Skip to main content

Light Scattering Spectroscopy: From Elastic to Inelastic

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods

Abstract

This chapter reviews light scattering spectroscopic techniques in which coherent effects are critical because they define the structure of the spectrum. In the case of elastic light scattering spectroscopy the targets themselves, such as aerosol particles in environmental science or cells and sub-cellular organelles in biomedical applications, play the role of microscopic optical resonators. In the case of inelastic light scattering spectroscopy or Raman spectroscopy, the spectrum is created due to light scattering from vibrations in molecules or optical phonons in solids. We will show that light scattering spectroscopic techniques, both elastic and inelastic, are emerging as very useful tools in material and environmental science and in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Light Scattering Spectroscopy: From Elastic to Inelastic

  • R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill Book Company, New York, 1969).

    Google Scholar 

  • I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).

    Article  Google Scholar 

  • J. R. Mourant, J. Boyer, T. Johnson, J. Lacey and I. J. Bigio, “Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System,” Proc. SPIE 2387, 210–217 (1995).

    Article  ADS  Google Scholar 

  • L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630, (1998).

    Article  ADS  Google Scholar 

  • V. Backman, M. Wallace, L. T. Perelman, R. Gurjar, G. Zonios, M. G. Müller, Q. Zhang, T. Valdez, J. T. Arendt, H. S. Levin, T. McGillican, K. Badizadegan, M. Seiler, S. Kabani, I. Itzkan, M. Fitzmaurice, R. R. Dasari, J. M. Crawford, J. Van Dam, M. S. Feld, “Detection of preinvasive cancer cells. Early-warning changes in precancerous epithelial cells can be spotted in situ,” Nature 406 (6791), 35–36 (2000).

    Article  ADS  Google Scholar 

  • M. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrrett's esophagus using light scattering spectroscopy,” Gastroentorolgy 119, 677–682 (2000).

    Article  Google Scholar 

  • H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J. Sel. Top. Quant. Elect. 9(2) (2003).

    Google Scholar 

  • V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quant. Eectl. 7, 887–893 (2001).

    Article  ADS  Google Scholar 

  • V. Backman, R. Gurjar, L. T. Perelman, V. Gopal, M. Kalashnikov, K. Badizadegan, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging and measurement of cell organization with submicron accuracy using light scattering spectroscopy” in Optical Biopsy IV, Proc. SPIE 4613, R. R. Alfano ed. (SPIE Press, Bellingham, 2002), 101–110.

    Google Scholar 

  • L. T. Perelman and V. Backman, “Light scattering spectroscopy of epithelial tissues: Principles and applications” in Handbook on Optical Biomedical Diagnostics PM107, V. V. Tuchin ed. (SPIE Press, Bellingham, 2002), 675–724.

    Google Scholar 

  • A. Brunsting and F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).

    Article  Google Scholar 

  • J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis,” Appl. Opt. 37, 3586–3593 (1998).

    Article  ADS  Google Scholar 

  • R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).

    Article  ADS  Google Scholar 

  • G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, and M. S. Feld “Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,” Appl. Opt. 38, 6628–6637 (1999).

    Article  ADS  Google Scholar 

  • I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance and light scattering spectroscopies for evaluating dysplasia in patients with Barrett's esophagus,” Gastroentorolgy 120, 1620–1629 (2001).

    Article  Google Scholar 

  • V. Backman, R. Gurjar, K. Badizadegan, R. Dasari, I. Itzkan, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quant. Elect. 5, 1019–1027 (1999).

    Article  ADS  Google Scholar 

  • O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (C.C. Thomas, Springfield, 1970).

    Google Scholar 

  • A. Ishimaru, Wave propagation and scattering in random media (Academic Press, Orlando, 1978).

    MATH  Google Scholar 

  • T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phy.s 19, 879–888 (1992).

    Article  Google Scholar 

  • G. L. Tipoe and F. H. White, “Blood vessel morphometry in human colorectal lesions,” Histol Histopathol. 10, 589–596 (1995).

    Google Scholar 

  • S. A. Skinner, G. M. Frydman, and P. E. O'Brien, “Microvascular structure of benign and malignant tumors of the colon in humans,” Digest Dis. Sci. 40, 373–384 (1995).

    Article  Google Scholar 

  • V. Backman, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, T. Valdez, J. Van Dam, M. Wallace, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, and M. S. Feld, “Light scattering spectroscopy: A new technique for clinical diagnosis of precancerous and cancerous changes in human epithelia,” Lasers Life Sci. 9, 255–263 (2001).

    Google Scholar 

  • B. J. Reid, R. C. Haggitt, C. E. Rubin, G. Roth, C. M. Surawicz, G. Vanbelle, K. Lewin, W. M. Weinstein, D. A. Antonioli, H. Goldman, W. Macdonald, and D. Owen, “Observer variation in the diagnosis of dysplasia in Barrett's esophagus,” Hum. Pathol. 19, 166–178 (1988).

    Article  Google Scholar 

  • R. H. Riddell, H. Goldman, D. F. Ransohoff, H. D. Appelman, C. M. Fenoglio, R. C. Haggitt, C. Ahren, P. Correa, S. R. Hamilton, B. C. Morson, S. C. Sommers, J. H. Yardley, “Dysplasia in inflammatory bowel disease: Standardized classification with provisional clinical applications,” Hum. Pathol. 14, 931–986 (1983).

    Article  Google Scholar 

  • R. C. Haggitt, “Barrett's esophagus, dysplasia, and adenocarcinoma,” Hum. Pathol. 25, 982–993 (1994).

    Article  Google Scholar 

  • M. Pagano and K. Gauvreau, Principles of Biostatistics. (Duxbury Press, Belmon, 1993).

    MATH  Google Scholar 

  • J. Landis and G. Koch, “The measurement of observer agreement for categorical data,” Biometrics 33, 159–174 (1977).

    Article  Google Scholar 

  • L. P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kroz, F. Heule, H. Barr, J. S. Robinson Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers (Biospectroscopy) 67, 1–9 (2002)

    Article  Google Scholar 

  • N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (3d edition), Academic Press, Boston, 1990)

    Google Scholar 

  • A. K. M. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, and M. Feld, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27, 2004–2006, (2002).

    Article  ADS  Google Scholar 

  • Y. Guan, E. N. Lewis, and I. W. Levin, “Biomedical applications of Raman spectroscopy: tissue differentiation and potential clinical usage” in Analytical applications of Raman spectroscopy, M. J. Pelletier, Ed., (Blackwell Science Ltd, Oxford, 1999), 276–327.

    Google Scholar 

  • E. D. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).

    Article  Google Scholar 

  • Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Grifiths eds. (John Wiley & Sons Ltd, Chichester, 2002).

    Google Scholar 

  • Handbook of Raman Spectroscopy, L. R. Lewis and H. G. M. Edwards, eds (Marcel Dekker, New York, 2001).

    Google Scholar 

  • A. Mahadevan-Jansen, M. Follen Mitchell, N. Ramanujam, U. Utzinger, and R. Richard Kortum; “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol, 68, 427–431 (1998).

    Article  Google Scholar 

  • H. Martens and T. Naes, Multivariate Calibration (John Wiley & Sons Ltd, New York, 1989).

    MATH  Google Scholar 

  • A. Molckovsky, L.-M. Wong Kee Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy of colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc. 57, 396–402 (2003).

    Article  Google Scholar 

  • A. Mahavedan-Jensen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).

    Article  ADS  Google Scholar 

  • S. P. Mulvaney and C. D. Keating, “Raman Spectroscopy,” Anal. Chem. 72, 145R–157R (2000).

    Article  Google Scholar 

  • H. Owens, “Holographic optical components for laser spectroscopy applications,” Proc. SPIE 1732, 324–332 (1993).

    Article  ADS  Google Scholar 

  • D. Pappas, B. W. Smith, J. D. Winefordner, “Raman spectroscopy in bioanalysis,” Talanta 51, 121–144 (2000).

    Article  Google Scholar 

  • R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy–a prospective tool in the life sciences,” Chemphyschem. 4, 14–30 (2003).

    Article  Google Scholar 

  • R. K. Dukor, “Vibrational spectroscopy in the detection of cancer,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Grifiths eds. (John Wiley & Sons Ltd, Chichester, 2002).

    Google Scholar 

  • Analytical Applications of Raman Spectroscopy, M. J. Pelletier ed. (Blackwall Science Ltd, Oxford, 1999).

    Google Scholar 

  • M. G. Shim, L.-M. Wong Kee Song, N. N. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem Photobiol 72, 146–50 (2000).

    Google Scholar 

  • U. Utzinger, D. L. Heintselman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955–959 (2001).

    Article  ADS  Google Scholar 

  • U. Utzinger and R. Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

    Article  ADS  Google Scholar 

  • D. E. Bettey, J. B. Slater, R. Wludyka, H. Owen, D. M. Pallister, and M. D. Morris, “Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating,” Apll Spectrosc 47, 1913–1919 (1993).

    Article  ADS  Google Scholar 

  • M. J. Pelletier, “Raman instrumentation” in Analytical Applications of Raman Spectroscopy, M. J. Pelletier ed. (Blackwall Science Ltd, Oxford, 1999), 53–105.

    Google Scholar 

  • J. B. Slater, J. M. Tedesco, R. C. Fairchild, and I. R. Lewis, “Raman spectrometry and its adaptation to the industrial environment,” in Handbook of Raman Spectroscopy, I. R. Lewis and H. G. M. Edwards eds. (Marcel Dekker, New York, 2001), 41–144.

    Google Scholar 

  • J. B. Tedesco and K. L. Davis, “Calibration of Raman process analyzers,” Proc SPIE 3537, 200–212 (1998).

    Article  ADS  Google Scholar 

  • K. Kneipp, Y. Wang, H. Kneipp, L. T. Pereleman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–70 (1997).

    Article  ADS  Google Scholar 

  • R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  • K. Kneipp, H. Kneipp, P. Corio, D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enchanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 84, 3470–3 (2000).

    Article  ADS  Google Scholar 

  • K. Kneipp, L. T. Perelman, H. Kneipp, V. Backman, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, “Coupling and intensity exchange between phonon modes observed in strongly enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters,” Phys. Rev. B 63, 6319 (2001)

    Google Scholar 

  • A. Otto, “Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins” in Light Scattering in Solids IV, 1984, M. Cardona and G. Guntherodt eds. (Springer-Verlag, Berlin, Germany, 1984), 289.

    Google Scholar 

  • M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  • C. S. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Grifiths eds. (John Wiley & Sons Ltd, Chichester, 2002).

    Google Scholar 

  • K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev 99, 2957–2975 (1999).

    Article  Google Scholar 

  • K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” J. Am. Chem. Soc. 125, 588–593 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perelman, L.T., Modell, M.D., Vitkin, E., Hanlon, E.B. (2004). Light Scattering Spectroscopy: From Elastic to Inelastic. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics