Mineralogy

1981 Edition

Authigenic minerals

  • Rhodes W. Fairbridge
Reference work entry
DOI: https://doi.org/10.1007/0-387-30720-6_13

Authigenesis is any process involving growth in situ, i.e., on the spot. Its antonym is “allogenic”. Introduced by Kalkowsky (1880), the term describes the origin of any mineral that is formed subsequent to the origin of its matrix or surroundings but is not a product of transformation or recrystallization; it is customarily reserved for low-temperature sedimentary situations. Tester and Atwater (1934) have pointed out that the term should be reserved for discrete crystallographic units of “exotic” nature rather than be used for the rock-forming minerals. The term is not normally used for over-growths and metasomatic replacement; thus, massive dolomitization is excluded but discrete dolomite crystals formed, for example, during the early burial phase are clearly authigenic. Many minerals formerly considered exclusive “high-temperature” igneous or hydrothermal indicators (e.g., feldspars, and the metal sulfides such as galena and chalcopyrite) are now frequently recognized as...

This is a preview of subscription content, log in to check access.

References

  1. Baskin, Y., 1956. A study of authigenic feldspars, J. Geol., 64, 132–155.Google Scholar
  2. Bonatti, E., 1972. Authigenic Minerals—Marine, in Rhodes W. Fairbridge, ed. Encyclopedia of Geochemistry and Environmental Sciences. New York: Van Nostrand Reinhold, 48–55.Google Scholar
  3. Buyce, M. R., and Friedman, G. M., 1975. Significance of authigenic K-feldspars in Cambrian-Ordovician carbonate rocks of the Proto-Atlantic shelf in North America, J. Sed. Petrology, 45, 808–821.Google Scholar
  4. Cronan, D. S., 1974. Authigenic minerals in deep-sea sediments, in E. D. Goldberg, ed. The Sea, vol. 5. New York, 491–545.Google Scholar
  5. Dapples, E. C., 1967. Silica as an agent in diagenesis, in G. Larsen and G. V. Chilingar, eds., Diagenesis in Sediments. Amsterdam: Elsevier, 323–342.Google Scholar
  6. Divis, A. F., and McKenzie, J. A., 1975. Experimental authigenesis of Phyllosilicates from feldspathic sands, Sedimentology, 22, 147–155.CrossRefGoogle Scholar
  7. Edwards, A. B., and Baker, G., 1951. Some occurrences of supergene iron sulphides in relation to their environment of deposition, J. Sed. Petrology, 21, 34–46.Google Scholar
  8. Fairbridge, R. W., 1967. Phases of diagenesis and authigenesis, in, G. Larsen and G. V. Chilingar, eds., Diagenesis in Sediments. Amsterdam: Elsevier, 19–89.Google Scholar
  9. Fediuk, F., 1962. Zur Entstehung des Epidotes in den Kambrischen Sedimenten des Pribramer Reviers (Zentralboehmen), Casopis Mineral. Geol., 7, 89–99.Google Scholar
  10. Funk, H., 1975. The origin of authigenic quartz in the Helvetic Siliceous Limestone (Helvetischer Kieselkalk), Switzerland, Sedimentology, 22, 299–306.CrossRefGoogle Scholar
  11. Kalkowsky, E., 1880. Über die Erforschung der archaeischen Formationen, Neues Jahrb. Min. Geol. Palaeont., Monatsh., 1, 1–29.Google Scholar
  12. Middleton, G. V., 1972. Albite of secondary origin in Charny Sandstones, Quebec, J. Sed. Petrology, 42, 341–349.Google Scholar
  13. Millot, G., 1970. Geology of Clays. New York: Springer, 429p. (French edition, 1964. Géologie des Argiles. Paris: Masson, 499p.)Google Scholar
  14. Müller, G., 1967. Diagenesis in argillaceous sediments, in G. Larsen and G. V. Chilinger, eds., Diagenesis in Sediments. Amsterdam: Elsevier, 127–177.Google Scholar
  15. Newhouse, W. H., 1927. Some forms of iron sulphide occurring in coal and other sedimentary rocks, J. Geol., 35, 73–83.Google Scholar
  16. Stewart, R. J., 1974. Zeolite facies metamorphism of sandstone in the western Olympic Peninsula, Washington, Geol. Soc. Am. Bull., 85, 1139–1142.CrossRefGoogle Scholar
  17. Teodorovich, G. I., 1961. Authigenic Minerals in Sedimentary Rocks. New York: Consultants Bureau, 120p.Google Scholar
  18. Tester, A. C., and Atwater, G. I., 1934. The occurrence of authigenic feldspars in sediments, J. Sed. Petrology, 4, 23–31.Google Scholar
  19. Topkaya, M., 1950. Recherches sur les silicates authigènes dans les roches sedimentaires, Bull. Lab. Géol. Míneral. Geophys. Musée Géol. Univ. Lausanne, 97, 132p.Google Scholar
  20. Van Houten, F. B., 1972. Iron and clay in tropical savanna alluvium, northern Colombia: a contribution to the origin of red beds, Geol. Soc. Am. Bull., 83, 2761–2772.Google Scholar
  21. Walker, T. R., 1967. Formation of red beds in modern and ancient deserts, Geol. Soc. Am. Bull., 78, 353–368.Google Scholar
  22. Walker, T. R., 1974. Formation of red beds in moist tropical climates: a hypothesis, Geol. Soc. Am. Bull., 85, 633–638.CrossRefGoogle Scholar
  23. Walton, A. W., 1975. Zeolite diagenesis in Oligocene volcanic sediments, Trans—Pecos, Geol. Soc. Am. Bull., 86, 615–624.CrossRefGoogle Scholar
  24. Weiss, M. P., 1954. Feldspathized shales from Minnesota, J. Sed. Petrology, 24, 270–274.Google Scholar
  25. Woodward, H. H., 1972. Syngenetic sanidine beds from Middle Ordovician Saint Peter Sandstone, Wisconsin, J. Geol., 80, 323–332.CrossRefGoogle Scholar

Cross-references

Copyright information

© Hutchinson Ross Publishing Company 1981

Authors and Affiliations

  • Rhodes W. Fairbridge

There are no affiliations available