Skip to main content

En-Face OCT Imaging

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods
  • 885 Accesses

Abstract

En-face OCT imaging delivers slices in the tissue of coherence length thickness with an orientation similar to that of confocal microscopy. In the flying spot implementation, the phase modulation introduced by the transverse scanners may be exploited to generate en-face OCT images. New avenues opened by the en-face OCT are presented, such as the versatile operation in A, B, C scanning regimes, simultaneous OCT and confocal imaging and simultaneous OCT imaging at different depths. B-scan and C-scan images from different types of tissue are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to En-Face OCT Imaging

  • S. A. Al-Chalabi, B. Culshaw and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” Book of Abstracts, First International Conference on Optical Fibre Sensors, 26-28 April 1983, I.E.E. London, 132–135 (1983).

    Google Scholar 

  • R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: A new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).

    Article  ADS  Google Scholar 

  • H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” Lightwave Technol. 7, 1225–1233 (1989).

    Article  ADS  Google Scholar 

  • A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51, 1986.

    Article  ADS  Google Scholar 

  • D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  • J. A. Izatt, M. R. Hee, D. Huang, J. G. Fujimoto, E. A. Swanson, C. P. Lin, J. S. Shuman, and C. Puliafito, “Ophthalmic diagnostics using optical coherence tomography,” Proc. SPIE 1877, 136–144 (1993).

    Article  ADS  Google Scholar 

  • J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).

    Article  ADS  Google Scholar 

  • A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, and J. A. Izatt “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998); www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219.

    Article  ADS  Google Scholar 

  • Data sheets of Humphrey Instruments, Optical Coherence Tomography (Humphrey Instruments, San Leandro CA 94577 1996).

    Google Scholar 

  • A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. 21, 1789–1791 (1996).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Opt. 3, 12–20 (1998).

    Article  ADS  Google Scholar 

  • Y. Pan and D. Farkas, “Non-invasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3, 446–455 (1998).

    Article  ADS  Google Scholar 

  • S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, G. M. Dobre H. M. Seeger, D. J. Webb, D. A. Jackson, F. W. Fitzke, and G. A. S. Halfyard, “Low Coherence interferometry for En-face Imaging of the Retina,” Lasers Light Ophthalmol. 8, 188–192 (1998).

    Google Scholar 

  • A. Gh. Podoleanu, J. A. Rogers, S. Dunne, and D. A. Jackson, “3 D OCT Images from retina and skin,” Proc. SPIE Vl. 4087, 1043–1053 (2000).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express, 7, 292–298 2000; www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-292.

    Article  ADS  Google Scholar 

  • B. Hoeling, A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R. Wang, M. Williams, and S. Fraser, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express 6, 136–145 (2000); http://epubs.osa.org/oearchive/source/19250.htm.

    Article  ADS  Google Scholar 

  • L. Giniunas, R. Danielius, Karkockas, “Scanning delay line with a rotating-parallelogram prism for low-coherence interferometry,” Appl. Opt. 38, 7076–7079 (1999).

    Article  ADS  Google Scholar 

  • A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” JOSA A, 20 333–341 (2003).

    Article  ADS  Google Scholar 

  • C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185, (1998).

    Article  ADS  Google Scholar 

  • A. F. Leung and J. E. Lee, “Newton's rings: A classroom demonstration with a He-Ne laser,” Am. J. Phys. 59, 663–664 (1991).

    Article  ADS  Google Scholar 

  • M. R. Hee, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18(13), 1107–110 (1993).

    Article  ADS  Google Scholar 

  • T. Wilson, Confocal Microscopy,(Academic Press, London, 1990).

    Google Scholar 

  • R. Rajadhyaksha, R. Anderson, and R. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38, 2105–2115 (1999).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).

    Article  Google Scholar 

  • A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope,” Appl. Opt. 38, 2116–2127 (1999).

    Article  ADS  Google Scholar 

  • R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters ed. (Springer-Verlag, New York, 1990), 438–450.

    Chapter  Google Scholar 

  • R. Juskaitis and T. Wilson, “Scanning interference and confocal microscopy,” J. Microscopy, 176, 188–194 (1994).

    Article  Google Scholar 

  • M. Kempe, W. Rudolph, and E. Welsch, “Comaparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, “Unbalanced versus balanced operation in an OCT system,” Appl. Opt. 39, 173–182 (2000).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in human retina,” Opt. Lett. 22, 1039–1041 (1997).

    Article  ADS  Google Scholar 

  • American National Standard for the Safe Use of Lasers: ANSI Z 136.1 (Laser Institute of America, New York, NY, 1993).

    Google Scholar 

  • B. Bouma, D. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001).

    Article  ADS  Google Scholar 

  • W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).

    Article  Google Scholar 

  • A. Gh. Podoleanu, R. G. Cucu, G. I. Suruceanu, and D. A. Jackson, “Covering the gap in depth resolution between OCT and SLO in imaging the retina,” Proc. SPIE 4251, 220–227 (2001).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, R. Rosen, J. A. Rogers, R. G. Cucu, D. A. Jackson, and V. R. Shidlovski, “Adjustable coherence length sources for low coherence interferometry,” Proc. SPIE 4648, 116–224 (2002).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT En-face Images from the Retina with Adjustable Depth Resolution in Real Time,” IEEE J. Select. Tops Quant. Electr. 5, 1176–1184 (1999).

    Article  ADS  Google Scholar 

  • R. Rosen, A. Gh. Podoleanu, J. A. Rogers, et al., “Multiplanar OCT/confocal ophthalmoscope in the clinic,” Proc. SPIE 4956, 59–64 (2003).

    Article  ADS  Google Scholar 

  • R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).

    Article  ADS  Google Scholar 

  • P. Furrer, J. M. Mayer, and R. Gurny, “Confocal microscopy as a tool for the investigation of the anterior part of the eye,” J. Ocular Pharmacol. Therap. 13, 559–578 (1997).

    Article  Google Scholar 

  • S. Radhakrishnan, A. M. Rollins, J. E. Roth et al., “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol-Chic 119, 1179–1185 (2001).

    Article  Google Scholar 

  • A. Gh. Podoleanu, J. A. Rogers, G. M. Dobre, R. G. Cucu, and D. A. Jackson, “En-face OCT imaging of the anterior chamber,” Proc. SPIE 4619, 240–243 (2002).

    Article  ADS  Google Scholar 

  • J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology, 191, 93–98 (1995).

    Article  Google Scholar 

  • A. Pagnoni, A. Knuettel, P. Welker, M. Rist, T. Stoudemayer, L. Kolbe, I. Sadiq, and A. M. Kligman, “Optical coherence tomography in dermatology,” Skin Res. Technol. 5, 83–87 (1995).

    Article  Google Scholar 

  • B. W. Colston, Jr., M. J. Everett, L. B. DaSilva L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998).

    Article  ADS  Google Scholar 

  • F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, Jr., and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).

    Article  ADS  Google Scholar 

  • B. Amaechi, A. Podoleanu, G. Komarov, J. Rogers, S. Higham, and D. Jackson, “Application of optical coherence tomography for imaging and assessment of early dental caries lesions,” Laser Meth. Med. Biol. 13 (5), 703–710 (2003).

    Google Scholar 

  • B. T. Amaechi, S. M. Higham, and W. M. Edgar, “Factors affecting the development of carious lesions in bovine teeth in vitro,” Arch. Oral Biol. 43, 619–628 (1998).

    Article  Google Scholar 

  • J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).

    Article  Google Scholar 

  • J. A. Rogers, A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, and F. W. Fitzke, “Topography and volume measurements of the optic nerve using en-face optical coherence tomography,” Opt. Express 9, 476–545 (2001); www.opticsexpress.org/abstract.cfm?URI=OPEX-9-10-533.

    Article  Google Scholar 

  • M. Ohmi, K. Yoden, and M. Haruna, “Optical reflection tomography along the geometrical thickness,” Proc. SPIE 4251, 76–80 (2001).

    Article  ADS  Google Scholar 

  • J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).

    Article  Google Scholar 

  • J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14 (11), 2873–2883 (1997).

    Article  ADS  Google Scholar 

  • J. Fernandez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).

    Article  ADS  Google Scholar 

  • J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37 (21), 4663–4668 (1998).

    Article  ADS  Google Scholar 

  • A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).

    Article  ADS  Google Scholar 

  • T. Dresel, G. Hausler, and H. Venzke. “Three-dimensional sensing of rough surfaces by Coherence Radar,” Appl. Opt. 31, 919–925 (1992).

    Article  ADS  Google Scholar 

  • A. Gh. Podoleanu, M. Seeger, and D. A. Jackson, “CCD based low-coherence interferometry using balanced detection,” Book of Abstracts, CLEO-Europe, 14-18 Sept., Glasgow 1998, CWF80, 73.

    Google Scholar 

  • L. Kay, A. Gh. Podoleanu, M. Seeger, and C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Intern. J. Impact Eng. 19 793–753 (1997).

    Article  Google Scholar 

  • M. Seeger, 3-D Imaging Using Optical Coherence Radar, PhD Thesis (University of Kent, Canterbury, UK, 1977).

    Google Scholar 

  • G. Hausler and M. W. Lindner, “Coherence radar and spectral radar–new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).

    Article  ADS  Google Scholar 

  • A. Dubois, L. Vabre, A. C. Boccara, et al., “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).

    Article  ADS  Google Scholar 

  • H. Saint-James, M. Lebec, E. Beaurepaire, A. Dubois, and A. C. Boccara, “Full field optical coherence microscopy” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney eds. (Marcel Dekker Inc, New York-Basel, 2002), 299–333.

    Google Scholar 

  • L. Vabre, V. Loriette, A. Dubois, et al., “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27, 1899–1901 (2002).

    Article  ADS  Google Scholar 

  • S. Bourquin, P. Seitz, and R. P. Salathe, ”Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).

    Article  ADS  Google Scholar 

  • S. Bourquin, V. Monterosso, P. Seitz, et al., “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).

    Article  ADS  Google Scholar 

  • S. Bourquin, P. Seitz, and R. P. Salathe, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Podoleanu, A. (2004). En-Face OCT Imaging. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics