1981 Edition


  • W. G. Ernst
Reference work entry
DOI: https://doi.org/10.1007/0-387-30720-6_11

Asbestos is a term applied to any of several varieties of silky or finely fibrous, flexible, relatively refractory minerals. Asbestos occurs principally in veins transecting ultramafic igneous rocks; minor amounts occur in siliceous dolomitic marbles and low-grade schists and meta-ironstones. The fibers may be aligned normal or somewhat inclined to the walls (cross fiber) or parallel to the walls (slip fiber).

Chrysotileserpentine is the chief source of asbestos, constituting approximately 95% of the world production (Bowles, 1959); but several species of amphibole asbestos occur. These latter include amosite (a fibrous member of the cummingtonite - grunerite series), tremolite - actinolite , crocidolite (a fibrous member of the riebeckite - magnesioriebeckite series), and, rarely, anthophyllite and eckermannite .

Chrysotile, like other serpentineminerals, is a phyllosilicate (q.v.); the structure consists of two basic units, a pseudohexagonal sheet composed of Si-O tetrahedra (each...

This is a preview of subscription content, log in to check access.


  1. Bowen, N. L., and Tuttle, O. F., 1949. The system MgO-SiO2-H2O, Geol. Soc. Am. Bull., 60, 439–460.Google Scholar
  2. Bowles, O., 1959. Asbestos, a materials survey, U.S. Bur. Mines Inf. Circ. 7880, 94p.Google Scholar
  3. Boyd, F. R., 1959. Hydrothermal investigations of amphiboles, pp. 377–396, in P. H. Abelson, ed. Researches in Geochemistry. New York: Wiley, 511p.Google Scholar
  4. Cooke, H. C., 1937. Thetford, Disraeli and eastern half of Warwick map areas, Quebec, Geol. Surv. Canada, Mem., 211, 160p.Google Scholar
  5. Deer, W. A.; Howie, R. A.; and Zussman, J., 1962. Rock-Forming Minerals, vol. 3, Sheet Silicates. New York: Wiley (London: Longmans), 270p.Google Scholar
  6. Deer, W. A.; Howie, R. A.; and Zussman, J., 1963. Rock-Forming Minerals, vol. 2, Chain Silicates. New York: Wiley (London: Longmans), 379p.Google Scholar
  7. Ernst, W. G., 1960. The Stability relations of magnesioriebeckite, Geochim. Cosmochim. Acta, 19, 10–40.CrossRefGoogle Scholar
  8. Ernst, W. G., 1962. Synthesis, stability relations and occurrence of riebeckite and riebeckite-arfvedsonite solid solutions, J. Geol., 70, 689–736.Google Scholar
  9. Ernst, W. G., 1966. Synthesis and stability relations of ferrotremolite, Am. J. Sci., 264, 37–65.CrossRefGoogle Scholar
  10. Evans, B. W., 1977. Metamorphism of alpine peridotite and serpentinite, Ann. Rev. Earth Planet. Sci., 5, 397–447.CrossRefGoogle Scholar
  11. Faust, G. T., and Fahey, J. J., 1962. The serpentine-group minerals, U.S. Geol. Surv. Prof. Paper 384A, 92p.Google Scholar
  12. Greenwood, H. J., 1963. The synthesis and stability of anthophyllite, J. Petrology, 4, 317–351.Google Scholar
  13. Hall, A. L., 1930. Asbestos in the Union of South Africa, Geol. Surv. Union So. Africa, Mem., 12, 329p.Google Scholar
  14. Jenkins, G. F., 1960. Asbestos, pp. 23–53 in Industrial Minerals and Rocks, Am. Inst. Mining, Met., and Petrol. Engrs., 934p.Google Scholar
  15. Peacock, M. A., 1928. The nature and origin of the amphibole asbestos of South Africa, Am. Mineralogist, 13, 241–285.Google Scholar
  16. Whittaker, E. J. W., 1949. The structure of Bolivian crocidolite, Acta Crystallogr., 2, 312–317.CrossRefGoogle Scholar
  17. Whittaker, E. J. W., 1957. The structure of chrysotile. V. Diffuse reflextions and fibre texture, Acta Crystallogr., 10, 149–156.CrossRefGoogle Scholar

Copyright information

© Hutchinson Ross Publishing Company 1981

Authors and Affiliations

  • W. G. Ernst

There are no affiliations available