Skip to main content

Confocal Laser Scanning Microscopy

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods

Abstract

Principles and instrumentation of laser scanning confocal microscopy are described. Applications to materials inspection are discussed. Current results on in vivo imaging of skin, eye tissues, and cells are demonstrated. The principles of optical sectioning in confocal and multiphoton excitation microscopies are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Confocal Laser Scanning Microscopy

  • S. Inoué and K. R. Spring, “Microscope image formation” in Video Microscopy, The Fundamentals, Second Edition Plenum Press, New York, 1997, 13–117.

    Chapter  Google Scholar 

  • R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 1996.

    Article  ADS  Google Scholar 

  • T. Wilson and C. Sheppard, “Image formation in scanning microscopes,” in Theory and Practice of Scanning Optical Microscopes Academic Press, London, 1984, 37–78.

    Google Scholar 

  • T. Wilson, “Confocal Microscopy,” in Confocal Microscopy, T. Wilson, ed. Academic Press, London, 1990, 1–64.

    Google Scholar 

  • T. R. Corle and G. S. Kino, “Depth and transverse resolution” in Confocal Scanning Optical Microscopy and Related Imaging Systems Academic Press, San Diego, 1996, 147–223.

    Chapter  Google Scholar 

  • M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19 10, 2112–2120 2002.

    Article  ADS  Google Scholar 

  • B. R. Masters, “Confocal microscopy: history, principles, instruments, and some applications to the living eye,” Comm. Molec. Cell. Biophys. 8, 243–271 1995.

    Google Scholar 

  • B. R. Masters, Selected Papers on Confocal Microscopy, Milestone Series MS 131 SPIE Optical Engineering Press, Bellingham, WA. 1996.

    Google Scholar 

  • B. R. Masters, Selected Papers on Multiphoton Excitation Microscopy, Milestone Series MS 175 SPIE Optical Engineering Press, Bellingham, WA. 2003.

    Google Scholar 

  • M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes World Scientific, Singapore, 1996.

    Google Scholar 

  • Methods in Cellular Imaging, A. Periasamy ed. Oxford University Press, New York, 2001.

    Google Scholar 

  • Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, A. Diaspro ed. Wiley-Liss, New York, 2002.

    Google Scholar 

  • R. W. Boyd, Nonlinear Optics, second edition Academic Press, New York, 2003.

    Google Scholar 

  • D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging Wiley-Liss, New York, 2001.

    Google Scholar 

  • B. R. Masters, “Three-dimensional microscopic tomographic imaging of the cataract in a human lens in vivo,” Opt. Express 3, 332–338 1998. http://www.opticsexpress.org

    Article  ADS  Google Scholar 

  • B. R. Masters, “Three-dimensional confocal microscopy of the living in situ rabbit cornea,” Opt. Express 3, 351–355 1998. http://www.opticsexpress.org

    Article  ADS  Google Scholar 

  • B. R. Masters, “Three-dimensional confocal microscopy of the human optic nerve in vivo,” Opt. Express 3, 356–359 1998. http://www.opticsexpress.org

    Article  ADS  Google Scholar 

  • B. R. Masters, P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Optics Express 8, 2–10 2001. http://www.opticsexpress.org

    Article  ADS  Google Scholar 

  • H. Goldmann, “Zur Technik der Spaltlampenmikroskopie,” Ophthal. 96, 90–96 1938.

    Article  Google Scholar 

  • H. Goldmann, “Spaltlampenphotographie und photometrie,” Ophthal. 98, 257–270 1940.

    Google Scholar 

  • D. M. Maurice, “Cellular membrane activity in the corneal endothelium of the intact eye,” Experientia 24, 1094–1095 1968.

    Article  Google Scholar 

  • D. M. Maurice, “A scanning slit optical microscope,” Invest. Ophthal. 13, 1033–1037 1974.

    Google Scholar 

  • C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications to ophthalmology,” Appl. Opt. 19, 1749–1757 1980.

    Article  ADS  Google Scholar 

  • C. J. Koester, J. D. Auran, H. D. Rosskothen, G. J. Florakis, and R. B. Tackaberry, “Clinical microscopy of the cornea utilizing optical sectioning and a high-numerical-aperture objective,” J. Opt. Soc. Am. A 10, 1670–1679 1993.

    Article  ADS  Google Scholar 

  • J. D. Auran, C. J. Koester, R. Rapaport, and G. J. Florakis, “Wide field scanning slit in vivo confocal microscopy of flattening induced corneal bands and ridges,” Scanning 16, 182–186 1994.

    Article  Google Scholar 

  • H. Ridley, “Recent methods of fundus examination including electronic ophthalmoscopy,” Trans. Ophthalmol. Soc. UK. 72, 497–509 1952.

    Google Scholar 

  • R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 1987.

    Article  ADS  Google Scholar 

  • R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters ed. Springer-Verlag, New York, 1990.

    Google Scholar 

  • F. Roberts, J. Z. Young, “The flying-spot microscope,” Proc. IEEE 99, 747–757 1952.

    Google Scholar 

  • M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–38 1988.

    Article  Google Scholar 

  • G. M. Svishchev, “Microscope for the study of transparent light-scattering objects in incident light,” Opt. Spectrosc. 26, 171–172 1969.

    ADS  Google Scholar 

  • G. M. Svishchev, “Image contrast in a microscope with synchronous object scanning by slit field diagrams,” Opt. Spectrosc. 30, 188–191 1971.

    Google Scholar 

  • M. Petran and M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscopy,” J. Opt. Soc. Am. A 58, 661–664 1968.

    Article  ADS  Google Scholar 

  • M. D. Egger and M. Petran, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157, 305–307 1967.

    Article  ADS  Google Scholar 

  • S. C. Baer, “Microscopy Apparatus,” United States Patent, 3,705,755, December 12, 1972.

    Google Scholar 

  • T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems Academic Press, San Diego 1996.

    Google Scholar 

  • G. Q. Xiao, G. S. Kino, and B. R. Masters, “Observation of the rabbit cornea and lens with a new real-time confocal scanning optical microscope,” Scanning 12, 161–166 1990.

    Article  Google Scholar 

  • T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 2002.

    Article  ADS  Google Scholar 

  • H. J. Tiziani and H-M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt. 33, 567–572 1994.

    Article  ADS  Google Scholar 

  • H. J. Tiziani, R. Achi, R. N. Krämer, and L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35, 120–125 1996.

    Article  ADS  Google Scholar 

  • B. R. Masters and A. A. Thaer, “Real-time scanning slit confocal microscopy of the in vivo human cornea,” Appl. Opt. 33, 695–701 1994.

    Article  ADS  Google Scholar 

  • B. R. Masters and M. Böhnke, “Video-rate, scanning slit, confocal microscopy of the living human cornea in vivo: Three-dimensional confocal microscopy of the eye” in Methods in Enzymology, Confocal Microscopy 307, P. M. Conn ed. Academic Press, New York, 1999, 536–563.

    Chapter  Google Scholar 

  • P. Davidovits and M. D. Egger, “Scanning laser microscope for biological investigations,” Appl. Opt. 10, 1615–1619 1971.

    Article  ADS  Google Scholar 

  • P. Davidovits and M. D. Egger, “Photomicrography of corneal endothelial cells in vivo,” Nature 244, 366–367 1973.

    Article  ADS  Google Scholar 

  • J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolutin retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 1997.

    Article  ADS  Google Scholar 

  • A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 24, 804–808 1989.

    Article  ADS  Google Scholar 

  • A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campball, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 2002.

    Article  ADS  Google Scholar 

  • D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. Elsner, and R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10(26), 1542–1549 2002.

    Article  ADS  Google Scholar 

  • M. A. Lemp, P. N. Dilly, and A. Boyde, “Tandem scanning (confocal) microscopy of the full thickness cornea,” Cornea 4, 205–209 1986.

    Google Scholar 

  • B. R. Masters, “Confocal microscopy of ocular tissue” in Confocal Microscopy Academic Press, London, 1990, 305–324.

    Google Scholar 

  • B. R. Masters, “Effects of contact lenses on the oxygen concentration and epithelial redox state of rabbit cornea measured noninvasively with an optically sectioning redox fluorometer microscope” in Transactions of the World Congress on the Cornea III, H. D. Cavanagh ed. Raven Press, New York, 1988, 281–286.

    Google Scholar 

  • Video Microscopy: the Fundamentals, second edition, S. Inoué and K. R. Spring eds. Plenum Press, New York, 1997.

    Google Scholar 

  • T. R. Corle, L. C. Mantalas, T. R. Kaack, and L. J. LaComb, Jr., “Polarization-enhanced imaging of photoresist gratings in the real-time scanning optical microscope,” Appl. Opt. 33, 670–677, (1994.

    Article  ADS  Google Scholar 

  • S. S. C. Chim and G. S. Kino, “Optical pattern recognition measurements of trench arrays with submicrometer dimensions,” Appl. Opt. 33, 678–685 1994.

    Article  ADS  Google Scholar 

  • T. Wilson and C. Sheppard, “The scanning optical microscopy of semiconductors and semiconducting devices,” in Theory and Practice of Scanning Optical Microscopy, Academic Press, London, 1984, 79–195.

    Google Scholar 

  • R. W. Wijnaendts-van-Resandt, “Semiconductor Metrology,” in Confocal Microscopy, Academic Press, London, 1990, 339–360.

    Google Scholar 

  • T. R. Corle and G. S. Kino, “Differential interference contrast imaging on a real time confocal scanning optical microscope,” Appl. Opt. 29, 3769–3774 1990.

    Article  ADS  Google Scholar 

  • T. R. Corle and G. S. Kino, “Applications” in Confocal Scanning Optical Microscopy and Related Imaging Systems Academic Press, San Diego, 1996, 277–322.

    Chapter  Google Scholar 

  • A. Boyde, C. E. Dillon, and S. J. Jones, “Measurement of osteoclastic resorption pits with a tandem scanning microscope,” J. Microscopy 158, 261–265 1989.

    Article  Google Scholar 

  • Biomedical Optical Biopsy and Optical Imaging: Classic Reprints on CD-ROM Series, R. R. Alfano and B. R. Masters eds. Optical Society of America, Washington, DC, 2004.

    Google Scholar 

  • M. Böhnke and B. R. Masters, “Confocal microscopy of the cornea,” Prog. Retinal Eye Res. 18, 553–628 1999.

    Article  Google Scholar 

  • M. Böhnke and B. R. Masters, “Long term contact lens wear induces a corneal degeneration with micro-dot deposits in the corneal stroma,” Ophthalmol. 104, 1887–1896 1997.

    Article  Google Scholar 

  • R. Cadez, B. Frueh, and M. Böhnke, “Quantifizierung intrastromaler Mikroablagerungen bei Langzeitträgern von Kontaktlinsen,” Klin Mbl Augenhlk 212, 257–258 1998.

    Article  Google Scholar 

  • B. R. Masters and A. A. Thaer, “In vivo human corneal confocal microscopy of identical fields of subepithelial nerve plexus, basal epithelial, and wing cells at different times,” Microsc. Res. Tech. 29, 350–356 1994.

    Article  Google Scholar 

  • M. Böhnke, A. Thaer, and I. Shipper, “Confocal microscopy reveals persisting stromal changes after myopic photo refractive keratectomy in zero haze cornea,” Br. J. Ophthalmol. 82, 1393–1400 1998.

    Article  Google Scholar 

  • B. E. Frueh, R. Cadez, and M. Böhnke, “In vivo confocal microscopy after photorefractive keratectomy in humans,” Arch. Ophthalmol. 116, 1425–1431 1998.

    Google Scholar 

  • M. C. Corbett, J. I. Prydal, S. Verma, K. M. Oliver, M. Pande, and J. Marshall, “An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function,” Ophthalmol. 103, 1366–1380 1996.

    Article  Google Scholar 

  • J. D. Auran, M. B. Starr, C. J. Koester, and V. J. LaBombardi, “In vivo scanning slit confocal microscopy of Acanthamoeba keratitis,” Cornea 13, 183–185 1994.

    Article  Google Scholar 

  • K. Winchester, W. D. Mathers, J. E. Sutphin, and T. E. Daley, “Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy,” Cornea 14, 10–17 1995.

    Article  Google Scholar 

  • J. D. Auran, C. J. Koester, R. Rapaport, and G. J. Fkorakis, “Wide field scanning slit in vivo confocal microscopy of flattening induced corneal bands and ridges,” Scanning 16, 182–186 1994.

    Article  Google Scholar 

  • J. H. Massig, M. Preissler, A. R. Wegener, and G. Gaida, “Real-time confocal laser scan microscope for examination and diagnosis of the eye in vivo,” Appl. Opt. 33, 690–694 1994.

    Article  ADS  Google Scholar 

  • B. R. Masters, K. Sasaki, Y. Sakamoto, M. Kojima, Y. Emori, S. Senft, and M. Foster, “Three-dimensional volume visualization of the in vivo human ocular lens showing localization of the cataract,” Ophthal. Res. 28, 120–126 1996.

    Article  Google Scholar 

  • B. R. Masters, “Three-dimensional confocal microscopy of the lens,” Ophthal. Res. 28, 115–119 1996.

    Article  Google Scholar 

  • B. R. Masters and S. L. Senft, “Transformation of a set of slices rotated on a common axis to a set of z-slices: application to three-dimensional visualization of the in vivo human lens,” Comp. Med. Imag. Graph. 2, 145–151 1997.

    Article  Google Scholar 

  • B. R. Masters, “Optical tomography of the in vivo human lens: three-dimensional visualization of cataracts,” J. Biomed. Opt. 3, 289–295 1996.

    Article  Google Scholar 

  • B. R. Masters, G. F. J. M. Vrensen, B. Willekens, and J. Van Marle, “Confocal light microscopy and scanning electron microscopy of the human eye lens,” Exp. Eye Res. 64, 371–377 1997.

    Article  Google Scholar 

  • L. Goldman, “Some investigative studies of pigmented nevi with cutaneous microscopy,” J. Invest. Dermatol. 16, 407–427 1951.

    Article  Google Scholar 

  • P. Corcuff, C. Bertrand, and J.-L. Lévêque, “Morphology of human epidermis in vivo by real-time confocal microscopy,” Arch. Dermatol. Res. 285, 475–481 1993.

    Article  Google Scholar 

  • P. Corcuff and J.-L. Lévêque, “In vivo vision of the human skin with the tandem scanning microscope,” Dermatology 186, 50–54 1993.

    Article  Google Scholar 

  • C. Bertrand, “Développement d'une nouvelle méthode d'imagerie cutanée in vivo par microscopie confocale tandem,” These de doctorat de l'Universite de Saint-Etienne, (1994).

    Google Scholar 

  • P. Corcuff, C. Hadjur, C. Chaussepied, and R. Toledo-Crow, “Confocal laser microscopy of the in vivo skin revisited,” in Three-Dimensinal and Multidimensional Microscopy: Image Acquisition and Processing, D. Cabib, C. J. Cogswell, J. Conchello, J. M. Lerner, and T. Wilson eds., Proc. SPIE 3605, 73–81 1999.

    Google Scholar 

  • C. Bertrand and P. Corcuff, “In vivo spatio-temporal visualization of the human skin by real-time confocal microscopy,” Scanning 16, 150–154 1994.

    Article  Google Scholar 

  • P. Corcuff, G. Gonnord, G. E. Pierard, and J.-L. Lévêque, “In vivo confocal microscopy of human skin: a new design for cosmetology and dermatology,” Scanning 18, 351–355 1996.

    Article  Google Scholar 

  • B. R. Masters, “Three-dimensional confocal microscopy of human skin in vivo: autofluorescence of normal skin,” Bioimages 4, 1–7, (1996.

    Article  Google Scholar 

  • B. R. Masters, G. Gonnord, and P. Corcuff, “Three-dimensional microscopic biopsy of in vivo human skin: a new technique based on a flexible confocal microscope,” J. Microsc. 185, 329–338, (1997.

    Article  Google Scholar 

  • B. R. Masters, D. Aziz, A. Gmitro, J. Kerr, B. O'Grady, and L. Goldman, “Rapid observation of unfixed, unstained, human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445, 1997.

    Article  ADS  Google Scholar 

  • M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 1995.

    Article  Google Scholar 

  • B. Chance, “Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria,” Circ. Res. Suppl. 1, 38, I–31–I–38 1976.

    Google Scholar 

  • B. R. Masters and B. Chance, “Redox confocal imaging: Intrinsic fluorescent probes of cellular metabolism” in Fluorescent and Luminescent Probes for Biological Activity, second edtion, W. T. Mason ed. Academic Press, London, 1999, 361–374.

    Chapter  Google Scholar 

  • B. R. Masters, “Functional imaging of cells and tissues: NAD(P)H and flavoprotein redox imaging” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee eds. SPIE Press, Bellingham, Washington, 1993, 555–575.

    Google Scholar 

  • B. R. Masters, A. K. Ghosh, J. Wilson, and F. M. Matschinsky, “Pyridine nucleotides and phosphorylation potential of rabbit corneal epithelium and endothelium,” Invest. Ophthal. Vis. Sci. 30, 861–868 1989.

    Google Scholar 

  • B. R. Masters, A. Kriete, and J. Kukulies, “Ultraviolet confocal fluorescence microscopy of the in vitro cornea: redox metabolic imaging,” Appl. Opt. 34, 592–596 1993.

    Article  ADS  Google Scholar 

  • D. C. Beebe and B. R. Masters, “Cell lineage and the differentiation of corneal epithelial cells,” Invest. Ophthal. Vis. Sci. 37, 1815–1825 1996.

    Google Scholar 

  • B. R. Masters, “Specimen preparation and chamber for confocal microscopy of the ex vivo eye,” Scanning Microsc. 7, 645–651 1993.

    Google Scholar 

  • T. Wilson, C. Sheppard, “Nonlinear Scanning Microscopy” in Theory and Practice of Scanning Optical Microscopy Academic Press, London, 1984, 196–209.

    Google Scholar 

  • W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 1990.

    Article  ADS  Google Scholar 

  • C. Buehler, K-H Kim, C. Y. Dong, B. R. Masters, and P. T. C. So, “Innovations in two-photon deep tissue microscopy,” IEEE Eng. Med. Biol. 18, 23–30, 1999.

    Article  Google Scholar 

  • P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy” in Annual Review of Biomedical Engineering Annual Reviews, Palo Alto, CA. 2000.

    Google Scholar 

  • P. T. C. So, C. Y. Dong, and B. R. Masters, “Two-photon excitation fluorescence microscopy,” in Biomedical Photonics Handbook, T. Vo-Dinh ed. CRC Press, Boca Rotan, Florida, 2003.

    Google Scholar 

  • P. T. C. So, Ki-H Kim, C. Buehler, B. R. Masters, L. Hsu, and C. Y. Dong, “Basic principles of multi-photon excitation microscopy” in Methods in Cellular Imaging, A. Periasamy ed. Oxford University Press, New York, 2001.

    Google Scholar 

  • B. R. Masters, P. T. C. So, E. Gratton, “Multiphoton excitation microscopy and spectroscopy of cells, tissues and human skin in vivo” in Fluorescent and Luminescent Probes for Biological Activity, second edition, W. T. Mason ed. Academic Press, London, 1999.

    Google Scholar 

  • B. R. Masters, P. T. C. So, and E. Gratton, “Multi-photon excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 1997.

    Article  ADS  Google Scholar 

  • B. R. Masters and P. T. C. So, “Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison,” Microsc. Microanalys. 5, 282–289 1999.

    Article  ADS  Google Scholar 

  • D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Micros. 178, 20–27 1995.

    Article  Google Scholar 

  • B. R. Masters and T. P. C. So, Handbook of Multiphoton Excitation Microscopy and other Nonlinear Microscopies Oxford University Press, New York, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Masters, B.R. (2004). Confocal Laser Scanning Microscopy. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_21

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics