Skip to main content

Laser Polarimetry of Biological Tissues: Principles and Applications

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods

Abstract

The Stokes-polarimetric method of polarization information selection which is effective in phase-inhomogeneous layer (PIL) diagnostics and provides the 2-order level of increasing the signal-to-noise ratio (SNR) in their images has been presented. The mechanisms of forming the probability distribution of azimuths and ellipticities of the object field polarization of biological tissue as the set of optically uniaxial structures with crystalline and architectonic organization levels have been distinguished. The two-dimensional polarization tomography, which is effective for visualization and SNR increasing of the image of tissue architectonics, and the set of orientation tomograms has been elaborated. The possibilities of polarization-correlation and wavelet analyses of architectonics images and orientation tomograms of tissues have been studied. The interrelations between statistic parameters, correlation functions and coefficients of wavelet-transformation of polarization filtered images of architectonics and its orientation-phase structure in physiologically normal and pathologically changed states have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Laser Polarimetry of Biological Tissues: Principles and Applications

  • W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electr. 26, 2166–2185 (1989).

    Article  ADS  Google Scholar 

  • R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish eds. (Plenum Press, N.Y., 1982), 147–194.

    Chapter  Google Scholar 

  • J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonnar, “Use of polarized light to discriminate short-photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).

    Article  ADS  Google Scholar 

  • H. Rinneberg, “Scattering of laser light in turbid media, optical tomography for medical diagnostics,” in The Inverse Problem, H. Lubbig, ed. (Akademie Verlag, Berlin, 1995) 107–141.

    Google Scholar 

  • V. V. Tuchin, “Coherence-domain methods in tissue and cell optics,” Laser Physics 8, 1–43 (1998).

    Google Scholar 

  • J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonnar, “Use of polarized light to discriminate short-photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).

    Article  ADS  Google Scholar 

  • D. A. Zimnyakov, V. V. Tuchin, and A. A. Mishin, “Spatial speckle correlometry in applications to tissue structure monitoring,” Appl. Opt. 36, 5594–5607 (1997).

    Article  ADS  Google Scholar 

  • S. P. Morgan, M. P. Khong, and M. G. Somekh, “Effects of polarization state and scatterer concentration optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).

    Article  ADS  Google Scholar 

  • H. Horinaka, K. Hashimoto, K. Wada, and Y. Cho, “Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995).

    Article  ADS  Google Scholar 

  • M. R. Ostermeyer, D. V. Stephens, L. Wang, and S. L. Jacques, “Nearfield polarization effects on light propagation in random media,” OSA TOPS on Biomedical Optics Spectroscopy and Diagnostics 3, 20–25 (1996).

    Google Scholar 

  • A. M. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light,” OSA TOPS on Biomedical Optics Spectroscopy and Diagnostics 3, 26–31 (1996).

    Google Scholar 

  • D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattering waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E. 49, 1767–1770 (1994).

    Article  ADS  Google Scholar 

  • J. R. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).

    Article  ADS  Google Scholar 

  • V. V. Tuchin, “Coherent and polarimetric optical technologies for the analysis of tissue structure (overview),” Proc. SPIE 2981, 120–159 (1997).

    Article  ADS  Google Scholar 

  • D. A. Zimnyakov, V. V. Tuchin, and K. V. Larin, “Speckle patterns polarization analysis as on approach to turbid tissues structure monitoring,” Proc. SPIE 2981, 172–180 (1997).

    Article  ADS  Google Scholar 

  • P. Bruscaglioni, G. Zaccanti, and Q. Wci, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1993).

    Article  ADS  Google Scholar 

  • I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, “Universal polarization correlations and microstatistics of optical waves in random media,” Phys. Rev. B. 42, 2613–2616 (1990).

    Article  ADS  Google Scholar 

  • M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B. 9, 903–908 (1992).

    Article  ADS  Google Scholar 

  • J. T. Bruulsema, J. E. Hayward, and T. J. Farrell, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).

    Article  ADS  Google Scholar 

  • H.-J. Schnorrenberg, R. Haβner, M. Hengstebeck, K. Schlinkmeier, and W. Zinth, “Polarization modulation can improve resolutionin diaphanography,” Proc. SPIE 2326, 459–464 (1995).

    Article  ADS  Google Scholar 

  • N. Kollias, “Polarized Light Photography of Human Skin,” in Bioengineering of the Skin: Skin Surface Imaging and Analysis, K.-P. Wilhelm, P. Elsner, E. Berardesca, and H. I. Maibach eds. (CRC Press, Boca Ratonet al., 1997), 95–106.

    Google Scholar 

  • Special section on Tissue Polarimetry, L. V. Wang, G. L. Cote', and S. L. Jacques eds. J. Biomed. Opt. 7 (3), 278–397 (2002).

    Google Scholar 

  • S. G. Demos, W. B. Wang, and R. R. Alfano, “Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents,” Appl. Opt. 37, 792–797 (1998).

    Article  ADS  Google Scholar 

  • F. Yang, W. Liao, “Modeling and decomposition of HRV signals with wavelet transforms,” IEEE Eng. Med. Biol. 16, 17–22 (1997).

    Article  Google Scholar 

  • M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing 1, 205–220 (1992).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Polarization structure of scattering laser fields,” Opt. Eng. 34, 1088–1093 (1995).

    Article  ADS  Google Scholar 

  • A. G. Ushenko and V. P. Pishak, “Vectorial structure of skin biospeckles,” Proc. SPIE 3317, 418–425 (1997).

    Article  ADS  Google Scholar 

  • A. G. Ushenko and V. P. Pishak, “Crystal optic properties of the transverse and longitudinal sections of the bone,” Proc. SPIE 3317, 425–434 (1997).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, A. D. Arkhelyuk, and S. B. Yermolenko, “Investigation of polarized radiation diffraction on the systems of oriented biofractal fibers,” Proc. SPIE 3573, 616–619 (1998).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, S. B. Ermolenko, D. N. Burcovets, and Yu. A. Ushenko, “Microstructure of laser radiation scattered by optically active biotissues,” Opt. Spectrosc. 87, 434–438 (1999).

    ADS  Google Scholar 

  • A. G. Ushenko, “Laser diagnostics of biofractals,” Quant. Electron. 29, 1078–1084 (1999).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, S. B. Ermolenko, and D. N. Burcovets, “Structure of matrices for the transmission of laser radiation by biofractals,” Quant. Electron. 29, 1074–1077 (1999).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Stokes-correlometry of biotissues,” Laser Physics 10, 1–7 (2000).

    Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, V. P. Pishak, Yu. A. Ushenko, and O. V. Pishak, “Polarization-correlation investigations of biotissue multifractal structures and their pathological changes diagnostics,” Laser Physics 10, 1136–1142 (2000).

    Google Scholar 

  • A. G. Ushenko, “Laser biospeckles' fields vector structure and polarization diagnostics of skin collagen structure,” Laser Physics 10, 1143–1149 (2000).

    Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, S. B. Ermolenko, D. N. Burcovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, S. B. Ermolenko, D. N. Burcovets, V. P. Pishak, and Yu. A. Ushenko, “Polarization-based visualization of multifractal structures for the diagnostics of pathological changes in biological tissues,” Opt. Spectrosc. 89, 799–804 (2000).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Correlation processing and wavelet Analysis of polarization images of biological tissues,” Opt. Spectrosc. 91, 773–778 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Correlation processing and wavelet analysis of polarization images of biological tissues,” Opt. Spectrosc. 91, 773–778 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, D. N. Burcovets, and Yu. A. Ushenko, “Laser polarization visualization and selection of biotissue images,” Laser Physics 11, 624–631 (2001).

    Google Scholar 

  • O. V. Angelsky, A. G. Ushenko, D. N. Burcovets, and Yu. A. Ushenko, “Polarization-correlation analysis of anisotropic structures in bone tissue,” Opt. Spectrosc. 90, 458–462 (2001).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).

    Article  ADS  Google Scholar 

  • Yu. A. Ushenko, “Skin as a transformer of the polarization structure of laser radiation,” Opt. Spectrosc. 93, 321–325 (2002).

    Article  ADS  Google Scholar 

  • A. G. Ushenko, D. N. Burcovets, and Yu. A. Ushenko, “Polarization-phase mapping and reconstruction of biological tissue architectonics during diagnosis of pathological lesions,” Opt. Spectrosc. 93, 449–456 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ushenko, A.G., Pishak, V.P. (2004). Laser Polarimetry of Biological Tissues: Principles and Applications. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics