Theaflavins, Thearubigins, and Theasinensins

  • Wojciech KochEmail author
Living reference work entry


Tea, except water, is the most widely consumed beverage across the world. It contains many active substances, among which polymeric polyphenols (theaflavins, thearubigins, and theasinensins) are dominant in fermented teas. Theaflavins and thearubigins are the major polyphenolic compounds in black tea, whereas theasinensins are the most characteristic for oolong tea. All of these classes of polyphenols have complicated structure and complex route of synthesis, in which polyphenol oxidase is a crucial enzyme. The aim of the present chapter is to provide a summary on the current knowledge on theaflavins, thearubigins, and theasinensins associated with chemical structure, molecular action pathways, and health benefits based on the scientific evidences available on the literature.


Black tea Catechins Theaflavins Thearubigins Theasinensins 


  1. Alcazar A, Ballesteros O, Jurado JM (2007) Differentiation of green, white, black, oolong, and Puerh teas according to their free amino acids content. J Agric Food Chem 55:5960–5965PubMedCrossRefGoogle Scholar
  2. Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186PubMedCrossRefGoogle Scholar
  3. Arent SM, Senso M, Golem DL (2010) The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study. J Int Soc Sport Nutr 7:11CrossRefGoogle Scholar
  4. Babich H, Gottesman RT, Liebling EJ, Schuck AG (2008) Theaflavin-3-Gallate and theaflavin-3’-Gallate, polyphenols in black tea with prooxidant properties. Basic Clin Pharmacol Toxicol 103:66–74PubMedCrossRefGoogle Scholar
  5. Barua A (2008) Romancing the Camellia assamica (Assam and the story of tea). Assam Rev Tea News, 18–27Google Scholar
  6. Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248–3254CrossRefGoogle Scholar
  7. Betts JW, Kelly SM, Haswell SJ (2011) Antibacterial effects of theaflavin and synergy with epicatechin against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia. Int J Antimicrob Agents 38(5):421–425PubMedCrossRefPubMedCentralGoogle Scholar
  8. Catteral F, Copeland E, Clifford MN, Loannides C (1998) Contribution of theafulvins to the antimutagenicity of black tea: their mechanism of action. Mutagenesis 13:631–636CrossRefGoogle Scholar
  9. Chen J, Qin S, Xiao J, Tanigawa S, Uto T, Hashimoto F, Fujii M, Hou DX (2011) A genomewide microarray highlights the antiinflammatory genes targeted by oolong tea theasinensin A in macrophages. Nutr Cancer 63(7):1064–1073PubMedCrossRefPubMedCentralGoogle Scholar
  10. Gosslau A, Jao DLE, Huang M-T, Ho C-T, Evans D, Rawson NE, Chen KY (2011) Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res 55(2):198–208PubMedPubMedCentralCrossRefGoogle Scholar
  11. Halder B, Pramanick S, Mukhopadhyay S, Giri AK (2005) Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols theaflavins and thearubigins in multiple test systems. Food Chem Toxic 43:591–597CrossRefGoogle Scholar
  12. Hashimoto F, Nonaka G, Nishioka I (1992) Tannins related compounds CXIV. Structure of novel fermentation products, theogallinin, theaflavonin and desgalloyl theaflavonin from black tea, and changes of tea leaf polyphenols during fermentation. Chem Pharm Bull 40:1383–1389CrossRefGoogle Scholar
  13. Haslam E (2003) Thoughts on thearubigins. Phytochemistry 64:61–73PubMedCrossRefGoogle Scholar
  14. He HF (2017) Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr Res 61:1344521PubMedPubMedCentralCrossRefGoogle Scholar
  15. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143PubMedCrossRefGoogle Scholar
  16. Hisanaga A, Ishida H, Sakao K, Sogo T, Kumamoto T, Hashimoto F, Hou DX (2014) Anti-inflammatory activity and molecular mechanism of oolong tea theasinensin. Food Funct 5:1891–1897PubMedCrossRefGoogle Scholar
  17. Hosoda K, Wanf MF, Liao ML, Chuang CK, Iha M, Clevidence B, Yamamoto S (2003) Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care 26:1714–1718PubMedCrossRefGoogle Scholar
  18. Hossain SJ, Kato H, Aoshima H (2002) Polyphenol induced inhibition of the response of Na+/glucose cotransporter expressed in xenopus oocytes. J Agric Food Chem 50:5215–5219PubMedCrossRefGoogle Scholar
  19. Hou DX, Masuzaki S, Tanigawa S, Hashimoto F, Chen J, Sogo T, Fujii M (2010) Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide(LPS)-activated mouse macrophages: structure–activity relationship and molecular mechanisms. J Agric Food Chem 58:12735–12743PubMedCrossRefGoogle Scholar
  20. Hsu TF, Kusumoto A, Abe K, Hosoda K, Kiso Y, Wang MF, Yamamoto S (2006) Polyphenol enriched oolong tea increases fecal lipid excretion. Eur J Clin Nutr 60:1330–1336PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hung WL, Yang G, Wang YC, Chiou YS, Tung YC, Yang MJ, Wang BN, Ho CT, Wang Y, Pan MH (2017) Protective effects of theasinensin A against carbon tetrachloride-induced liver injury in mice. Food Funct 8(9):3276–3287PubMedCrossRefPubMedCentralGoogle Scholar
  22. Imran A, Arshad MU, Arshad MS, Imran M, Saeed F, Sohaib M (2018) Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipid Health Dis 17(1):157CrossRefGoogle Scholar
  23. Isaacs CE, Xu W (2013) Theaflavin-3,3-digallate and lactic acid combinations reduce herpes simplex virus infectivity. Antimicrob Agents Chemother 57(8):3806–3814PubMedPubMedCentralCrossRefGoogle Scholar
  24. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81(7):519–533PubMedPubMedCentralCrossRefGoogle Scholar
  25. Komatsu T, Nakamori M, Komatsu K, Hosoda K, Okamura M, Toyama K, Ishikura Y, Sakai T, Kunii D, Yamamoto S (2003) Oolong tea increases energy metabolism in Japanese females. J Med Investig 50:170–175Google Scholar
  26. Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutation Res 523–524:201–208PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lee M-J, Lambert JD, Prabhu S, Meng X, Lu H, Maliakal P, Ho C-T, Yang CS (2004) Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract. Cancer Epidemiol Biomark Prev 13:132–137CrossRefGoogle Scholar
  28. Maeda-Yamamoto M, Kawahara H, Tahara N, Tsuji K, Hara Y, Isemura M (1999) Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47:2350–2354PubMedCrossRefPubMedCentralGoogle Scholar
  29. Mahanta PK, Boruah SK, Boruah HK, Kalita JN (1993) Changes of polyphenol oxidase and peroxidase activities and pigment composition of some manufactured black teas (Camellia sinensis L.). J Agric Food Chem 41:272–276CrossRefGoogle Scholar
  30. Matsuo Y, Tanaka T, Kouno I (2006) A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments. Tetrahedron 62:4774–4783CrossRefGoogle Scholar
  31. Mulder TP, van Platerink CJ, Wijnand Schuyl PJ, van Amelsvoort JM (2001) Analysis of theaflavins in biological fluids using liquid chromatography-electrospray mass spectrometry. J Chromatogr Biomed Appl 760:271–279CrossRefGoogle Scholar
  32. Pan MH, Liang YC, Lin-Shiau SY, Zhu NQ, Ho CT, Lin JK (2000) Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J Agric Food Chem 48:6337–6346PubMedCrossRefGoogle Scholar
  33. Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A (2017) Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism. J Agric Food Chem 65:5365–5374PubMedCrossRefGoogle Scholar
  34. Rumpler W, Seale JJ, Clevidence B, Judd J, Wiley e, Yamamoto S, Komatsu T, Sawaki T, Ishikura Y, Hosoda K (2001) Oolong tea increases metabolic rate and fat oxidation in men. J Nutr 131:2848–2852PubMedCrossRefGoogle Scholar
  35. Sajilata MG, Bajaj PR, Singhal RS (2008) Tea polyphenols as nutraceuticals. Compr Rev Food Sci Food Saf 7(3):229–254CrossRefGoogle Scholar
  36. Shii T, Miyamoto M, Matsuo Y, Tanaka T, Kuono I (2011) Biomimetic one-pot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper (II) chloride and ascorbic acid. Chem Pharm Bull 59(9):1183–1185PubMedCrossRefGoogle Scholar
  37. Sinha S, Ghaskadbi S (2013) Thearubigins rich black tea fraction reveals strong antioxidant activity. Int J Green Pharm 7(4):336–344CrossRefGoogle Scholar
  38. Tanaka T, Watarumi S, Matsuo Y, Kamei M, Kuono I (2003) Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron 59:7939–7947CrossRefGoogle Scholar
  39. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404PubMedCrossRefGoogle Scholar
  40. Tsai PH, Kan NB, Ho SC, Liu CC, Lin CC (2005) Effects of oolong tea supplementation on lipid peroxidation of athletes at rest and post-exhaustive exercise. J Food Sci 70:581–585CrossRefGoogle Scholar
  41. Wang W, Sun Y, Liu J, Wang J, Li Y, Li H, Zhang W, Liao H (2012) Protective effect of theaflavins on cadmium-induced testicular toxicity in male rats. Food Chem Toxicol 50(9):3243–3250PubMedCrossRefPubMedCentralGoogle Scholar
  42. Weerawatanakorn M, Lee Y-L, Tsai C-Y, Lai CS, Wan X, Ho CT, Li S, Pan MH (2015a) Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats. Food Funct 6:1832–1840PubMedCrossRefPubMedCentralGoogle Scholar
  43. Weerawatanakorn M, Hung W-L, Pan M-H, Li S, Li D, Wan X, Ho C-T (2015b) Chemistry and health beneficial effects of oolong tea and theasinensins. Food Sci Human Wellness 4:133–146CrossRefGoogle Scholar
  44. Yang TT, Koo MW (1997) Hypercholesterolemic effects of Chinese tea. Pharmacol Res 35:505–512PubMedCrossRefPubMedCentralGoogle Scholar
  45. Yang YC, Lu FH, Wu JS, Wu CH, Chang CJ (2004) The protective effect of habitual tea consumption on hypertension. Arch Int Med 164:1534–1540CrossRefGoogle Scholar
  46. Yao LH, Jiang YM, Caffin N, D’Arcy B, Datta N, Liu X, Singanusong R, Xu Y (2006) Phenolic compounds in tea from Australian supermarkets. Food Chem 96:614–620CrossRefGoogle Scholar
  47. Yi T, Zhu L, Peng W-L, He X-C, Chen H-L, Li J, Yu T, Liang Z-T, Zhao Z-Z, Chen H-B (2015) Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT-Food Sci Technol 62:194–201CrossRefGoogle Scholar
  48. Zhang GY, Miura Y, Yagasaki K (2000) Induction of apoptosis and cell cycle arrest in cancer cells by in vivo metabolites of teas. Nutr Cancer 38:265–273PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Food and NutritionMedical University of LublinLublinPoland

Personalised recommendations