Skip to main content

Best Approximation by Bounded or Continuous Functions

  • Reference work entry
Encyclopedia of Optimization
  • 198 Accesses

Stated in simplest terms, this article considers, in an abstract mathematical framework, a curve fitting or estimation problem where a given set of data points f is approximated or estimated by an element from a set K so that the estimate of f is least affected by perturbations in f.

Let X be a normed linear space with norm ∥·∥ and K be any (not necessarily convex) nonempty subset of X. For any f in X, let

(1)

denote the shortest distance from f to K. Let also, for f in X,

The set-valued mapping P on X is called the metric projection onto K. It is also called the nearest point mapping , best approximation operator , proximity map , etc. If P(f) ≠ ø, then each element in it is called a best approximation to (or a best estimate of) f from K. In practical curve fitting or estimation problems, f represents the given data and the set K is dictated by the underlying process that generates f. Because of random disturbance or noise, f is in general not in K, and it is required to estimate f...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsch, F.: ‘A survey of metric selections’, in R. C. Sine, (ed.): Fixed points and Nonexpansive Mappings, Vol. 18 of Contemp. Math., Amer. Math. Soc., 1983, pp. 49–71.

    Google Scholar 

  2. Deutsch, F.: ’Selections for metric projections’, in S. P. Singh (ed.): Approximation Theory, Spline Functions and Applications, Kluwer Acad. Publ. 1992, pp. 123–137.

    Google Scholar 

  3. Deutsch, F., Li, W., and Park, S.-H.: ‘Characterization of continuous and Lipschitz continuous metric selections in normed linear spaces’, J. Approx. Theory58 (1989), 297–314.

    MathSciNet  MATH  Google Scholar 

  4. Dunford, N., and Schwartz, J. T.: Linear operators, Part I, Interscience, 1958.

    Google Scholar 

  5. Goldstein, A. A.: Constructive real analysis, Harper and Row, 1967.

    Google Scholar 

  6. Li, W.: ‘Continuous selections for metric projections and interpolating subspaces’, in B. Brosowski, F. Deutsch, and J. Guddat (eds.): Approximation and Optimization, Vol. 1, P. Lang, 1991, 1–108.

    Google Scholar 

  7. Liu, M.-H., and Ubhaya, V. A.: ‘Integer isotone optimization’, SIAM J. Optim.7 (1997), 1152–1159.

    MathSciNet  MATH  Google Scholar 

  8. Nurnberger, G., and Sommer, M.: ‘Continuous selections in Chebyshev approximation’, in B. Brosowski and F. Deutsch (eds.): Parametric Optimization and Approximation, Vol. 72 of Internat. Ser. Numer. Math., Birkhäuser 1984, pp. 248–263.

    Google Scholar 

  9. Ponstein, J.: ‘Seven kinds of convexity’, SIAM Rev.9 (1967), 115–119.

    MathSciNet  MATH  Google Scholar 

  10. Roberts, A. W., and Varberg, D. E.: Convex functions, Acad. Press, 1973.

    Google Scholar 

  11. Rockafellar, R. T.: Convex analysis, Princeton Univ. Press, 1970.

    Google Scholar 

  12. Ubhaya, V. A.: ‘Lipschitz condition in minimum norm problems on bounded functions’, J. Approx. Theory45 (1985), 201–218.

    MathSciNet  MATH  Google Scholar 

  13. Ubhaya, V. A.: ‘Uniform approximation by quasi-convex and convex functions’, J. Approx. Theory55 (1988), 326–336.

    MathSciNet  MATH  Google Scholar 

  14. Ubhaya, V. A.: ‘Lipschitzian selections in approximation from nonconvex sets of bounded functions’, J. Approx. Theory56 (1989), 217–224.

    MathSciNet  MATH  Google Scholar 

  15. Ubhaya, V. A.: ‘Lipschitzian selections in best approximation by continuous functions’, J. Approx. Theory61 (1990), 40–52.

    MathSciNet  MATH  Google Scholar 

  16. Ubhaya, V. A.: ‘Duality and Lispschitzian selections in best approximation from nonconvex cones’, J. Approx. Theory64 (1991), 315–342.

    MathSciNet  MATH  Google Scholar 

  17. Ubhaya, V. A.: ‘Uniform approximation by a nonconvex cone of continuous functions’, J. Approx. Theory68 (1992), 83–112.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Ubhaya, V.A. (2001). Best Approximation by Bounded or Continuous Functions . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_25

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics