Skip to main content

Optical Correlation Diagnostics of Surface Roughness

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods

Abstract

New feasibilities are considered for optical correlation diagnostics of rough surfaces with various distributions of irregularities. The influence of deviations of the height surface roughness distribution from a Gaussian probability distribution on the accuracy of optical analysis is discussed. The possibilities for optical diagnostics of fractal surface structures are shown and the set of statistical and dimensional parameters of the scattered fields for surface roughness diagnostics is determined. Fast-operating optical correlation devices for roughness control are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Optical Correlation Diagnostics of Surface Roughness

  • J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

    Google Scholar 

  • J. M. Bennett, “Surface Roughness Measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House Inc., Norwood, Mass., 1997), 341–367.

    Google Scholar 

  • J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, (Adam Hilger, Bristol, Philadelphia and New York, 1991).

    Book  Google Scholar 

  • O. V. Angelsky, P. P. Maksimyak, S. Hanson, The Use of Optical-Correlation Techniques for Characterizing Scattering Object and Media, PM71 (SPIE Press, Bellingham, 1999).

    Book  Google Scholar 

  • P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, London, 1963).

    MATH  Google Scholar 

  • H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  • J. M. Elson and J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).

    Article  ADS  Google Scholar 

  • F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970).

    Article  ADS  Google Scholar 

  • T. V. Vorburger, E. Marx, and T. R. Lettieri, “Regimes of surface roughness measurable with scattering,” Appl. Opt. 32, 3401–3408 (1993).

    Article  ADS  Google Scholar 

  • S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Principles of Statistical Radiophysics, (Springer, Berlin, 1989).

    Book  Google Scholar 

  • V. P. Ryabukho, “Interferometry of speckle-fields at zone of diffraction of the focused spatially modulated laser beam at random phase screen,” Opt. Spectrosc. 94, 513–520 (2002).

    Google Scholar 

  • E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988).

    Article  ADS  Google Scholar 

  • J. C. Russ, Fractal Surfaces (Plenum Press, New York, 1994).

    Book  Google Scholar 

  • S. Davies and P. Hall, “Fractal analysis of surface roughness using spatial data,” J. Royal Statist. Soc. 61(1), 1–27 (1999).

    Article  MathSciNet  Google Scholar 

  • I. A. Popov, L. A. Glushchenko, and J. Uozumi, “The study of fractal structure of ground glass surface by means of angle resolved scattering of light,” Opt. Comm. 203, 191–196 (2002).

    Article  ADS  Google Scholar 

  • E. L. Church, “Comments on the correlation length,” Proc. SPIE 680, 102–114 (1986).

    Article  ADS  Google Scholar 

  • B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982), Chapt.6., 37-57, and Chapt.39., 362–365.

    Google Scholar 

  • E. Feder, Fractals (Plenum, New York, 1988).

    Book  Google Scholar 

  • K. Nakagawa, T. Yoshimura, and T. Minemoto, “Surface-roughness measurement using Fourier transformation of doubly scattered speckle pattern,” Appl. Opt. 32, 4898–4903 (1993).

    Article  ADS  Google Scholar 

  • A. Dogariu, J. Uozumi, and T. Asakura, “Sources of error in optical measurements of fractal dimension,” Pure. Appl. Opt. 2, 339–350 (1993).

    Article  ADS  Google Scholar 

  • D. J. Whitehouse, “Fractal or fiction,” Wear 249, 345–353 (2001).

    Article  Google Scholar 

  • Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Diffraction from non-Gaussian rough surfaces,” Phys. Rev. B 55, 13938–13952 (1997).

    Article  ADS  Google Scholar 

  • Y.-P. Zhao, C.-F. Cheng, G.-C. Wang, and T.-M. Lu, “Power law behavior in diffraction from fractal surfaces,” Surface Science 409, L703–L708 (1998).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, P. P. Maksimyak, V. V. Ryukhtin, and S. G. Hanson, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, D. N. Burkovets, A. V. Kovalchuk, and S. G. Hanson “Fractal description of rough surfaces,” Appl. Opt. 41, 4620–4629 (2002).

    Article  ADS  Google Scholar 

  • O. V. Angelsky and P. P. Maksimyak, “Optical diagnostics of random phase objects,” Appl. Opt. 29, 2894–2898 (1990).

    Article  ADS  Google Scholar 

  • Yu. I. Neymark and P. S. Landa, Stochastic and Chaotic Oscillations (Nauka, Mascow, 1987).

    Google Scholar 

  • E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

    Article  ADS  Google Scholar 

  • E. L. Church and P. Z. Takacs, “Effect of non-vanishing tip size in mechanical profile measurements,” Proc. SPIE 1332, 504–514 (1991).

    Article  ADS  Google Scholar 

  • K. A. O'Donnell, “Effect of finite stylus width in surface contact profilometry,” Appl. Opt. 32, 4922–4928 (1993).

    Article  ADS  Google Scholar 

  • R. S. Sayles and T. R. Thomas, “Surface topography as a nonstationary random process,” Nature 271, 431–442 (1978).

    Article  ADS  Google Scholar 

  • A. Arneodo, “ Wavelet analysis of fractals” in Wavelets, G. Erlebacher, M. Y. Hussaini, L. M. Jameson eds. (Oxford University Press, Oxford, 1996), 352–497.

    Google Scholar 

  • R. F. Voss, “Random fractal forgeries,” in Fundamental Algorithms in Computer Graphics, R. A. Earnshaw ed. (Springer-Verlag, Berlin, 1985), 13–16, 805–835.

    Google Scholar 

  • J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Company, San Francisco et al., 1968).

    Google Scholar 

  • K. S. Clarke, “Computtation of the fractal dimention of topographic surfaces using the triangular prism surface area method,” Comput. Geosciences 12, 113–122 (1986).

    Google Scholar 

  • B. Dubuc, J. F. Quiniuo, C. Roques-Carmes, and C. Tricot, “Evaluation the fractal dimensions of profiles,” Phys. Rev. 39, 1500–1512 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  • A. Dogariu, J. Uozumi, and T. Asakura, “Angular power spectra of fractal structures,” J. Mod. Opt. 41, 729–738 (1994).

    Article  ADS  Google Scholar 

  • D. A. Zimnyakov and V. V. Tuchin “Fractality of speckle intensity fluctuations,” Appl. Opt. 35, 4325–4333 (1996).

    Article  ADS  Google Scholar 

  • D. A. Zimnyakov, “Binary fractal image quantification using probe coherent beam scanning,” Opt. Eng. 36, 1443–1451 (1997).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, P. P. Maksimyak, and T. O. Perun, “Optical correlation method for measuring spatial complexity in optical fields,” Opt. Lett. 18, 90–92 (1993).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, P. P. Maksimyak, and T. O. Perun, “Dimensionality in optical fields and signals,” Appl. Opt. 32, 6066–6071 (1993).

    Article  ADS  Google Scholar 

  • N. H. Packard, J. P. Grutchfield, J. D. Farmer, and P. S. Shaw, “Geometry from a time series,” Opt. Lett. 5, 712–716 (1980).

    Google Scholar 

  • F. Takens, “Detecting strange attractors in turbulence,” Lect. Notes in Math. 898, 366–381 (1981).

    Article  MathSciNet  Google Scholar 

  • O. V. Angelsky and P. P. Maksimyak, “Optical diagnostics of slightly rough surfaces,” Appl. Opt. 30, 140–143 (1992).

    Article  ADS  Google Scholar 

  • O. V. Angelsky and P. P. Maksimyak, “Polarization-interference measurement of phase-inhomogeneous objects,” Appl. Opt. 31, 4417–4419 (1992).

    Article  ADS  Google Scholar 

  • O. V. Angelsky and P. P. Maksimyak, “Optical correlation measurements of the structure parameters of random and fractal objects,” Meas. Sci. Technol. 9, 1682–1693 (1998).

    Article  ADS  Google Scholar 

  • M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Bochan ed. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  • G. Popescu and A. Dogariu, “Spectral anomalies at wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).

    Article  ADS  Google Scholar 

  • J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  • J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, Bristol and Philadelphia, 1999).

    MATH  Google Scholar 

  • I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation network in highly random media,” Opt. Comm. 101, 247–264 (1993).

    Article  ADS  Google Scholar 

  • M. Soskin and M. Vasnetsov, “Singular optics as new chapter of modern photonics: optical vortices fundamentals and applications,” Photonics Sci. News 4, 21–27 (1999).

    Google Scholar 

  • M. S. Soskin, M. Vasnetsov and I. Bassistiy, “Optical wavefront dislocations,” Proc. SPIE 2647, 57–62 (1995).

    Article  ADS  Google Scholar 

  • N. R. Heckenberg, R. McDuff, C. P. Smith, and M. J. Wegener, “Optical Fourier transform recognition of phase singularities in optical fields” in From Galileo's “Occhialino” to Optoelectronics, Paolo Mazzoldi ed. (World Scientific, Singapore, 1992), 848–852.

    Google Scholar 

  • N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).

    Article  ADS  Google Scholar 

  • O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “On applicability of the singular optics concept for diagnostics of random and fractal surfaces,” Appl. Opt. 42, 4529–4540 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Angelsky, O.V., Maksimyak, P.P. (2004). Optical Correlation Diagnostics of Surface Roughness. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics