Skip to main content

Clays, clay minerals

  • Reference work entry
Mineralogy

Part of the book series: Encyclopedia of Earth Science ((EESS))

The term clay has no single and universally accepted definition. Clays occur as rock-forming materials and in soils, and may constitute an entire member of a rock formation or amount to no more than a small fraction filling cracks or acting as a cement between larger particles. Clays are characterized primarily by their small particle size, which usually is taken as less than 2 μm. Coarse, medium, and fine clays have size ranges about 2–0.5, 0.5–0.2, and below 0.2 μm, respectively. The effective size is determined by the rate of settling in water or by direct electron-microscope measurements. On this basis, any material ground to less than 2-μm particle size becomes a clay.

In ceramic practice, emphasis is placed also on the plastic properties developed when clays are suitably crushed and mixed with water. Most, but not all, clays are composed of platy particles, (Fig. 1) with a large ratio of surface area to mass (ranging from about 10 m2/g to several hundred m2/g). Water absorbed on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amil, A. Ruiz; Garcia, A. Ramirez; and MacEwan, D. M. C., 1968, X-ray Diffraction Curves for Analysis of Interstratified Structures. Madrid: Volturna Press, 38p. + 140p. of figures.

    Google Scholar 

  • Bailey, S. W., 1980. Structures of layer silicates, p. 1–123 in G. W. Brindley and G. Brown, eds., Crystal Structures of Clay minerals and Their X-ray Identification. London: The Mineralogical Society, 495p.

    Google Scholar 

  • Bailey, S. W., and Brown, B. E., 1962. Chlorite polytypism: I. Regular and Semi-Random One-Layer Structures, Am. Mineralogist, 47, 819–850.

    Google Scholar 

  • Bates, T. F., 1958. Selected Electron Micrographs of Clays and Other Fine-Grained Minerals, publication no. 51, College of Mineral Industries, Pennsylvania State Univ., University Park, Pa.

    Google Scholar 

  • Bates, T. F., 1962. Halloysite and gibbsite formation in Hawaii, Clays, Clay Minerals, 9, 315–328.

    Google Scholar 

  • Beutelspacher, H., and Van der Marel, H. W., 1968. Atlas of Electron Microscopy of Clay Minerals and Their Mixtures. New York: Elsevier. 333p.

    Google Scholar 

  • Brindley, G. W., 1980. Order-disorder in clay mineral structures, p. 125–195, in G. W. Brindley and G. Brown, eds., Crystal Structures of Clay Minerals and Their X-ray Identification. London: The Mineralogical Society, 495p.

    Google Scholar 

  • Brindley, G. W., and Brown, G. (eds.), 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. London: The Mineralogical Society, 495p.

    Google Scholar 

  • Brindley, G. W., and MacEwan, D. M. C., 1953, in A. T. Green and G. H. Stewart, eds., Ceramics, A. Symposium 15–93. England: British Ceramic Society.

    Google Scholar 

  • Chukhrov, F. V., and Zvyagin, B. B., 1966. Halloysite, a crystallochemically and mineralogically distinct species, Proc. Intern. Clay Conf., Jerusalem, Israel, 1, 11–25.

    Google Scholar 

  • Degens, E. T., 1965. Geochemistry of Sediments. Englewood Cliffs, N.J.: Prentice-Hall, 382p.

    Google Scholar 

  • Farmer, V. C., ed., 1974. The Infrared Spectra of Minerals. London: Mineralogical Society, 539p.

    Google Scholar 

  • Gard, J. A., ed., 1971. The Electron-optical Investigation of Clays. London: Mineralogical Society, 383p.

    Google Scholar 

  • Grim, R. E., 1962. Applied Clay Mineralogy. New York: McGraw-Hill, 422p.

    Google Scholar 

  • Grim, R. E., 1968. Clay Mineralogy, 2nd ed. New York: McGraw-Hill. 596p.

    Google Scholar 

  • Honjo, G.; Kitamura, N.; and Mihama, K., 1954. A study of clay minerals by electron-diffraction diagrams due to individual crystallites, Acta Crystallogr., 7, 511–513.

    Article  Google Scholar 

  • Hower, J., and Mowatt, T. C., 1966, Mineralogy of illites and mixed-layer illite-montmorillonites, Am. Mineralogist, 51, 825–854.

    Google Scholar 

  • Jackson, M. L., 1958. Soil Chemical Analysis. Englewood Cliffs, N.J.: Prentice-Hall, 498p.

    Google Scholar 

  • Keller, W. D., 1964. Processes of Origin and Alteration of Clay Minerals, pp. 3–76 in C. I. Rich and G. W. Kunze, eds., Soil Clay Mineralogy. Chapel Hill, N.C.: Univ. of N. Carolina Press.

    Google Scholar 

  • Keller, W. D., 1967, Geologic occurrence of the clay-mineral layer silicates, in Layer Silicates. A.G.I. Short Course Notes. Washington, D.C.: American Geological Inst., p. WK 1–105, WKR 1–25.

    Google Scholar 

  • Mackenzie, R. C., ed., 1957. Differential Thermal Investigation of Clays. London: Mineralogical Society, 456p.

    Google Scholar 

  • Mering, J., and Oberlin, A., 1967, Electron-optical study of smectites, Clays Clay Minerals, 15, 3–15.

    Google Scholar 

  • Millot, G., 1964. Geologie des Argiles. Paris: Masson et Cie, 499p.

    Google Scholar 

  • Millot, G., 1970. Geology of Clays; Weathering, Sedimentology, Geochemistry, W. R. Farrand and H. Paquet, trans. New York: Springer, 429p.

    Google Scholar 

  • Roy, R., and Tuttle, O. F., 1956. Investigations under hydrothermal conditions, in L. H. Ahrens et al., eds., Physics and Chemistry of the Earth, Vol. 1. New York: Pergamon Press, 138–180.

    Google Scholar 

  • Sudo, T., and Sato, M., 1966. Dioctahedral chlorite, Intern. Clay Conf. Proc., Jerusalem, Israel, 1, 33–40.

    Google Scholar 

  • Van Olphen, H., 1963. Introduction to Clay Colloid Chemistry, New York: Wiley. 318p.

    Google Scholar 

  • Wada, K., 1967, Structural scheme of soil allophane, Am. Mineralogist, 52, 690–708.

    Google Scholar 

  • Weaver, C. E., and Pollard, L. D., 1973. The Chemistry of Clay Minerals. Amsterdam/New York: Elsevier, 213p.

    Google Scholar 

  • Weiss, A.; Thielepape, W.; and Orth, H., 1966, Neue Kaolinit Einlagerungsverbindungen, Internat. Clay Conf. Proc., Jerusalem, Israel, 1, 277–294.

    Google Scholar 

  • Wones, D., 1967, Compositional variations and phase equilibria of some layer silicates, in Layer Silicates. A. G.I. Short Course Notes. Washington, D.C.: American Geological Inst. p. DRW 1–142.

    Google Scholar 

  • Zvyagin, B. B., 1967. Electron Diffraction Analysis of Clay Mineral Structures. New York: Plenum Press.

    Google Scholar 

Cross references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Hutchinson Ross Publishing Company

About this entry

Cite this entry

Brindley, G.W. (1981). Clays, clay minerals . In: Mineralogy. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30720-6_23

Download citation

  • DOI: https://doi.org/10.1007/0-387-30720-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-87933-184-9

  • Online ISBN: 978-0-387-30720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics