Skip to main content

Biosurfactants

  • Reference work entry
The Prokaryotes

Introduction

Microorganisms are specialists. In any particular ecological niche, one microorganism or a limited number of strains dominates. These microorganisms have evolved the ability to survive in this niche for long periods when growth is impossible, and then when nutrients become available, they can outgrow their competitors. The fast growth of microorganisms depends largely on their high surface-to-volume ratio, which allows for the efficient uptake of nutrients and release of waste products. The price that the microorganism pays for the high surface-to-volume ratio is that it is totally exposed. All the components outside of the cell must function under the specific conditions of the ecological niche. Probably for this reason, the diversity of the microbial world is best expressed on the outside of the cell.

In any heterogenous system, boundaries are of fundamental importance to the behavior of the system as a whole. Therefore, it is not surprising that microorganisms, having a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abraham, W. R., H. Meyer, and M. Yakimov. 1998 Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis Biochim. Biophys. Acta 1393 (1)57–62

    Article  PubMed  CAS  Google Scholar 

  • Appaiah, A. K. A., and N. G. K. Karanth. 1991 Insecticide specific emulsifier production by hexachlorocyclohexane-utilizing Pseudomonas tralucida Ptm+ strain Biotechnol. Lett. 13 371–374

    Article  CAS  Google Scholar 

  • Arima, K., A. Kahinuma, and G. Tamura. 1968 Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation Biochem. Biophys. Res. Commun. 31 488–494

    Article  PubMed  CAS  Google Scholar 

  • Arino, S., R. Marchal, and J. P. Vandecasteele. 1996 Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species Appl. Microbiol. Biotechnol. 45 (1–2)162–168

    Article  CAS  Google Scholar 

  • Arino, S., R. Marchal, and J. P. Vandecasteele. 1998 Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community J. Appl. Microbiol. 84 769–776

    Article  PubMed  CAS  Google Scholar 

  • Ashtaputre, A. A., and A. K. Shah. 1995 Emulsifying property of a viscous exopolysaccharide from Sphingomonas paucimobilis World J. Microbiol. Biotechnol. 11 219–222

    Article  CAS  Google Scholar 

  • Banat, I. M. 1995 Biosurfactants production and possible use in microbial enhanced oil recovery and oil pollution remediation: a review Biosource Technol. 51 1–12

    Article  CAS  Google Scholar 

  • Barkay, T., S. Navon-Venezia, E. Ron, and E. Rosenberg. 1999 Enhancment of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan Applied Environ. Microbiol. 65 2697–2702

    CAS  Google Scholar 

  • Beebe, J. L., and W. W. Umbreit. 1971 Extracellular lipid of Thiobacillus thiooxidans J. Baceteriol. 108 612–515

    CAS  Google Scholar 

  • Belsky I., D. L. Gutnick, and E. Rosenberg. 1979 Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids FEBS Lett. 101 175–178

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer, A. W., and L. S. Avigad. 1970 Nature and properties of a cytological agent produced by Bacillus subtilis J. Gen. Microbiol 61 361–369

    Article  PubMed  CAS  Google Scholar 

  • Bohringer, J., D. Fischer, G. Mosler, and R. Hengge-Aronis. 1995 UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli J. Bacteriol. 177 413–422

    PubMed  CAS  Google Scholar 

  • Borchert S., T. Stachelhaus, and M. A. Marahiel. 1994 Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis J. Bacteriol. 176 2458–2462

    PubMed  CAS  Google Scholar 

  • Brint, J. M., and D. E. Ohman. 1995 Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family J. Bacteriol. 177 7155–7163

    PubMed  CAS  Google Scholar 

  • Bruheim, P., H. Bredholt, and K. Eimhjellen. 1997 Bacterial degradation of emulsified crude oil and the effect of various surfactants Can. J. Microbiol. 43 (1) 17–22

    Article  Google Scholar 

  • Bunster, L., N. J. Fokkema, and B. Shippers. 1989 Effect of surface-active Pseudomonas spp. on leaf wettability App. Environ. Microbiol. 55 1434–1435

    Google Scholar 

  • Burd, G., and O. P. Ward. 1996 Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis Can. J. Microbiol. 42 243–252

    Article  PubMed  CAS  Google Scholar 

  • Calvo, C., F. Martinez-Checa, A. Mota, V. Bejar, and E. Quesada. 1998 Effect of cations, pH and sulfate content on the viscosity and emulsifying activity on the Halomonas eurihalina J. Ind. Microbiol. Biotechnol. 20 205–209

    Article  CAS  Google Scholar 

  • Cameron, D. R., D. G. Cooper, and R. J. Neufeld. 1988 The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier Appl. Environ. Microbiol. 54 1420–1425

    PubMed  CAS  Google Scholar 

  • Campos-Garcia, J., A. D. Caro, R. Najera, R. M. Miller-Maier, R. A. Al-Tahhan, and D. Soberon-Chavez. 1998 The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis J. Bacteriol. 180 4442–4451

    PubMed  CAS  Google Scholar 

  • Cirigliano, M. C., and G. M. Carman. 1984 Purification and characterization of liposan, a bioemulsifier from Candida lipolytica App. Environ. Microbiol. 50 846–850

    Google Scholar 

  • Cooper, D. G., and J. E. Zajic. 1980 Surface active compounds from microorganisms Adv. Appl. Microbiol. 26 229–253

    Article  CAS  Google Scholar 

  • Cooper, D. G., C. R. MacDonald, S. J. B. Duff, and N. Kosaric. 1981 Enhanced production of surfactin of B. subtilis by continuous product removal and metal cation additions Appl. Environ. Microbiol. 42 408–412

    PubMed  CAS  Google Scholar 

  • Cooper, D. G., and D. A. Paddock. 1983 Torulopsis petrophilum and surface activity Appl. Environ. Microbiol. 46 1426–1429

    PubMed  CAS  Google Scholar 

  • Cooper, D. G., S. N. Liss, R. Longay, J. E. Zajic. 1989 Surface activities of Mycobacterium and Pseudomonas J. Ferment Technology 59 97–101

    Google Scholar 

  • Cosby, W. M., D. Vollenbroich, O. H. Lee, and P. Zuber. 1998 Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control J. Bacteriol. 180 1438–1445

    PubMed  CAS  Google Scholar 

  • Cosmina, P., F. Rodriguez, F. de Ferra, G. Grandi, M. Perego, G. Venema, and D. van Sinderen. 1993 Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis Mol. Microbiol. 8 21–31

    Article  Google Scholar 

  • Cutler, A. J., and R. J. Light. 1979 Regulation of hydroxydocosanoic and sophoroside production in Candida bogoriensis by the level of glucose and yeast extract in the growth medium J. Biol. Chem. 254 1944–1950

    PubMed  CAS  Google Scholar 

  • Dahan, O. 1998 Isolation and characterization of alasan mutants in Acinetobacter radioresistens MSc Thesis, Tel Aviv University

    Google Scholar 

  • Davila, A. M., R. Marchal, and J. P. Vandecasteele. 1997 Sophorose lipid fermentation with differentiated substrate supply for growth and production phases Appl. Microbiol. Biotechnol. 47 496–501

    Article  CAS  Google Scholar 

  • De Acevedo, G. T., and M. J. McInerney. 1996 Emulsifying activity in thermophilic and extremely thermophilic microorganisms J. Indust. Microbiol. 16 17–22

    Google Scholar 

  • Desai, J., and I. Banat. 1997 Microbial production of surfactants and their commercial potential. R Microbiol. Mol. Biol. 61 47–48

    CAS  Google Scholar 

  • Deziel, E., G. Paquette, R. Villemur, F. Lepine, and J. G. Bisaillon. 1996 Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons Appl. Environ. Microbiol. 62 (6) 1908–1912

    Google Scholar 

  • Espuny, M. J., S. Egido, I. Rodon, A. Manresa, and M. E. Mercade. 1996 Nutritional requirements of a biosurfactant producing strain Rhodococcus s p. 51T7 Biotechnology Letters 18 521–526

    Article  CAS  Google Scholar 

  • Fabret, C., Y. Quentin, A. Guiseppi, J. Busuttil, J. Haiech, and F. Denizot. 1995 Analysis of errors in finished DNA sequences: the surfactin operon of Bacillus subtilis as an example Microbiology 141 345–350

    Article  PubMed  CAS  Google Scholar 

  • Fattom, A., and M. Shilo. 1985 Production of emulcyan by Phormidium J-1: its function and activity FEMS Microbiol. Ecol. 1 1–7

    Google Scholar 

  • Fiebig, R., D. Schulze, J. C. Chung, and S. T. Lee. 1997 Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil Biodegradation 8 67–75

    Article  CAS  Google Scholar 

  • Fiechter, A. 1992 Biosurfactants: moving towards industrial application Trends Biotechnol. 10 208–217

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel, D. G. 1992 Genetics and intermediary metabolism Ann. Rev. Genet. 26 159–177

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., F. Rodriguez, P. Cosmina, C. Pratesi, R. Nogarotto, F. de Ferra, and G. Grandi. 1994 Characterization of the surfactin synthetase multi-enzyme complex Biochim. Biophys. Acta. 1205 19–28

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg-Dvir, V. 1998 A new bioemulsifier produced by the oil-degrading Acinetobacter junii V-26 MSc thesis, Tel-Avi University

    Google Scholar 

  • Goldman, S., Y. Shabtai, C. Rubinovitz, E. Rosenberg, and D. L. Gutnick. 1982 Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of cell-free and cell-associated cross-reacting materials Appl. Environ. Microbiol. 44 165–170

    PubMed  CAS  Google Scholar 

  • Golyshin, P. N., S. Lang, E. R. Moore, W. R. Abraham, H. Lunsdorf, and K. J. Timmis. 1998 Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium Int. J. Syst. Bacteriol. 48 (2) 339–348

    Google Scholar 

  • Grau, A., J. C. Gomez Fernandez, F. Peypoux, and A. Ortiz. 1999 A study on the interactions of surfactin with phospholipid vesicles Biochim. Biophys. Acta. 1418 307–319

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A. D. 1995 Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis Annu. Rev. Genet. 29 477–508

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Santos, L. H., O. Kappeli, and A. Fiechter. 1986 Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors Appl. Microbiol. Biotechnol. 24 443–448

    Article  CAS  Google Scholar 

  • Gunjar, M., J. M. Khire, and M. I. Khan. 1995 Bioemusifier production by Bacillus stearothermophilus VR8 isolate Lett. Appl. Microbiol. 21 83–86

    Article  Google Scholar 

  • Hauser, G., and M. L. Karnovsky. 1954 Studies on the production of glycolipid by Pseudomonas aeruginosa J. Bacteriol. 68 645–654

    PubMed  CAS  Google Scholar 

  • Hisatsuka, K., T. Nakahara, N. Sano, and K. Yamada. 1971 Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation Agr. Biol. Chem. 35 686–692

    Article  Google Scholar 

  • Horowitz, S., and W. M. Griffin. 1991 Structural analysis of Bacillus licheniformis 86 surfactant J. Ind. Microbiol. 7 45–52

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., and S. Itoh. 1982 Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation Biotechnol. Lett. 4 308–312

    Article  Google Scholar 

  • Isoda, H., H. Shinmoto, D. Kitamoto, M. Matsumura, and T. Nakahara. 1997 Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids Lipids 32 263–271

    Article  PubMed  CAS  Google Scholar 

  • Itoh, S., and T. Suzuki. 1972 Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability Agric. Biol. Chem. 36 1233–1235

    Article  Google Scholar 

  • Itoh, S., and S. Inoue. 1982 Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations Appl. Environ. Microbiol. 43 1278–1283

    Google Scholar 

  • Kaeppeli, O., and W. R. Finnerty. 1979 Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter J. Bacteriol. 140 707–712

    Google Scholar 

  • Kaeppeli, O., and W. R. Finnerty. 1980 Characteristics of hexadecane partition by the growth medium of Acinetobacter sp Biotechnol. Bioeng. 22 495–501

    Article  CAS  Google Scholar 

  • Kaeppeli, O., P. Walther, M. Mueller, and A. Fiechter. 1984 Structure of cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport Arch. Microbiol. 138 279–282

    Article  CAS  Google Scholar 

  • Kaplan, N., and E. Rosenberg. 1982 Exopolysaccharide distribution and bioemulsifier production in Acinetobacter calcoaceticus BD4 and BD413 Appl. Environ. Microbiol. 44 1335–1341

    PubMed  CAS  Google Scholar 

  • Kaplan, N., B. Jann, and K. Jann. 1985 Structural studies on the capsular polysaccharide of Acinetobacter calcoaceticus BD4 Eur. J. Biochem. 152 453–458

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, N., Z. Zosim, and E. Rosenberg. 1987 Acinetobacter calcoaceticus BD4 emulsan: reconstitution of emulsifying activity with pure polysaccharide and protein Appl. Environ. Microbiol. 53 440–446

    PubMed  CAS  Google Scholar 

  • Katz, E., and A. L. Demain. 1977 The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions Bacteriol. Rev. 41 449–458

    PubMed  CAS  Google Scholar 

  • Kim, J. S., M. Powalla, S. Lang, F. Wagner, H. Lunsdorf, and V. Wray. 1990 Microbial glycolipid production under nitrogen limitation and resting cell conditions J. Biotechnol. 13 257–266

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. K., O. Kaeppeli, A. Fiechter, and J. Reiser. 1991 Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants J. Bacteriol. 173 4212–4219

    PubMed  CAS  Google Scholar 

  • Klekner, V., and N. Kosaric. 1993 Biosurfactants for cosmetics In: N. Kosaric (Ed.)Surfactant Science Series. Biosurfactants: production, properties, applications Marcel Dekker Inc. New York, NY 48 329–372

    Google Scholar 

  • Konz, D., A. Doekel, and M. A. Marahiel. 1999 Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin J. Bacteriol. 181 133–140

    PubMed  CAS  Google Scholar 

  • Krauss, E. M., and S. I. Chan. 1983 Complexation and phase transfer of nucleotides by gramicidin S Biochemistry 22 4280–4285

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer, A., H. Bock, and F. Wagner. 1982 Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane Appl. Environ. Microbiol. 44 864–870

    PubMed  CAS  Google Scholar 

  • Lambalot, R. H., A. M. Gehring, R. S. Flugel, P. Zuber, M. LaCelle, M. A. Marahiel, R. Reid, C. Khosla, and C. T. Walsh. 1996 A new enzyme superfamily–the phosphopantetheinyl transferases Chem. Biol. 3 923–936

    Article  PubMed  CAS  Google Scholar 

  • Lang, S., and F. Wagner. 1987 Structure and properties of biosurfactants In: Kosaric, N., W. L. Cairns, and N. C. C. Gray (Eds.) Surfactant Science Series, Biosurfactants and Biotechnology Marcel Dekker Inc. New York 25 21–47

    Google Scholar 

  • Lang, S., and J. C. Philip. 1998 Surface active lipids in rhodococci Anton. Leeuw. Int. 74 59–70

    Article  CAS  Google Scholar 

  • Lang, S., and D. Wullbrandt. 1999 Rhamnose lipids-biosynthesis, microbial production and application potential Appl. Microbiol. Biotechnol. 51 22–32

    Article  PubMed  CAS  Google Scholar 

  • Latifi, A., M. K. Winson, M. Foglino, B. W. Bycroft, G. S. Stewart, A. Lazdunski, and P. Williams. 1995 Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 Mol. Microbiol. 17 333–343

    Article  PubMed  CAS  Google Scholar 

  • Latifi, A., M. Foglino, K. Tanaka, P. Williams, and A. Lazdunski. 1996 A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS Mol. Microbiol. 21 1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Lazazzera, B. A., I. G. Kurtser, R. S. McQuade, and A. D. Grossman. 1999 An autoregulatory circuit affecting peptide signaling in Bacillus subtilis J. Bacteriol. 181 5193–5200

    PubMed  CAS  Google Scholar 

  • Li, Z. Y., S. Lang, F. Wagner, L. Witte, and V. Wray. 1984 Formation and identification of interfacial-active glycolipids from resting microbial cells of Arthrobacter sp. and potential use in tertiary oil recovery Appl. Environ. Microbiol. 48 610–617

    PubMed  CAS  Google Scholar 

  • Lin, S. C., M. A. Minton, M. M. Sharma, and G. Georgiou. 1994 Structural and Immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2 Appl. Environ. Microbiol. 60 31–38

    PubMed  CAS  Google Scholar 

  • Lin, S. C. 1996 Biosurfactants: recent advances J. Chem. Technol. Biotechnol. 66 (2) 109–120

    Article  Google Scholar 

  • Lindum, P. W., U. Anthoni, C. Christophersen, L. Eberl, S. Molin, and M. Givskov. 1998 N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1 J. Bacteriol. 180 6384–6388

    PubMed  CAS  Google Scholar 

  • Liu, L., M. M. Nakano, O. H. Lee, and P. Zuber. 1996 Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis J. Bacteriol. 178 5144–5152

    PubMed  CAS  Google Scholar 

  • Luttinger, A., J. Hahn, and D. Dubnau. 1996 Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis Mol. Microbiol. 19 343–356

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, C. R., D. G. Cooper, and J. E. Zajic. 1981 Surface-active lipids from Nocardia erythropolis grown on hydrocarbons Appl. Environ. Microbiol. 41 117–123

    PubMed  CAS  Google Scholar 

  • Makkar, R. S., and S. S. Cameotra. 1997 Biosurfactant production by a thermophilic Bacillus subtilis strain J. Ind. Microbiol. Biotechnol. 18(1) 37–42

    Article  CAS  Google Scholar 

  • Marahiel, M. A., M. M. Nakano, and P. Zuber. 1993 Regulation of peptide antibiotic production in Bacillus Mol. Microbiol. 7 631–636

    Article  PubMed  CAS  Google Scholar 

  • Marahiel, M. A. 1997 Protein templates for the biosynthesis of peptide antibiotics Chem. Biol. 4 4561–4567

    Article  Google Scholar 

  • Marin, M., A. Pedregosa, and F. Laborda. 1996 Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5 Appl. Microbiol. Biotechnol. 44 660–667

    Article  CAS  Google Scholar 

  • Matsuyama, T., M. Sogawa, and I. Yano. 1991 Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents Appl. Environ. Microbiol. 53 1186–1188

    Google Scholar 

  • Menkhaus, M., C. Ullrich, B. Kluge, J. Vater, D. Vollenbroich, and R. M. Kamp. 1993 Structural and functional organization of the surfactin synthetase multienzyme system J. Biol. Chem. 268 7678–7684

    PubMed  CAS  Google Scholar 

  • Miller, R. M., and Y. Zhang. 1997 Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons Meth. Biotechnol. 2 59–66

    CAS  Google Scholar 

  • Nakano, M. M., R. Magnuson, A. Myers, J. Curry, A. D. Grossman, and P. Zuber. 1991 srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis J. Bacteriol. 173 1770–1778

    PubMed  CAS  Google Scholar 

  • Nakano, M. M., N. Corbel, J. Besson, and P. Zuber. 1992 Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis Mol. Gen. Genet. 232 313–321

    PubMed  CAS  Google Scholar 

  • Nakayama, S., S. Takahashi, M. Hirai, and M. Shoda. 1997 Isolation of new variants of surfactin by a recombinant Bacillus subtilis Appl. Microbiol. Biotechnol. 48 80–82

    Article  CAS  Google Scholar 

  • Navon-Venezia, S., Z. Zosim, A. Gottlieb, R. Legmann, S. Carmeli, E. Z. Ron, and E. Rosenberg. 1995 Alasan, a new bioemulsifier from Acinetobacter radioresistens Appl. Environ. Microbiol. 61 3240–3244

    PubMed  CAS  Google Scholar 

  • Navon-Venezia, S., E. Banin, E. Z. Ron, and E. Rosenberg. 1998 The bioemulsifier alasan: role of protein in maintaining structure and activity Appl. Microbiol. Biotechnol. 49 382–384

    Article  CAS  Google Scholar 

  • Neu, T. R., and K. Poralla. 1990 Emulsifying agent from bacteria isolated during screening for cells with hydrophobic surfaces Appl. Microbiol. Biotechnol. 32 521–525

    CAS  Google Scholar 

  • Neu, T. R. 1996 Significance of bacterial surface-active compounds in interaction of bacteria with interfaces Microbiol. Rev. 60 151–166

    PubMed  CAS  Google Scholar 

  • Neufeld, R. J., and J. E. Zajic. 1984 The surface activity of Acinetobacter calcoaceticus sp. 2CA2 Biotechnol. Bioeng. 26 1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Ochsner, U. A., A. K. Koch, A. Fiechter, and J. Reiser. 1994 Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa J. Bacteriol. 176 2044–2054

    PubMed  CAS  Google Scholar 

  • Ochsner, U. A., and J. Reiser. 1995 Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 92 6424–6428

    Article  PubMed  CAS  Google Scholar 

  • Parra, J. L., J. Guinea, M. R. Manresa, M. E. Mercade, F. Comelles, and M. P. Bosch. 1989 Chemical characterization and physico-chemical behaviour of biosurfactants J. Am. Oil. Chem. Soc. 66 141–145

    Article  CAS  Google Scholar 

  • Patel, M. N., and K. P. Gopinathan. 1986 Lysozyme-sensitive bioemulsifier for immiscible organophosphorus pesticides Appl. Environ. Microbiol. 52 1224–1226

    PubMed  CAS  Google Scholar 

  • Pearson, J. P., E. C. Pesci, and B. H. Iglewski. 1997 Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes J. Bacteriol. 179 5756–5767

    PubMed  CAS  Google Scholar 

  • Persson, A., E. Oesterberg, and Dostalek, M. 1988 Biosurfactant production by Pseudomonas fluorescens 378: Growth and product characteristics Appl. Microbiol. Biotechnol. 29 1–4

    Article  CAS  Google Scholar 

  • Pesci, E. C., J. P. Pearson, P. C. Seed, and B. H. Iglewski. 1997 Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa J. Bacteriol. 179 3127–3132

    PubMed  CAS  Google Scholar 

  • Peypoux, F., J. M. Bonmatin, and J. Wallach. 1999 Recent trends in the biochemistry of surfactin Appl. Microbiol. Biotechnol. 51 553–563

    Article  PubMed  CAS  Google Scholar 

  • Pruthi, V., and S. S. Cameotra. 1997 Production of a biosurfactant exhibiting excellent emusification and surface active properties by Serratia marcescens World J. Microbiol. Biotechnol. 13 (1) 133–135

    Article  Google Scholar 

  • Rapp, P., H. Bock, V. Wray, and F. Wagner. 1979 Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes J. Gen. Microbiol 115 491–503

    Article  CAS  Google Scholar 

  • Rau, U., C. Manzke, and F. Wagner. 1996 Influence of substrate supply on the production of sophorose lipids by Candida bombicola ATCC 22214 Biotechnology Letters 18 149–154

    Article  CAS  Google Scholar 

  • Rehm, H. J., and I. Reiff. 1981 Mechanisms and occurrence of microbial oxidation of long-alkanes Adv. Biochem. Eng. 19 173–181

    Google Scholar 

  • Rendell, N. B., G. W. Taylor, M. Somerville, H. Todd, R. Wilson, and J. Cole. 1990 Characterization of Pseudomonas rhamnolipids Biochim. Biophys. Acta. 1045 189–193

    Article  PubMed  CAS  Google Scholar 

  • Richter, M., M. Willey, R. Suessmuth, G. Jung, and H. P. Fiedler. 1998 Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tue 901/8c FEMS Microbiol. Lett. 163 (2) 165–171

    Google Scholar 

  • Ristau, E., and F. Wagner. 1983 Formation of novel anionic trehalose-tetraesters from Rhodococcus erythropolis under growth limiting conditions Biotechnol. Lett. 5 95–100

    Article  CAS  Google Scholar 

  • Robinson, K., M. Ghosh, and Z. Shi. 1996 Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant Water. Sci. Technol. 34 303–309

    CAS  Google Scholar 

  • Rosenberg, E., A. Perry, D. T. Gibson, D. Gutnick. 1979a Emulsifier of Arthrobacter RAG-1: Specificity of hydrocarbon substrate Appl. Environ. Microbiol. 37 409–413

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., A. Zuckerberg, C. Rubinovitz, D. L. Gutnick. 1979b Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties Appl. Environ. Microbiol. 37 402–408

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., A. Gottlieb, M. Rosenberg. 1983 Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan Infect. Immun. 39 1024–1028

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., and N. Kaplan. 1987 Surface-active properties of Acinetobacter expolysaccharides Inouye, M. Bacteria Outer Membranes as Model Systems John Wiley & Sons, Inc. New York 311–342

    Google Scholar 

  • Rosenberg, E., C. Rubinovitz, A. Gottlieb, S. Rosenhak, E. Z. Ron. 1988a Production of biodispersan by Acinetobacter calcoaceticus A2. Microbiol Appl. Environ. 54 317–322

    CAS  Google Scholar 

  • Rosenberg, E., C. Rubinovitz, R. Legmann, E. Z. Ron. 1988b Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan Appl. Environ. Microbiol. 54 323–326

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., Z. Schwartz, A. Tenenbaum, C. Rubinovitz, R. Legmann, E. Z. Ron. 1989 A microbial polymer that changes the surface properties of limestone: Effect of biodispersan in grinding limestone and making paper J. Dispersion. Sci. Technol. 10 241–250

    Article  CAS  Google Scholar 

  • Rosenberg, E. 1993 Exploiting microbial growth on hydrocarbon: new markets Trends Biotechnol. 11 419–424

    Article  Google Scholar 

  • Rosenberg, E., and E. Z. Ron. 1996 Bioremediation of petroleum contamination Crawford, R. L., and D. L. Crawford Bioremediation: Principles and Applications Cambridge University Press MA 100–124

    Chapter  Google Scholar 

  • Rosenberg, E., and Eliora Z. Ron. 1997 Bioemulsans: microbial polymeric emulsifiers Cur. Opin. in Biotechnol. 8 313–316

    Article  CAS  Google Scholar 

  • Rosenberg, E., E. Z. Ron. 1998 Surface active polymers from the genus Acinetobacter Kaplan DL Biopolymers from Renewable Resources Springer-Verlag Berlin 281–291

    Chapter  Google Scholar 

  • Rosenberg, E., and E. Z. Ron. 1999 High and low molecular mass microbial surfactants Appl. Microbiol. Biotechnol. 52 154–162

    Article  PubMed  CAS  Google Scholar 

  • Rubinovitz, C., D. L. Gutnick, and E. Rosenberg. 1982 Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol J. Bacteriol. 152 126–132

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., T. Barkay, S. Navon-Venezia, E. Z. Ron. 1999 Role of Acinetobacter bioemulsans in petroleum degradation Fass, et. al. Novel Approaches for Bioremediation of Organic Pollution Kluwer Academic/Plenum Publishers New York 171–180

    Chapter  Google Scholar 

  • Sapir, S. 1998 Genes involved in growth of Acinetobacter junii strain V26 on hexadecane MSc Thesis

    Google Scholar 

  • Sar, N., E. Rosenberg. 1983 Emulsifier production by Acinetobacter calcoaceticus strains Curr. Microbiol. 9 309–314

    Article  CAS  Google Scholar 

  • Sekelsky, A. M., and G. S. Shreve. 1999 Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa Biotech. Bioeng. 63 401–409

    Article  CAS  Google Scholar 

  • Shepherd, R., J. Rockey, I. W. Sutherland, S. Roller. 1995 Novel bioemulsifiers from microorganisms for use in foods J. Biotechnol. 40 207–217

    Article  PubMed  CAS  Google Scholar 

  • Sim, L., O. P., Ward, and Z. Y. Li. 1997 Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1 J. Ind. Microbiol. Biol. 19 232–238

    Article  CAS  Google Scholar 

  • Solomon, J. M., R. Magnuson, A. Srivastava, and A. D. Grossman. 1995 Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis Genes Dev 9 547–558

    Article  PubMed  CAS  Google Scholar 

  • Stark, M. 1996 Analysis of the exopolysaccharide gene cluster from Acinetobacter calcoaceticus BD4 PhD thesis, Tel-Aviv University.

    Google Scholar 

  • Sullivan, E. R. 1998 Molecular genetics of biosurfactant production Curr. Opinion in Biotechnol. 9 263–269

    Article  CAS  Google Scholar 

  • Suzuki, T., K. Hayashi, K. Fujikawa, K. Tsukamoto. 1965 The chemical structure of polymyxin E. The identities of polymyxin E1 with colistin A and polymyxin E2 with colistin B J. Biol. Chem. 57 226–227

    CAS  Google Scholar 

  • Suzuki, T., K. Tanaka, J. Matsubara, S. Kimoshita. 1969 Trehalose lipid and branched-hydroxy fatty acids formed by bacteria grown on n-alkanes Agric. Biol. Chem. 33 1619–1625

    Article  CAS  Google Scholar 

  • Taylor, W. H., E. Juni. 1961 Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide J. Bacteriol. 81 688–693

    PubMed  CAS  Google Scholar 

  • Trebbau-de, A. G., M. J. McInerney. 1996 Emulsifying activity in thermophilic and extremely thermophilic microorganisms J. Ind. Microbiol. 16 1–7

    Article  Google Scholar 

  • Van Delden, C., E. C. Pesci, J. P. Pearson, and B. H. Iglewski. 1998 Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant Infect. Immun. 66 4499–4502

    PubMed  Google Scholar 

  • van Loosdrecht, M. C. M., J. Lyklema, W. Norde, A. J. B. Zehnder. 1990 Influence of interfaces on microbial activity Microbiol. Rev. 54 75–87

    PubMed  Google Scholar 

  • Volkering, F., A. Breure, W. Rulkens. 1997 Microbiological aspects of surfactant use for biological soil remediation Biodegradation 8 401–417

    Article  PubMed  CAS  Google Scholar 

  • Wagner, F., V. Behrendt, H. Bock, A. Kretschmer, S. Lang, and C. Syldatk. 1983 Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons Zajic, J. E., et al. Microbial Enhanced Oil Recovery Penwell Tulsa, OK 55–60

    Google Scholar 

  • Wang, S. D., and D. I. C. Wand. 1990 Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system Biotech. Bioeng. 36 402–410

    Article  CAS  Google Scholar 

  • Wei, Y. H., and I. M. Chu. 1998 Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332 Enzyme-Microb. Technol. 22 724–728

    Article  CAS  Google Scholar 

  • Yakimov, M. M., K. N. Timmis, V. Wray, H. L. Fredrickson. 1995 Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50 Appl. Environ. Microbiol. 61 1706–1713

    PubMed  CAS  Google Scholar 

  • Yakimov, M. M., and P. N. Golyshin. 1997 ComA-dependent transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells Biotechnol. Prog. 13 757–761

    Article  PubMed  CAS  Google Scholar 

  • Yakimov, M. M., A. Kroger, T. N. Slepak, L. Giuliano, K. N. Timmis, and P. N. Golyshin. 1998 A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization Biochim. Biophys. Acta. 1399 141–153

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., R. M. Miller. 1994 Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane App. Environ. Microbiol. 60 2101–2106

    CAS  Google Scholar 

  • Zhang, Y., and R. M. Miller. 1995 Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes Appl. Environ. Microbiol. 61 (6) 2247–2251

    Google Scholar 

  • Zhou, Q. H., and N. Kosaric. 1995 Utilization of canola oil and lactose to produce biosurfactant with Candida bombicola J. Am. Oil. Chem. Soc. 72 67–71

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Rosenberg, E. (2006). Biosurfactants. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30741-9_25

Download citation

Publish with us

Policies and ethics