. 1997 Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes Appl. Environ. Microbiol. 63 587–595

    PubMed  CAS  Google Scholar 

  • Sitnikov, D. M., J. B. Schineller, and T. O. Baldwin. 1996 Control of cell division in Escherichia coli: Regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction Proc. Natl. Acad. Sci. USA 93 336–341

    Article  PubMed  CAS  Google Scholar 

  • Skerman, V. D. B. 1968 A new type of micromanipulator and microforge J. Gen. Microbiol. 54 287–297

    Article  PubMed  CAS  Google Scholar 

  • Skulachev, V. P. 1987 Bacterial sodium transport: Bioenergetic functions of sodium ions In: B. P. Rosen and S. Silver (Eds.) Ion Transport in Prokaryotes Academic Press New York,NY 131–164

    Google Scholar 

  • Slater, J. H., and A. T. Bull. 1978 Interactions between microbial populations In: A. T. Bull and P. M. Meadow (Eds.) Companion to Microbiology Longman London, UK 181–206

    Google Scholar 

  • Slonczewski, J., and J. W. Foster. 1996 pH-regulated genes and survival at extreme pH In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella, 2nd ed ASM Press Washington,DC 1539–1549

    Google Scholar 

  • Sly, L. I., and V. Arunpairojana. 1987 Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation J. Microbiol. Meth. 6 177–182

    Article  Google Scholar 

  • Soendergaard, M., B. Riemann, and N. O. G. Jörgensen. 1985 Extracellular organic carbon (EOC) released by phytoplankton and bacterial production Oikos 45 323–332

    Article  Google Scholar 

  • Somero, G. N. 1992 Adaptations to high hydrostatic pressure Ann. Rev. Physiol. 54 557–577

    Article  CAS  Google Scholar 

  • Spring, S., R. Amann, W. Ludwig, K.-H. Schleifer, H. van Gemerden, and N. Petersen. 1993 Dominating role of an unusual magnetotactic bacterium in the micraerobic zone of a freshwater sediment Appl. Environ. Microbiol. 59 2397–2403

    PubMed  CAS  Google Scholar 

  • Spring, S., R. Schulze, J. Overmann, and K.-H. Schleifer. 2000 Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: Molecular and cultivation studies FEMS Microbiol. Rev. 24 573–590

    Article  PubMed  CAS  Google Scholar 

  • Stal, L. J., H. van Gemerden, and W. E. Krumbein. 1985 Structure and development of a benthic marine microbial mat FEMS Microbiol. Ecol. 31 111–125

    Article  CAS  Google Scholar 

  • Staley, J. T., J. A. Fuerst, S. J. Giovannoni, and H. Schlesner. 1992 The order Planctomycetales and the genera Planctomyces, Pirellula, gemmata and Isosphaera In: A. Balows, M. Dworkin, W. Harder, K.-H. Schleifer, and H. G. Trüper (Eds.) The Prokaryotes Springer-Verlag New York,NY 3710–3731

    Google Scholar 

  • Stetter, K. O. 2001 Genus III: Pyrolobus In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology Springer-Verlag New York,NY 1 186–197

    Google Scholar 

  • Stevens, T. O. 1995 Optimization of media for enumeration and isolation of aerobic heterotrophic bacteria from the deep terrestrial subsurface J. Microbiol. Meth. 21 293–303

    Article  Google Scholar 

  • Stewart, C. S., and M. P. Bryant. 1988 The rumen bacteria In: P. N. Hobson (Ed.) The Rumen Microbial Ecosystem Elsevier Applied Science London, UK 21–75

    Google Scholar 

  • Stolp, H., and M. P. Starr. 1963 Bdellovibrio bacteriovorus gen. et sp. n., a predatory ectoparasitic and bacteriolytic microorganism Ant. v. Leeuwenhoek 29 217–248

    Article  CAS  Google Scholar 

  • Stolp, H., and M. P. Starr. 1965 Bacteriolysis Ann. Rev. Microbiol. 19 79–104

    Article  CAS  Google Scholar 

  • Stringfellow, W. T., and M. D. Aitken. 1994 Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil Can. J. Microbiol. 40 432–438

    Article  PubMed  CAS  Google Scholar 

  • Suh, D. H., T. C. Becker, J. A. Sands, and B. S. Montenecourt. 1988 Effects of temperature on xylanase secretion by Trichoderma reesei Biotechnol. Bioeng. 32 821–825

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., J. Sasaki, M. Uramoto, T. Nakase, and K. Komagata. 1997a Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychophilic actinomycete to accomodate “Curtobacterium psychrophilum,” Inoue and Komagata 1976 Int. J. Syst. Evol. Microbiol. 47 474–478

    CAS  Google Scholar 

  • Suzuki, M. T., M. S. Rappé, Z. W. Haimberger, H. Winfield, N. Adair, J. Ströbel, and S. J. Giovannoni. 1997b Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample Appl. Environ. Microbiol. 63 983–989

    PubMed  CAS  Google Scholar 

  • Sweerts, J. P. R. A., and D. de Beer. 1989 Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (Lake Vechten, The Netherlands) Appl. Environ. Microbiol. 55 754–757

    PubMed  CAS  Google Scholar 

  • Swift, S. T., I. Y. Najita, K. Ohtaguchi, and A. G. Fredrickson. 1982 Continuous culture of the ciliate Tetrahymena pyriformis on Escherichia coli Biotechnol. Bioeng. 24 1953–1964

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk, U., and B. Schink. 1989 Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture Arch. Microbiol. 15 541–545

    Article  Google Scholar 

  • Talamoto, S., K. Yamada, and Y. Ezura. 1994 Producing of bacteriolytic enzymes during the growth of a marine bacterium Alteromonas sp. no. 8-R J. Gen. Appl. Microbiol. 40 499–508

    Article  Google Scholar 

  • Tang, W.-C., J. C. White, and M. Alexander. 1998 Utilization of sorbed compounds by microorganisms specifically isolated for that purpose Appl. Microbiol. Biotechnol. 49 117–121

    Article  PubMed  CAS  Google Scholar 

  • Tappe, W., C. Tomaschewski, S. Rittershaus, and J. Groeneweg. 1996 Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention FEMS Microbiol. Ecol. 19 47–52

    Article  CAS  Google Scholar 

  • Tappe, W., A. Laverman, M. Bohland, M. Braster, S. Rittershaus, J. Groeneweg, and H. W. van Versefeld. 1999 Maintenance energy demand and starvation recovery synamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention Appl. Environ. Microbiol. 65 2471–2477

    PubMed  CAS  Google Scholar 

  • Teather, R. M. 1982 Maintenance of laboratory strains of obligately anaerobic rumen bacteria Appl. Environ. Microbiol. 44 499–501

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., F. Herbert, and P. J. Phipps. 1967 Studies on the growth of Aerobacter aerogenes at low dilution rates in a chemostat In: E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest (Eds.) Micobial Physiology and Continuous Culture HMSO London, UK 240–254

    Google Scholar 

  • Tempest, D. W. 1970a The continuous culture in microbial research Adv. Microb. Physiol. 4 223–250

    Article  Google Scholar 

  • Tempest, D. W. 1970b The place of continuous culture in microbial resaerch Adv. Microb. Physiol. 4 223–250

    Article  Google Scholar 

  • Tempest, D. W., and O. M. Neyssel. 1978 Eco-physiological aspects of microbial growth in aerobic nutrient limited environments Adv. Microb. Ecol. 2 105–153

    Article  Google Scholar 

  • Thauer, R. K., B. Käufer, and G. Fuchs. 1975 The active species of “CO2” utilized by reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum Eur. J. Biochem. 27 282–290

    Article  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anarobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988a Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs Appl. Environ. Microbiol. 54 20–29

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., M. Chartrain, and J. G. Zeikus. 1988b Control of interspecies electron flow during anaerobic digestion: Role of floc formation in syntrophic methanogenesis Appl. Environ. Microbiol. 54 10–19

    PubMed  CAS  Google Scholar 

  • Thompson, L. A., D. B. Nedwell, M. T. Balba, I. M. Banat, and E. Senior. 1983 The use of multiple vessel, open flow systems to investigate carbon flow in anaerobic microbial communities Microb. Ecol. 9 189–199

    Article  CAS  Google Scholar 

  • Torella, F., and R. Y. Morita. 1981 Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater Appl. Environ. Microbiol. 41 518–527

    Google Scholar 

  • Torsvik, V., J. Goksør, F. L. Daae, R. Sørheim, J. Michalsen, and K. Salte. 1994 Use of DNA analysis to determine the diversity of microbial communities In: K. Ritz, J. Dighton, and K. E. Giller (Eds.) Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities British Society of Soil Science/John Wiley Chichester, UK 39–48

    Google Scholar 

  • Trimbur, D. E., K. R. Gutshall, P. Prema, and J. E. Brenchley. 1994 Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase Appl. Environ. Microbiol. 60 4544–4552

    PubMed  CAS  Google Scholar 

  • Trüper, H. G., and N. Pfennig. 1971 Family of phototrophic Green Sulfur Bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species Int. J. Syst. Bacteriol. 21 8–10

    Article  Google Scholar 

  • Tuschak, C., J. Glaeser, and J. Overmann. 1999 Specific detection of green sulfur bacteria by in situ hybridization with a fluorescent labeled oligonucleotide probe Arch. Microbiol. 171 265–272

    Article  PubMed  CAS  Google Scholar 

  • Uphoff, H. U., A. Felske, W. Fehr, and I. Wagner-Döbler. 2001 The microbial diversity in picoplankton enrichment cultures: A molecular screening of marine isolates FEMS Microbiol. Ecol. 35 249–258

    Article  PubMed  CAS  Google Scholar 

  • Urakawa, H., K. Kita-Tsukamoto, S. E. Steven, K. Ohwada, and R. R. Colwell. 1998 A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov FEMS Microbiol. Lett. 165 373–378

    Article  PubMed  CAS  Google Scholar 

  • Urbach, E., K. L. Vergin, and S. J. Giovannoni. 1999 Immunochemical detection and isolation of DNA from metabolically active bacteria Appl. Environ. Microbiol. 65 1207–1213

    PubMed  CAS  Google Scholar 

  • Vancanneyt, M., F. Schut, C. Snauwaert, J. Goris, J. Swings, and J. C. Gottschal. 2001 Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment Int. J. Syst. Evol. Microbiol. 51 73–79

    PubMed  CAS  Google Scholar 

  • Van den Ende, F. P. L., A. M. Laverman, and H. van Gemerden. 1996 Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitations FEMS Microbiol. Ecol. 19 141–151

    Article  Google Scholar 

  • Van den Ende, F. P., J. Meier, and H. van Gemerden. 1997 Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation FEMS Microbiol. Ecol. 23 65–80

    Article  Google Scholar 

  • van der Meer, M. T. J., S. Schouten, B. E. van Dongen, W. I. C. Rijpstra, G. Fuchs, J. S. Sinninghe Damsté, J. W. de Leeuw, and D. M. Ward. 2001 Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus J. Biol. Chem. 276 10971–10976

    Article  PubMed  Google Scholar 

  • Van der Wielen, P. W. J. J., L. J. A. Lipman, F. van Knapen, and S. Biesterveld. 2002 Competitive exclusion of Salmonella enterica serovar enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture Appl. Environ. Microbiol. 68 555–559

    Article  PubMed  CAS  Google Scholar 

  • van Gemerden, H. 1974 Coexistence of organisms competing for the same substrate: An example among purple sulfur bacteria Microb. Ecol. 1 104–110

    Article  Google Scholar 

  • van Gemerden, H., C. S. Tughan, R. De Witz, and R. A. Herbert. 1989 Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands FEMS Microbiol. Ecol. 62 87–102

    Article  Google Scholar 

  • van Gemerden, H., and J. Mas. 1995 Ecology of phototrophic sulfur bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Phototrophic Bacteria Kluwer Academic Publishers Dordrecht,The Netherlands 49–85

    Google Scholar 

  • Van Iterson Jr., G., L. E. Den Dooren de Jong, and A. J. Kluyver. 1940 Martinus Willem Beyerinck, His Life and Work Martinus Nijhoff The Hague, The Netherlands

    Google Scholar 

  • Van Niel, C. B. 1930 Contributions to Marine Biology Stanford University Press Stanford,CA 161–169

    Google Scholar 

  • Van Niel, C. B. 1967 Prefatory chapter. The education of a microbiologist: Some reflections Ann. Rev. Microbiol. 21 1–30

    Article  Google Scholar 

  • Van Verseveld, H. W., W. R. Chesbro, M. Braster, and A. H. Stouthamer. 1984 Eubacteria have 3 growth modes keyed to nutrient-flow—consequences for the concept of maintenance and maximal growth yield Arch. Microbiol. 137 176–184

    Article  PubMed  Google Scholar 

  • Varon, M., and M. Shilo. 1980 Ecology of aquatic Bdellovibrios Adv. Aquat. Microbiol. 2 1–48

    CAS  Google Scholar 

  • Veldkamp, H. 1965 Enrichment cultures–history and prospects In: H. G. Schlegel and E. Kröger (Eds.) Anreicherungskultur und Mutantenauslese: Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hygiene I. Abteilung Gustav Fischer Verlag Stuttgart, Germany Supplement 1 1–13

    Google Scholar 

  • Veldkamp, H., and H. W. Jannasch. 1972 Mixed culture studies with the chemostat J. Appl. Chem. Biotechnol. 22 105–123

    Article  CAS  Google Scholar 

  • Veldkamp, H., and J. G. Kuenen. 1973 The chemostat as a model system for ecological studies Bull. Ecol. Res. Comm. 17 347–355

    Google Scholar 

  • Veldkamp, H. 1977 Ecological studies with the chemostat Adv. Microb. Ecol. 1 59–94

    Article  CAS  Google Scholar 

  • Veldkamp, H., H. van Gemerden, W. Harder, and H. J. Laanbroek. 1984 Microbial competition In: M. J. Klug and C. A. Reddy (Eds.) Current Perspectives in Microbial Ecology ASM Press Washington,DC 279–290

    Google Scholar 

  • Vester, F., and K. Ingvorsen. 1998 Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer Appl. Environ. Microbiol. 64 1700–1707

    PubMed  CAS  Google Scholar 

  • Visscher, P. T., R. A. Prins, and H. van Gemerden. 1992a Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat FEMS Microb. Ecol. 86 283–294

    Article  CAS  Google Scholar 

  • Visscher, P. T., F. P. van den Ende, B. E. M. Schaub, and H. van Gemerden. 1992b Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat FEMS Microbiol. Ecol. 101 51–58

    CAS  Google Scholar 

  • Vobis, G. 1992 The genus,Actinoplanes and related genera In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 1029–1060

    Google Scholar 

  • Wachenheim, D. E., and R. B. Hespell. 1984 Inhibitory effects of titanium (III) citrate on enumeration of bacteria from rumen contents Appl. Environ. Microbiol. 48 444–445

    PubMed  CAS  Google Scholar 

  • Walderhaug, M. O., D. C. Dosch, and W. Epstein. 1987 Potassium transport in bacteria In: B. P. Rosen and S. Silver (Eds.) Ion Transport in Prokaryotes Academic Press New York,NY 85–130

    Google Scholar 

  • Walker, G. C. 1996 The SOS response of Escherichia coli In: F. C. Neidhardt (Ed.) Escherichia coli and Salmonella ASM Press Washington,DC 1 1400–1416

    Google Scholar 

  • Wang, X., P. A. J. de Boer, and L. I. Rothfield. 1991 A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli EMBO J. 10 3363–3372

    PubMed  CAS  Google Scholar 

  • Ward, D. M., M. M. Bateson, R. Weller, and A. L. Ruff-Roberts. 1992 Ribosomal RNA analysis of microorganisms as they occur in nature Adv. Microb. Ecol. 12 219–286

    Article  CAS  Google Scholar 

  • Warthmann, R., H. Cypionka, and N. Pfennig. 1992 Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria Arch. Microbiol. 157 343–348

    Article  CAS  Google Scholar 

  • Waterbury, J. B., C. B. Calloway, and R. D. Turner. 1983 A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Terebrenidae) Science 221 1401–1403

    Article  PubMed  CAS  Google Scholar 

  • Waterbury, J. B. 1991 The cyanobacteria—isolation, purification, and identification In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 149–196

    Google Scholar 

  • Watson, T. G. 1969 Steady state operation of a continuous culture at maximum growth rate by control of carbon-dioxide production J. Gen. Microbiol. 59 83–89

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics Int. J. Syst. Bacteriol. 37 463–464

    Article  Google Scholar 

  • Weimer, P. J., and J. G. Zeikus. 1977 Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum Appl. Environ. Microbiol. 33 289–297

    PubMed  CAS  Google Scholar 

  • Weise, W., and G. Rheinheimer. 1978 Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments Microb. Ecol. 4 175–188

    Article  Google Scholar 

  • Welch, T. J., A. Farewell, F. C. Neidhardt, and D. Bartlett. 1993 Stress response of Escherichia coli to elevated hydrostatic pressure J. Bacteriol. 175 7170–7177

    PubMed  CAS  Google Scholar 

  • Westermann, P., B. K. Ahring, and R. A. Mah. 1989 Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity Appl. Environ. Microbiol. 55 1262–1266

    PubMed  CAS  Google Scholar 

  • White, R. H. 1984 Hydrolytic stability of biomolecules at high temperatures and its implications for life at 250°C Nature 310 430–432

    Article  PubMed  CAS  Google Scholar 

  • Whitesides, M. D., and J. D. Oliver. 1997 Resuscitation orf Vibrio vulnificus from the viable but non-culturable state Appl. Environ. Microbiol. 63 1002–1005

    PubMed  CAS  Google Scholar 

  • Widdel, F., G.-W. Kohring, and F. Mayer. 1983 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III: Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov Arch. Microbiol. 134 286–294

    Article  CAS  Google Scholar 

  • Widdel, F. 1988 Microbiology and ecology of sulfate-and sulfur-reducing bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons New York,NY 469–585

    Google Scholar 

  • Widdel, F., and F. Bak. 1992 Gram-negative mesophilic sulfate-reducing bacteria In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York,NY 3352–3378

    Google Scholar 

  • Wiegel, J., and L. G. Ljungdahl. 1986 The importance of thermophilic bacteria in biotechnology CRC Crit. Rev. Biotechnol. 3 39–107

    Article  CAS  Google Scholar 

  • Wiegel, J. 1990 Temperature spans for growth: Hypothesis and discussion FEMS Microbiol. Rev. 75 1565–170

    Google Scholar 

  • Wilkinson, T. G., H. H. Topiwala, and G. Hamer. 1974 Interactions in a mixed bacterial population growing on methane in continuous culture Biotechnol. Bioeng. 16 41–59

    Article  PubMed  CAS  Google Scholar 

  • Winogradsky, S. 1949 Microbiologie du Sol: Oeuvres Complèetes Marson Paris, France

    Google Scholar 

  • Wirsen, C. O., and H. W. Jannasch. 1978 Physiological and morphological observations on Thiovulum sp J. Bacteriol. 136 765–774

    PubMed  CAS  Google Scholar 

  • Wirsen, C. O., H. W. Jannasch, S. G. Wakeham, and E. A. Cannel. 1987 Membrane lipids of a psychrophilic and barophilic deep-sea bacterium Curr. Microbiol. 14 319–322

    Article  CAS  Google Scholar 

  • Wirsen, C. O., and S. J. Molyneaux. 1999 A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat Appl. Environ. Microbiol. 65 5314–5321

    PubMed  CAS  Google Scholar 

  • Wolfe, R. S., and N. Pfennig. 1977 Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium Appl. Environ. Microbiol. 33 427–433

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. 1982 Hydrogen transfer in microbial communities In: A. T. Bull and J. H. Slater (Eds.) Microbial Interactions and Communities Academic Press London, UK 1 323–356

    Google Scholar 

  • Wolter, K. 1982 Bacterial incorporation of organic substances released by natural phytoplankton populations Marine Ecol. Prog. Ser. 7 287–295

    Article  Google Scholar 

  • Xu, H. S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982 Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment Microbiol. Ecol. 8 313–323

    Article  Google Scholar 

  • Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. 1982 Living with water stress: Evolution of osmolyte systems Science 217 1214–1227

    Article  PubMed  CAS  Google Scholar 

  • Yayanos, A. A. 1978 Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters Science 200 1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Yayanos, A. A. 1986 Evolutional and ecological implications of the properties of deep-sea barophilic bacteria Proc. Natl. Acad. Sci. USA 83 9542–9546

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, F., T. Yamane, and K. Nakamoto. 1973 Fed-batch hydrocarbon fermentation with colloidal emulsion feed Biotechnol. Bioeng. 15 257–270

    Article  CAS  Google Scholar 

  • Yumoto, I., K. Yamazaki, M. Hishinuma, Y. Nodasaka, K. Nakajima, N. Inoue, and K. Kawasaki. 2001 Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater Int. J. Syst. Evol. Microbiol. 51 349–355

    PubMed  CAS  Google Scholar 

  • Yumoto, I., A. Nakamura, H. Iwata, K. Kusumoto, Y. Nodasaka, and H. Matsuyama. 2002 Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons Int. J. Syst. Evol. Microbiol. 52 85–90

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and K. Wuhrman. 1976 Titanium (III) citrate as a non-toxic oxidation-reduction buffering system for the culture of obligate anaerobes Science 194 1165–1166

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and W. Stumm. 1988 Geochemistry and biogeochemistry of anaerobic habitats In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons New York,NY 1–38

    Google Scholar 

  • Zengler, K., H. H. Richnow, R. Rosselló-Mora, W. Michaelis, and F. Widdel. 1999 Methane formation from long-chain alkanes by anaerobic microorganisms Nature 401 266–269

    Article  PubMed  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984 Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture Arch. Microbiol. 138 263–272

    Article  CAS  Google Scholar 

  • Zobell, C. E., and F. H. Johnson. 1949 The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria J. Bacteriol. 57 179–189

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Overmann, J. (2006). Principles of Enrichment, Isolation, Cultivation and Preservation of Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30741-9_5

Download citation

Publish with us

Policies and ethics