Oligosaccharides in Food

Living reference work entry


Oligosaccharides are small molecular carbohydrates comprising of 3–10 monosaccharides. They have shown beneficial effects on immune system and gut health, such as anti-allergic, anti-inflammatory, antidiabetic, anticancer, antiaging, and anti-obesity activities. Functional oligosaccharides are commonly found in plants, algae, bacteria, and higher fungi. Milk is perfect for human health improvement. The biological functions of milk oligosaccharides, especially human milk oligosaccharides, are known to have considerable health benefits for humans, such as the growth promotion to the beneficial intestinal flora and the resistance to the infections of bacteria and virus. Oligosaccharides synthesis is becoming increasingly important to pharmaceutical industry, in which chemoenzymatic syntheses are considered as effective ways. The functional oligosaccharides have been widely applied in various branches such as pharmacological supplements and food ingredients. This chapter gives a brief summary about the chemical characteristics, the potential health benefits, the application in foods, and marketed products of the functional oligosaccharides.


Oligosaccharides Bioactive Gut health Human milk oligosaccharides Application 



This study was supported by the Science and Technology Innovation Project (CXZX2017291) and International Science and Technology Cooperation and Exchange Program (KXb16011A) of Fujian Agriculture and Forestry University.


  1. Abrams SA, Griffin IJ, Hicks PD, Gunn SK (2004) Pubertal girls only partially adapt to low dietary calcium intakes. J Bone Miner Res 19(5):759–763PubMedCrossRefPubMedCentralGoogle Scholar
  2. Acharya M, Lau-Cam CA (2010) Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci 17(Suppl 1):S35PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akbari M, Eskandari MH, Niakosari M, Bedeltavana A (2016) The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int Dairy J 57:52–55CrossRefGoogle Scholar
  4. Akkerman R, Faas MM, de Vos P (2019) Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: effects on microbiota and gut maturation. Crit Rev Food Sci Nutr 59(9):1486–1497PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aleksunes LM, Scheffer GL, Jakowski AB, Pruimboom-Brees IM, Manautou JE (2006) Coordinated expression of multidrug resistance-associated proteins (Mrps) in mouse liver during toxicant-induced injury. Toxicol Sci 89(2):370–379PubMedCrossRefPubMedCentralGoogle Scholar
  6. Algieri F, Rodríguez-Nogales A, Garrido-Mesa N, Vezza T, Garrido-Mesa J, Utrilla MP, Montilla A, Cardelle-Cobas A, Olano A, Corzo N, Guerra-Hernández E, Zarzuelo A, Rodriguez-Cabezas ME, Galvez J (2014) Intestinal anti-inflammatory effects of oligosaccharides derived from lactulose in the trinitrobenzenesulfonic acid model of rat colitis. J Agric Food Chem 62(19):4285–4297PubMedCrossRefPubMedCentralGoogle Scholar
  7. Angelyn L, Barbara I (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426CrossRefGoogle Scholar
  8. Azuma K, Osaki T, Minami S, Okamoto Y (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6(1):33–49PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bali V, Panesar PS, Bera MB, Panesar R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55(11):1475–1490PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bang MA, Seo JH, Seo JW, Jo GH, Jung SK, Yu R, Park DH, Park SJ (2015) Bacillus subtilis KCTC 11782BP-produced alginate oligosaccharide effectively suppresses asthma via T-helper cell type 2-related cytokines. PLoS One 10(2):e130510CrossRefGoogle Scholar
  11. Bennett N, Greco DS, Peterson ME, Kirk C, Mathes M, Fettman MJ (2006) Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J Feline Med Surg 8(2):73–84PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bi W, Zhao W, Li D, Li X, Yao C, Zhu Y, Zhang Y (2015) Effect of resistant starch and inulin on the properties of imitation mozzarella cheese. Int J Food Prop 19(1):159–171CrossRefGoogle Scholar
  13. Blandino G, Inturri R, Lazzara F, Di Rosa M, Malaguarnera L (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab 42(5):303–315PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boudry G, Hamilton MK, Chichlowski M, Wickramasinghe S, Barile D, Kalanetra KM, Mills DA, Raybould HE (2017) Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. J Dairy Sci 100(4):2471–2481PubMedCrossRefPubMedCentralGoogle Scholar
  15. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cardarelli HR, Buriti FCA, Castro IA, Saad SMI (2008) Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially synbiotic petit-suisse cheese. LWT-Food Sci Technol 41(6):1037–1046CrossRefGoogle Scholar
  17. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen AS, Taguchi T, Sakai K, Matahira Y, Wang MW, Miwa I (2005) Effect of chitobiose and chitotriose on carbon tetrachloride-induced acute hepatotoxicity in rats. Biol Pharm Bull 28(10):1971–1973PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen H, Yuan B, Zheng Z, Liu Z, Wang S (2011) Lewis X oligosaccharides–heparanase complex targeting to DCs enhance antitumor response in mice. Cell Immunol 269(2):144–148PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C (2017) A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients 9(12):1341CrossRefGoogle Scholar
  21. Cheng W, Lu J, Lin W, Wei X, Li H, Zhao X, Jiang A, Yuan J (2018) Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food and Function 9(3):1612–1620PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chiu C, Hsu W, Liu H, Liu S, Lin Y (2018) Prepared Rehmanniae Radix oligosaccharide regulates postprandial and diabetic blood glucose in mice. J Funct Foods 41:210–215CrossRefGoogle Scholar
  23. Chung MJ, Park JK, Park YI (2012) Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE–antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol 12(2):453–459PubMedCrossRefPubMedCentralGoogle Scholar
  24. Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, Escribano J (2013) Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr 32(6):918–927PubMedCrossRefPubMedCentralGoogle Scholar
  25. Coulet M, Phothirath P, Constable A, Marsden E, Schilter B (2013) Pre-clinical safety assessment of the synthetic human milk, nature-identical, oligosaccharide Lacto-N-neotetraose (LNnT). Food Chem Toxicol 62:528–537PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 872:S145–S151CrossRefGoogle Scholar
  27. Czermak P, Ebrahimi M, Grau K, Netz S, Sawatzki G, Pfromm PH (2004) Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process. J Membr Sci 232(1–2):85–91CrossRefGoogle Scholar
  28. Daddaoua A, Puerta V, Requena P, Martínez-Férez A, Guadix E, Sánchez De Medina F, Zarzuelo A, Suárez MD, Boza JJ, Martínez-Augustin O (2006) Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 136(3):672–676PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dai Z, Feng S, Liu A, Wang H, Zeng X, Yang CS (2018) Anti-inflammatory effects of newly synthesized α-galacto-oligosaccharides on dextran sulfate sodium-induced colitis in C57BL/6J mice. Food Res Int 109:350–357PubMedCrossRefPubMedCentralGoogle Scholar
  30. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035PubMedCrossRefPubMedCentralGoogle Scholar
  31. de Alcantara PHN, Martim L, Silva CO, Dietrich SMC, Buckeridge MS (2006) Purification of a beta-galactosidase from cotyledons of Hymenaea courbaril L. (Leguminosae). Enzyme properties and biological function. Plant Physiol Biochem 44(11–12):619–627PubMedCrossRefGoogle Scholar
  32. Di Renzo GC, Altieri G, Genovese F (2013) Donkey milk powder production and properties compared to other milk powders. Dairy Sci Technol 93(4–5):551–564CrossRefGoogle Scholar
  33. Ding X, Hou Y, Hou W, Zhu Y, Fu L, Zhu H (2015) Structure elucidation and anti-tumor activities of water-soluble oligosaccharides from Lactarius deliciosus (L. ex Fr.) Gray. Pharmacogn Mag 11(44):716–723PubMedCrossRefPubMedCentralGoogle Scholar
  34. Drabinska N, Zielinski H, Krupa-Kozak U (2016) Technological benefits of inulin-type fructans application in gluten-free products – a review. Trends Food Sci Technol 56:149–157CrossRefGoogle Scholar
  35. Du B, Zhu F, Xu B (2018) An insight into the anti-inflammatory properties of edible and medicinal mushrooms. J Funct Foods 47:334–342CrossRefGoogle Scholar
  36. Dutta J, Tripathi S, Dutta PK (2012) Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int 18(1):3–34PubMedCrossRefGoogle Scholar
  37. Ejtahed H, Angoorani P, Hasani-Ranjbar S, Siadat S, Ghasemi N, Larijani B, Soroush A (2018) Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog 116:13–21PubMedCrossRefGoogle Scholar
  38. Ellegard L, Andersson H, Bosaeus I (1997) Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nutr 51(1):1–5PubMedCrossRefGoogle Scholar
  39. Enoki T, Tominaga T, Takashima F, Ohnogi H, Sagawa H, Kato I (2012) Anti-tumor-promoting activities of Agaro-oligosaccharides on two-stage mouse skin carcinogenesis. Biol Pharm Bull 35(7):1145–1149PubMedCrossRefGoogle Scholar
  40. Fernandes JC, Spindola H, de Sousa V, Santos-Silva A, Pintado ME, Malcata FX, Carvalho JE (2010) Anti-inflammatory activity of chitooligosaccharides in vivo. Mar Drugs 8(6):1763–1768PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fernández-Bañares F (2006) Nutritional care of the patient with constipation. Best Pract Res Clin Gastroenterol 20(3):575–587PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fischer C, Kleinschmidt T (2018) Synthesis of galactooligosaccharides in milk and whey: a review. Compr Rev Food Sci Food Saf 17(3):678–697CrossRefGoogle Scholar
  43. Foster C, Fenlon D (2011) Recovery and self-management support following primary cancer treatment. Br J Cancer 1051:S21–S28CrossRefGoogle Scholar
  44. Franck A (2006) Oligofructose-enriched inulin stimulates calcium absorption and bone mineralisation. Nutr Bull 31(4):341–345CrossRefGoogle Scholar
  45. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585PubMedCrossRefPubMedCentralGoogle Scholar
  46. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934PubMedCrossRefPubMedCentralGoogle Scholar
  47. Grabarics M, Csernak O, Balogh R, Beni S (2017) Analytical characterization of human milk oligosaccharides – potential applications in pharmaceutical analysis. J Pharm Biomed Anal 146:168–178PubMedCrossRefPubMedCentralGoogle Scholar
  48. Guillon F, Champ MM (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88(Suppl 3):S293–S306PubMedCrossRefPubMedCentralGoogle Scholar
  49. Guo K, Jia-Jia HE, Liu ZL, Zhang YS, Wang WC, Wang YX, Wei-Feng XU, Zhang SY, University, W. M (2018) Inhibition of chitosan oligosaccharide on skull resorption in mice induced by lipopolysaccharides. China J Oral Maxillofac Surg 16(2):97–101. (in Chinese)Google Scholar
  50. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93CrossRefGoogle Scholar
  51. Hadri Z, Chaumontet C, Fromentin G, Even PC, Darcel N, Bouras AD, Tomé D, Rasoamanana R (2015) Long term ingestion of a preload containing fructo-oligosaccharide or guar gum decreases fat mass but not food intake in mice. Physiol Behav 147:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  52. Higashimura Y, Naito Y, Takagi T, Mizushima K, Hirai Y, Harusato A, Ohnogi H, Yamaji R, Inui H, Nakano Y, Yoshikawa T (2013) Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression. J Gastroenterol 48(8):897–909PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hogenkamp A, Thijssen S, van Vlies N, Knippels LMJ, Garssen J (2015) Maternal dietary supplementation with specific non-digestible oligosaccharides during pregnancy in mice leads to reduced allergic asthma symptoms in their offspring. J Reprod Immunol 111:26CrossRefGoogle Scholar
  54. Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK (2017) Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar Drugs 15(4):90CrossRefGoogle Scholar
  55. Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W (2006) Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12(5):260–266PubMedCrossRefPubMedCentralGoogle Scholar
  56. Huang R, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408PubMedCrossRefPubMedCentralGoogle Scholar
  57. Huang L, Chen J, Cao P, Pan H, Chen D, Xiao T, Zhang P, Guo J, Su Z (2015) Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs 13(5):2732–2756PubMedCrossRefPubMedCentralGoogle Scholar
  58. Huet F, Abrahamse-Berkeveld M, Tims S, Simeoni U, Beley G, Savagner C, Vandenplas Y, Hourihane JO (2016) Partly fermented infant formulae with specific oligosaccharides support adequate infant growth and are well-tolerated. J Pediatr Gastroenterol Nutr 63(4):e43–e53PubMedCrossRefPubMedCentralGoogle Scholar
  59. Irie T, Fukunaga K, Pitha J (1992) Hydroxypropylcyclodextrins in parenteral use. I: lipid dissolution and effects on lipid transfers in vitro. J Pharm Sci 81(6):521–523PubMedCrossRefPubMedCentralGoogle Scholar
  60. Irvine SL, Hekmat S (2011) Evaluation of sensory properties of probiotic yogurt containing food products with prebiotic fibres in Mwanza, Tanzania. Food Nutr Sci 2(5):434–439Google Scholar
  61. James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31(12):1499–1506PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jena PK, Sheng L, Nagar N, Wu C, Barile D, Mills DA, Wan YY (2018) Synbiotics Bifidobacterium infantis and milk oligosaccharides are effective in reversing cancer-prone nonalcoholic steatohepatitis using western diet-fed FXR knockout mouse models. J Nutr Biochem 57:246–254PubMedCrossRefPubMedCentralGoogle Scholar
  63. Jiao L, Zhang X, Li B, Liu Z, Wang M, Liu S (2014) Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng C.A. Meyer. Int J Biol Macromol 65:229–233PubMedCrossRefGoogle Scholar
  64. Kang M, Lee HJ, Cho J, Kim K, Yang SJ, Kim D (2016) Anti-inflammatory effects of sucrose-derived oligosaccharides produced by a constitutive mutant L. mesenteroides B-512FMCM dextransucrase in high fat diet-fed mice. Biochem Biophys Res Commun 477(3):350–355PubMedCrossRefGoogle Scholar
  65. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11PubMedCrossRefGoogle Scholar
  66. Kim J, Jo S, Ha K, Kim S, Kim Y, Apostolidis E, Kwon Y (2014) Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement Altern Med 14(1):272PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kobata A (2010) Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 86(7):731–747PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kobayashi T, Yasutake N, Uchida K, Ohyama W, Kaneko K, Onoue M (2009) Safety of a novel galacto-oligosaccharide: genotoxicity and repeated oral dose studies. Hum Exp Toxicol 28(10):619–630PubMedCrossRefGoogle Scholar
  69. Kong S, Li D, Luo H, Li W, Huang Y, Li J, Hu Z, Huang N, Guo M, Chen Y, Li S (2018a) Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp Gerontol 103:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kong S, Li J, Li S, Liao M, Li C, Zheng P, Guo M, Tan W, Zheng Z, Hu Z (2018b) Anti-aging effect of chitosan oligosaccharide on D-galactose-induced subacute aging in mice. Mar Drugs 16(16):E181PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kristensen M, Jensen MG (2011) Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite 56(1):65–70PubMedCrossRefPubMedCentralGoogle Scholar
  72. Krupa-Kozak U, Markiewicz L, Lamparski G, Juśkiewicz J (2017) Administration of inulin-supplemented gluten-free diet modified calcium absorption and caecal microbiota in rats in a calcium-dependent manner. Nutrients 9(7):702CrossRefGoogle Scholar
  73. Kulinich A, Liu L (2016) Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carbohydr Res 432:62–70PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kumar M, Nagpal R, Hemalatha R, Yadav H, Marotta F (2016) Probiotics and prebiotics for promoting health: through gut microbiota. In Probiotics, Prebiotics, and Synbiotics Bioactive Foods in Health Promotion, pp. 75–85. Scholar
  75. Lewis ED, Richard C, Larsen BM, Field CJ (2017) The importance of human milk for immunity in preterm infants. Clin Perinatol 44(1):23–47PubMedCrossRefPubMedCentralGoogle Scholar
  76. Li Y, Liu H, Xu Q, Du Y, Xu J (2014) Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-kappa B and endothelial inflammatory response. Carbohydr Polym 99:568–578PubMedCrossRefPubMedCentralGoogle Scholar
  77. Li W, Zhang R, Guo J, Shao H, Yang X (2016) Protective effect of R. glutinosa oligosaccharides against high l-carnitine diet-induced endothelial dysfunction and hepatic injury in mice. Int J Biol Macromol 85:285–293PubMedCrossRefPubMedCentralGoogle Scholar
  78. Li Y, Chen L, Liu Y, Zhang Y, Liang Y, Mei Y (2018a) Anti-inflammatory effects in a mouse osteoarthritis model of a mixture of glucosamine and chitooligosaccharides produced by bi-enzyme single-step hydrolysis. Sci Rep 8:5624PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li S, Li J, Mao G, Hu Y, Ye X, Tian D, Linhardt RJ, Chen S (2018b) Fucosylated chondroitin sulfate oligosaccharides from Isostichopus badionotus regulates lipid disorder in C57BL/6 mice fed a high-fat diet. Carbohydr Polym 201:634–642PubMedCrossRefPubMedCentralGoogle Scholar
  80. Liang T, Chen W, Lin Z, Kuo Y, Anh DN, Pan P, Wang S (2016) An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int J Mol Sci 17(8):1302CrossRefGoogle Scholar
  81. Liebregts T, Adam B, Bredack C, Röth A, Heinzel S, Lester S, Downie Doyle S, Smith E, Drew P, Talley NJ, Holtmann G (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132(3):913–920PubMedCrossRefPubMedCentralGoogle Scholar
  82. Liu R, Li Y, Zhang B (2016) The effects of konjac oligosaccharide on TNBS-induced colitis in rats. Int Immunopharmacol 40:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  83. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714PubMedCrossRefPubMedCentralGoogle Scholar
  84. Madson MA (2016) Mass spectral analysis of carbohydrates. In Mass Spectrometry, pp. 1–78. Scholar
  85. Masuda S, Azuma K, Kurozumi S, Kiyose M, Osaki T, Tsuka T, Itoh N, Imagawa T, Minami S, Sato K (2014) Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model. Carbohydr Polym 111(20):783–787PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mattaveewong T, Wongkrasant P, Chanchai S, Pichyangkura R, Chatsudthipong V, Muanprasat C (2016) Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr Polym 145:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  87. McDougall IA (2011) The handbook of prebiotics and probiotics ingredients-health benefits and food applications. Int J Dairy Technol 64(3):456–456CrossRefGoogle Scholar
  88. Mendis E, Kim M, Rajapakse N, Kim S (2007) An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 80(23):2118–2127PubMedCrossRefPubMedCentralGoogle Scholar
  89. Moon JS, Joo W, Ling L, Choi HS, Han NS (2016) In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J Funct Foods 21:497–506CrossRefGoogle Scholar
  90. Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB (2018) The prebiotic and probiotic properties of human milk: implications for infant immune development and pediatric asthma. Front Pediatr 6:197PubMedCrossRefPubMedCentralGoogle Scholar
  91. Morozov V, Hansman G, Hanisch F, Schroten H, Kunz C (2018) Human milk oligosaccharides as promising antivirals. Mol Nutr Food Res 62(6):1700679CrossRefGoogle Scholar
  92. Mou HJ, Jiang XL, Guan GS (2003) A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol 15(4):297–303CrossRefGoogle Scholar
  93. Muanprasat C, Chatsudthipong V (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170:80–97PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S (2006) Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 19(5):701–709PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nam K-S, Kim M, Shots Y (2007) Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis. J Microbiol Biotechnol 17(9):1546–1549PubMedPubMedCentralGoogle Scholar
  96. Newburg DS, He Y (2015) Neonatal gut microbiota and human milk glycans cooperate to attenuate infection and inflammation. Clin Obstet Gynecol 58(4):814–826PubMedCrossRefPubMedCentralGoogle Scholar
  97. Ngo D, Kim S (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:70–75PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem 186(1–2):17–22PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pan L, Farouk MH, Qin G, Zhao Y, Bao N (2018a) The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. Int J Mol Sci 19(2):554CrossRefGoogle Scholar
  100. Pan H, Fu C, Huang L, Jiang Y, Deng X, Guo J, Su Z (2018b) Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs 16(6):198CrossRefGoogle Scholar
  101. Panesar PS, Kaur R, Singh RS, Kennedy JF (2018) Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 111:667–679PubMedCrossRefPubMedCentralGoogle Scholar
  102. Park EY, Jang SB, Lim ST (2016) Effect of fructo-oligosaccharide and isomalto-oligosaccharide addition on baking quality of frozen dough. Food Chem 213:157–162PubMedCrossRefPubMedCentralGoogle Scholar
  103. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease application to clinical and public health practice – a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 107(3):499–511PubMedCrossRefPubMedCentralGoogle Scholar
  104. Plaza-Diaz J, Fontana L, Gil A (2018) Human milk oligosaccharides and immune system development. Nutrients 10(8):1038CrossRefGoogle Scholar
  105. Poinot P, Arvisenet G, Grua-Priol J, Fillonneau C, Le-Bail A, Prost C (2010) Influence of inulin on bread: kinetics and physico-chemical indicators of the formation of volatile compounds during baking. Food Chem 119(4):1474–1484CrossRefGoogle Scholar
  106. Qian L, Chen L (2018) Immune protective effects of chitooligosaccharides on mice genital tract infected by Chlamydia trachomatis. Am J Reprod Immunol 79(4):e12815PubMedCrossRefPubMedCentralGoogle Scholar
  107. Qiao Y, Bai X, Du Y (2011) Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 11(1):121–127PubMedCrossRefPubMedCentralGoogle Scholar
  108. Qin C, Zhang Y, Liu W, Xu L, Yang Y, Zhou Z (2014) Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus female symbol x Oreochromis aureus male symbol. Fish Shellfish Immunol 40(1):267–274PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rasmussen SO, Martin L, Østergaard MV, Rudloff S, Roggenbuck M, Nguyen DN, Sangild PT, Bering SB (2017) Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs. J Nutr Biochem 40:141–154PubMedCrossRefPubMedCentralGoogle Scholar
  110. Rastall RA (2010) Functional oligosaccharides: application and manufacture. Annu Rev Food Sci Technol 1:305–339PubMedCrossRefPubMedCentralGoogle Scholar
  111. Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J (2009) Alcohol and global health 1 global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373(9682):2223–2233PubMedCrossRefPubMedCentralGoogle Scholar
  112. Renuka B, Kulkarni SG, Vijayanand P, Prapulla SG (2009) Fructooligosaccharide fortification of selected fruit juice beverages: effect on the quality characteristics. LWT-Food Sci Technol 42(5):1031–1033CrossRefGoogle Scholar
  113. Roberfroid MB, Van Loo JA, Gibson GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128(1):11–19PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rodrigues D, Rocha-Santos TAP, Gomes AM, Goodfellow BJ, Freitas AC (2012) Lipolysis in probiotic and synbiotic cheese: the influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles. Food Chem 131(4):1414–1421CrossRefGoogle Scholar
  115. Rodriguez Furlan LT, Padilla AP, Campderros ME (2014) Development of reduced fat minced meats using inulin and bovine plasma proteins as fat replacers. Meat Sci 96(2 Pt A):762–768PubMedCrossRefPubMedCentralGoogle Scholar
  116. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71(10):6150–6158PubMedCrossRefPubMedCentralGoogle Scholar
  117. Rößle C, Brunton N, Gormley RT, Ross PR, Butler F (2010) Development of potentially synbiotic fresh-cut apple slices. J Funct Foods 2(4):245–254CrossRefGoogle Scholar
  118. Sangwan V, Tomar SK, Singh RR, Singh AK, Ali B (2011) Galactooligosaccharides: novel components of designer foods. J Food Sci 76(4):R103–R111PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sanwalka NJ, Khadilkar AV, Chiplonkar SA, Khadilkar VV, Mughal MZ (2012) Galacto-fructo-oligosaccharide fortification of fermented non-dairy snack enhances calcium absorption in healthy adolescent girls. Int J Food Sci Nutr 63(3):343–352PubMedCrossRefPubMedCentralGoogle Scholar
  120. Singh DP, Singh J, Boparai RK, Zhu J, Mantri S, Khare P, Khardori R, Kondepudi KK, Chopra K, Bishnoi M (2017) Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacol Res 123:103–113PubMedCrossRefPubMedCentralGoogle Scholar
  121. Singh DP, Singh S, Bijalwan V, Kumar V, Khare P, Baboota RK, Singh P, Boparai RK, Singh J, Kondepudi KK, Chopra K, Bishnoi M (2018) Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur J Nutr 57(8):2897–2911PubMedCrossRefPubMedCentralGoogle Scholar
  122. Singla V, Chakkaravarthi S (2017) Applications of prebiotics in food industry: a review. Food Sci Technol Int 23(8):649–667PubMedCrossRefPubMedCentralGoogle Scholar
  123. Soukoulis C, Rontogianni E, Tzia C (2010) Contribution of thermal, rheological and physical measurements to the determination of sensorially perceived quality of ice cream containing bulk sweeteners. J Food Eng 100(4):634–641CrossRefGoogle Scholar
  124. Szente L, Singhal A, Domokos A, Song B (2018) Cyclodextrins: assessing the impact of cavity size, occupancy, and substitutions on cytotoxicity and cholesterol homeostasis. Molecules 23(5):E1228PubMedCrossRefPubMedCentralGoogle Scholar
  125. Thomas SH (1993) Paracetamol (acetaminophen) poisoning. Pharmacol Ther 60(1):91–120PubMedCrossRefPubMedCentralGoogle Scholar
  126. Thomson P, Medina DA, Garrido D (2018) Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol 75:37–46PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem Pharm Bull 36(2):784–790PubMedCrossRefPubMedCentralGoogle Scholar
  128. Tokumitsu H, Hiratsuka J, Sakurai Y, Kobayashi T, Ichikawa H, Fukumori Y (2000) Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 150(2):177–182PubMedCrossRefPubMedCentralGoogle Scholar
  129. Torres DPM, Gonçalves M d PF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9(5):438–454CrossRefGoogle Scholar
  130. van Esch BCAM, Kostadinova AI, Garssen J, Willemsen LEM, Knippels LMJ (2017) A dietary intervention with non-digestible oligosaccharides and partial hydrolysed whey protein prevents the onset of food allergic symptoms in mice. Pharma Nutr 5(1):1–7Google Scholar
  131. Volpini-Rapina LF, Sokei FR, Conti-Silva AC (2012) Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT-Food Sci Technol 48(1):37–42CrossRefGoogle Scholar
  132. Wang Y, Zeng T, Wang S, Wang W, Wang Q, Yu H (2010) Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 26(3):305–311PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wang Y, Jiang K, Ma H, Zeng W, Wang PG, Yao N, Han W, Cheng J, Wang W (2015) Enzymatic production of HMO mimics by the sialylation of galacto-oligosaccharides. Food Chem 181:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wang T, Xue C, Zhang T, Wang Y (2018a) The improvements of functional ingredients from marine foods in lipid metabolism. Trends Food Sci Technol 81:74–89CrossRefGoogle Scholar
  135. Wang H, Zhang X, Wang S, Li H, Lu Z, Shi J, Xu Z (2018b) Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food Funct 9:3916–3929PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wu X, Schauss AG (2012) Mitigation of inflammation with foods. J Agric Food Chem 60(27SI):6703–6717PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wu WZ, Su WW, Wang YG, Peng W, Wu Z, Li PB (2017) The hypoglycemic effect of Ophiopogonis japonicus oligosaccharide on db/db diabetic mice. Acta Sci Nat Univ Sunyatseni 56(6):128–133. (in Chinese)Google Scholar
  138. Xiao L, Leusinkmuis T, Kettelarij N, Van IA, Blijenberg B, Hesen NA, Stahl B, Overbeek SA, Garssen J, Folkerts G (2018) Human milk oligosaccharide 2′-fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model. Front Immunol 9:452PubMedCrossRefPubMedCentralGoogle Scholar
  139. Xu Q, Chao YL, Wan QB (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77(3):435–441CrossRefGoogle Scholar
  140. Xu W, Jiang C, Kong X, Liang Y, Rong M, Liu W (2012) Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol Med Rep 6(2):385–390PubMedCrossRefPubMedCentralGoogle Scholar
  141. Xu S, Liu Q, Xiao A, Maleki SJ, Alcocer M, Gao Y, Cao M, Liu G (2017) Eucheuma cottonii sulfated oligosaccharides decrease food allergic responses in animal models by up-regulating regulatory T (Treg) cells. J Agric Food Chem 65(15):3212–3222PubMedCrossRefPubMedCentralGoogle Scholar
  142. Yang CF, Lai SS, Chen YH, Liu D, Liu B, Ai C, Wan XZ, Gao LY, Chen XH, Zhao C (2019) Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem Toxicol 131:110562PubMedCrossRefPubMedCentralGoogle Scholar
  143. Yeh S, Wu T, Chan S, Hong M, Chen H (2014) Fructo-oligosaccharide attenuates the production of pro-inflammatory cytokines and the activation of JNK/Jun pathway in the lungs of d-galactose-treated Balb/cJ mice. Eur J Nutr 53(2):449–456PubMedCrossRefPubMedCentralGoogle Scholar
  144. Yeh MY, Shang HS, Lu HF, Chou J, Yeh C, Chang JB, Hung HF, Kuo WL, Wu LY, Chung JG (2015) Chitosan oligosaccharides in combination with Agaricus blazei Murill extract reduces hepatoma formation in mice with severe combined immunodeficiency. Mol Med Rep 12(1):133–140PubMedCrossRefPubMedCentralGoogle Scholar
  145. Yoon HJ, Moon ME, Park HS, Im SY, Kim YH (2007) Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 358(3):954–959PubMedCrossRefGoogle Scholar
  146. Yoon HJ, Moon ME, Park HS, Kim HW, Im SY, Lee JH, Kim YH (2008) Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food Chem Toxicol 46(2):710–716PubMedCrossRefGoogle Scholar
  147. Younes H, Demigne C, Remesy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75(2):301–314PubMedCrossRefGoogle Scholar
  148. Zhai X, Yuan S, Yang X, Zou P, Shao Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J (2018) Growth-inhibition of S180 residual-tumor by combination of cyclophosphamide and chitosan oligosaccharides in vivo. Life Sci 202:21–27PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zhang C, Liao Q, Ming JH, Hu GL, Chen Q, Liu SQ, Li YM (2017) The effects of chitosan oligosaccharides on OPG and RANKL expression in a rat osteoarthritis model. Acta Cir Bras 32(6):418–428PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zhao C, Wu YJ, Yang CF, Liu B, Huang YF (2015) Hypotensive, hypoglycemic and hypolipidemic effects of bioactive compounds from microalgae and marine microorganisms. Int J Food Sci Technol 50(8):1705–1717CrossRefGoogle Scholar
  151. Zhao C, Wu Y, Yu H, Shah IM, Li Y, Zeng J, Liu B, Mills DA, Chen X (2016) The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus alpha 1-2-fucosyltransferase. Chem Commun 52(20):3899–3902CrossRefGoogle Scholar
  152. Zhao C, Wu Y, Liu X, Liu B, Cao H, Yu H, Sarker SD, Nahar L, Xiao J (2017) Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Technol 66:135–145CrossRefGoogle Scholar
  153. Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar L, Yu H, Cao H, Xiao J (2018) Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol 72:1–12CrossRefGoogle Scholar
  154. Zheng JP, Yuan XB, Meng XP, Jiao SM, Feng C, Yu-Guang DU, Liu HT (2018a) Chitosan oligosaccharides inhibit the occurrence of atherosclerosis in ApoE~(−/−) Mice. J Shenyang Agric Univ 49(2):150–157. (in Chinese)Google Scholar
  155. Zheng J, Cheng G, Li Q, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H (2018b) Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar Drugs 16(2):66CrossRefGoogle Scholar
  156. Zheng J, Jiao S, Li Q, Jia P, Yin H, Zhao X, Du Y, Liu H (2018c) Antrodia cinnamomea oligosaccharides suppress lipopolysaccharide-induced inflammation through promoting O-GlcNAcylation and repressing p38/Akt phosphorylation. Molecules 23(1):51CrossRefGoogle Scholar
  157. Zheng J, Yuan X, Cheng G, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H (2018d) Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr Polym 190:77–86PubMedCrossRefGoogle Scholar
  158. Zhou TX, Cho JH, Kim IH (2012) Effects of supplementation of chito-oligosaccharide on the growth performance, nutrient digestibility, blood characteristics and appearance of diarrhea in weanling pigs. Livest Sci 144(3):263–268CrossRefGoogle Scholar
  159. Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–1181PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of MacauMacauChina

Personalised recommendations