Advertisement

Prenylated Flavonoids in Food

  • Maurice D. Awouafack
  • Chin Piow Wong
  • Pierre Tane
  • Hiroyuki MoritaEmail author
Living reference work entry

Abstract

Prenylflavonoids, which are also often referred to as prenylated flavonoids, are one of the classes of naturally occurring flavonoids that are widely distributed in plants. They possess at least one prenyl group on the flavonoid skeleton and have various reported bioactivities. Several prenylated flavonoids have been reported from edible plant species, such as H. lupulus, G. glabra, M. alba, A. heterophyllus, G. max, etc., and their efficacy for promoting human health has been discussed by mainly investigating their bioactivities. This chapter summarizes the bioactivities, bioavailabilities, and metabolism of the prenylated flavonoids from H. lupulus, G. glabra, M. alba, A. heterophyllus, and G. max, as well as their safety, application in foods, and some restrictions.

Keywords

Food sources Prenylated flavonoids Bioactivity Application Safety 

References

  1. Agrawal A (2011) Pharmacological activities of flavonoids: a review. Int J Pharm Sci Res Center 4(2):1394–1398Google Scholar
  2. Almaguer C, Schönberger C, Gastl M, Arendt EK, Becker T (2014) Humulus lupulus – a story that begs to be told. A review. J Inst Brew 120(4):289–314Google Scholar
  3. Aoki F, Nakagawa K, Tanaka A, Matsuzaki K, Arai N, Mae T (2005) Determination of glabridin in human plasma by solid-phase extraction and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 828(1–2):70–74PubMedCrossRefGoogle Scholar
  4. Azad AK, Jones JG, Haq N (2007) Assessing morphological and isozyme variation of jackfruit (Artocarpus heterophyllus Lam.) in Bangladesh. Agrofor Syst 71(2):109–125CrossRefGoogle Scholar
  5. Badole SL, Bodhankar SL (2013) Glycine max (Soybean) treatment for diabetes. Bioactive food as dietary interventions for diabetes. Elsevier IncGoogle Scholar
  6. Baliga MS, Shivashankara AR, Haniadka R, Dsouza J, Bhat HP (2011) Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): a review. Food Res Int 44(7):1800–1811CrossRefGoogle Scholar
  7. Bamji SF, Corbitt C (2017) Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods 34:98–105CrossRefGoogle Scholar
  8. Barnes J, Anderson LA, Phillipson JD (2007) Herbal medicines, 3rd edn. Pharmaceutical Press, LondonGoogle Scholar
  9. Barron D, Ibrahim RK (1996) Isoprenylated flavonoids – a survey. Phytochemistry 43(5):921–982CrossRefGoogle Scholar
  10. Benelli R, Ven R, Ciarlo M, Carlone S, Barbieri O, Ferrari N (2012) The AKT/NF-κB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochem Pharmacol 83(12):1634–1642PubMedCrossRefGoogle Scholar
  11. Blumenthal M, Busse WR (1998) The complete German Commission E monographs: therapeutic guide to herbal medicines / developed by a Special Expert Committee of the German Federal Institute for Drugs and Medical Devices; senior editor, Mark Blumenthal; associate editors, Werner R. Busse ... [et al.]; primary translator, Sigrid Klein; associate translator, Robert S. Rister; with a foreword by Varro E. Tyler. – Version details – Trove. In: Blumenthal WR, BusseM (ed) Austin/Boston: American Botanical Council/Integrative Medicine CommunicationsGoogle Scholar
  12. Böttner M, Christoffel J, Wuttke W (2008) Effects of long-term treatment with 8-prenylnaringenin and oral estradiol on the GH – IGF-1 axis and lipid metabolism in rats. J Endocrinol 198:395–401PubMedCrossRefGoogle Scholar
  13. Boué SM, Isakova IA, Burow ME, Cao H, Bhatnagar D, Sarver JG, … Heiman ML (2012) Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. J Agric Food Chem 60(25):6376–6382PubMedCrossRefGoogle Scholar
  14. Bourges-Sevenier C (2002) WO2002085393A1Google Scholar
  15. Bowe J, Li XF, Kinsey-Jones J, Heyerick A, Milligan S, Byrne KO (2006) The hop phytoestrogen, 8-prenylnaringenin, reverses the ovariectomy-induced rise in skin temperature in an animal model of menopausal hot flushes. J Endocrinol 191:399–405PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bown, D. (2001). New encyclopedia of herbs & their uses. DK PubGoogle Scholar
  17. Brachfeld A, Choate M (2007) Eat your food!: gastronomical glory from garden to gut: a Coastalfields cookbook, nutrition textbook, farming manual and sport manual. Coastalfields, ArvadaGoogle Scholar
  18. Butt MS, Nazir A, Sultan MT, Schroën K (2008) Morus alba L. nature’s functional tonic. Trends Food Sci Technol 19(10):505–512CrossRefGoogle Scholar
  19. Chen KI, Erh MH, Su NW, Liu WH, Chou CC, Cheng KC (2012) Soyfoods and soybean products: from traditional use to modern applications. Appl Microbiol Biotechnol 96(1):9–22PubMedCrossRefGoogle Scholar
  20. Chu X, Jiang L, Wei M, Yang X, Guan M, Xie X, … Wang D (2013) Attenuation of allergic airway inflammation in a murine model of asthma by Licochalcone A. Immunopharmacol Immunotoxicol 35(6):653–661PubMedCrossRefGoogle Scholar
  21. Costa R, Rodrigues I, Guardão L, Rocha-Rodrigues S, Silva C, Magalhães J, … Soares R (2017) Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J Nutr Biochem 45:39–47PubMedCrossRefGoogle Scholar
  22. Dat NT, Binh PTX, Quynh LTP, Van Minh C, Huong HT, Lee JJ (2010) Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia 81(8):1224–1227PubMedCrossRefGoogle Scholar
  23. Dixit AK, Bhatnagar D, Kumar V, Chawla D, Fakhruddin K, Bhatnagar D (2012) Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress. J Funct Foods 4(1):197–206CrossRefGoogle Scholar
  24. Dokduang H, Yongvanit P, Namwat N, Pairojkul C, Sangkhamanon S, Yageta MS, … Loilome W (2016) Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol Rep 35(4):2065–2072PubMedCrossRefGoogle Scholar
  25. Duke JA (1985) CRC handbook of medicinal herbs/author, James A. Duke. – version details – trove. CRC Press, Boca RatonGoogle Scholar
  26. Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51(4):419–435CrossRefGoogle Scholar
  27. Erdelmeier C, Koch E (2003) WO2003014287A1Google Scholar
  28. Ferk F, Huber WW, Filipič M, Bichler J, Haslinger E, Mišík M, … Knasmüller S (2010) Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ). Mutat Res Fundam Mol Mech Mutagen 691(1–2):17–22PubMedCrossRefGoogle Scholar
  29. Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D (2005) A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 99(3):317–324PubMedCrossRefGoogle Scholar
  30. Grieve M (Maude) (1971) A modern herbal: the medicinal, culinary, cosmetic, and economic properties, cultivation, and folk-lore of herbs, grasses, fungi, shrubs, & trees with all their modern scientific uses. Dover Publications, New YorkGoogle Scholar
  31. Hanske L, Loh G, Sczesny S, Blaut M, Braune A (2010) Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol Nutr Food Res 54(10):1405–1413PubMedCrossRefGoogle Scholar
  32. Hümpel M, Isaksson P, Schaefer O, Kaufmann U, Ciana P, Maggi A, Schleuning WD (2005) Tissue specificity of 8-prenylnaringenin: protection from ovariectomy induced bone loss with minimal trophic effects on the uterus. J Steroid Biochem Mol Biol 97(3):299–305PubMedCrossRefGoogle Scholar
  33. Hussong R, Frank N, Knauft J, Ittrich C, Owen R, Becker H, Gerhäuser C (2005) A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol Nutr Food Res 49(9):861–867PubMedCrossRefGoogle Scholar
  34. Jiang W, Zhao S, Xu L, Lu Y, Lu Z, Chen C, … Yang L (2015) The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother 73:40–47CrossRefGoogle Scholar
  35. Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9(MAY):1–13Google Scholar
  36. Keen NT, Ingham JL, Hymowltz T, Sims JJ, Midland S (1989) The occurrence of glyceollins in plants related to Glycine max (L.) Merr. Biochem Syst Ecol 17(5):395–398CrossRefGoogle Scholar
  37. Keiler AM, Dörfelt P, Chatterjee N, Helle J, Bader MI, Vollmer G, … Zierau O (2015) Assessment of the effects of naringenin-type flavanones in uterus and vagina. J Steroid Biochem Mol Biol 145:49–57PubMedCrossRefGoogle Scholar
  38. Keiler AM, Helle J, Bader MI, Ehrhardt T, Nestler K, Kretzschmar G, … Zierau O (2017) A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine 34:50–58PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim HJ, Sung MK, Kim JS (2011) Anti-inflammatory effects of glyceollins derived from soybean by elicitation with Aspergillus sojae. Inflamm Res 60(10):909–917PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ko FN, Cheng ZJ, Lin CN, Teng CM (1998) Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus. Free Radic Biol Med 25(2):160–168PubMedCrossRefGoogle Scholar
  41. Legette LL, Moreno Luna AY, Reed RL, Miranda CL, Bobe G, Proteau RR, Stevens JF (2013) Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry 91:236–241PubMedCrossRefGoogle Scholar
  42. Liao C-L, Huang H-Y, Sheen L-Y, Chou C-C (2009) Anti-inflammatory activity of soymilk and fermented soymilk prepared with lactic acid bacterium and bifidobacterium. J Food Drug Anal 18(3):202–210Google Scholar
  43. Lima-Fontes M, Costa R, Rodrigues I, Soares R (2017) Xanthohumol restores hepatic glucolipid metabolism balance in type 1 diabetic wistar rats. J Agric Food Chem 65(34):7433–7439PubMedCrossRefGoogle Scholar
  44. Lin CN, Lu CM, Lin HC, Fang SC, Shieh BJ, Hsu MF, … Teng CM (1996) Novel antiplatelet constituents from Formosan moraceous plants. J Nat Prod 59(9):834–838PubMedCrossRefGoogle Scholar
  45. Minecka A, Zych M, Kaczmarczyk-Sedlak I (2017) 8-prenylnaringenin from hop (Humulus lupulus L.) – a panacea for menopause ? Herba Polonica 63(4):34–44CrossRefGoogle Scholar
  46. Monteiro R, Calhau C, Silva AOE, Pinheiro-Silva S, Guerreiro S, Gärtner F, … Soares R (2008) Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 104(5):1699–1707PubMedCrossRefGoogle Scholar
  47. Mukai R (2018) Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Biosci Biotechnol Biochem 82(2):207–215PubMedCrossRefGoogle Scholar
  48. Mukai R, Horikawa H, Fujikura Y, Kawamura T, Nemoto H, Nikawa T, Terao J (2012) Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice. PLoS One 7(9):1–11CrossRefGoogle Scholar
  49. Muller GK (2001) Morus. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals) (illustrated). Springer, Madison, pp 379–382Google Scholar
  50. Nikolic D, Li Y, Chadwick LR, Pauli GF, van Breemen RB (2005) Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus lupulus L.), by human liver microsomes. J Mass Spectrom 40(3):289–299PubMedCrossRefGoogle Scholar
  51. Nwachukwu ID, Luciano FB, Udenigwe CC (2013) The inducible soybean glyceollin phytoalexins with multifunctional health-promoting properties. Food Res Int 54(1):1208–1216CrossRefGoogle Scholar
  52. Park S, Kim DS, Kim JH, Kim JS, Kim HJ (2012) Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice. Nutrition 28(2):204–211PubMedCrossRefGoogle Scholar
  53. Pinto C, Duque AL, Rodríguez-Galdón B, Cestero JJ, Macías P (2012) Xanthohumol prevents carbon tetrachloride-induced acute liver injury in rats. Food Chem Toxicol 50(10):3405–3412PubMedCrossRefGoogle Scholar
  54. Prakash O, Kumar R, Mishra A, Gupta R (2009) Artocarpus heterophyllus (jackfruit): an overview. Pharmacogn Rev 3(6):353–358Google Scholar
  55. Rad M, Hümpel M, Schaefer O, Schoemaker RC, Schleuning WD, Cohen AF, Burggraaf J (2006) Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women. Br J Clin Pharmacol 62(3):288–296PubMedPubMedCentralCrossRefGoogle Scholar
  56. Rhodes LV, Tilghman SL, Boue SM, Wang S, Khalili H, Muir SE, … Collins-Burow BM (2012) Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol Lett 3(1):163–171PubMedPubMedCentralCrossRefGoogle Scholar
  57. Rimoldi G, Christoffel J, Wuttke W (2006) Morphologic changes induced by oral long-term treatment with 8-prenylnaringenin in the uterus, vagina, and mammary gland of castrated rats. Menopause 13(4):669–677PubMedCrossRefGoogle Scholar
  58. Ruefer CE, Gerhäuser C, Frank N, Becker H, Kulling SE (2005) In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol Nutr Food Res 49(9):851–856PubMedCrossRefGoogle Scholar
  59. Sakamoto T, Horiguchi H, Oguma E, Kayama F (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21(9):856–864PubMedCrossRefGoogle Scholar
  60. Salvo VA, Boué SM, Fonseca JP, Elliott S, Corbitt C, Collins-Burow BM, … Burow ME (2006) Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res 12(23):7159–7164PubMedCrossRefGoogle Scholar
  61. Sasaki K, Tsurumaru Y, Yamamoto H, Yazaki K (2011) Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens. J Biol Chem 286(27):24125–24134PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sasaki H, Kashiwada Y, Shibatav H, Takaishi Y (2012) Prenylated flavonoids from the roots of Desmodium caudatum and evaluation of their antifungal activity. Planta Med 78(17):1851–1856PubMedCrossRefGoogle Scholar
  63. Saxena A, Bawa AS, Raju PS (2009) Phytochemical changes in fresh-cut jackfruit (Artocarpus heterophyllus L.) bulbs during modified atmosphere storage. Food Chem 115(4):1443–1449CrossRefGoogle Scholar
  64. Simons R, Vincken JP, Roidos N, Bovee TFH, Van Iersel M, Verbruggen MA, Gruppen H (2011) Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J Agric Food Chem 59(12):6748–6758PubMedCrossRefGoogle Scholar
  65. Srivastava S, Kapoor R, Thathola A, Srivastava RP (2006) Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int J Food Sci Nutr 57(5–6):305–313PubMedCrossRefGoogle Scholar
  66. Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65:1317–1330PubMedCrossRefGoogle Scholar
  67. Stevens JF, Ivancic M, Hsu VL, Deinzer ML (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44(8):1575–1585CrossRefGoogle Scholar
  68. Štulíková K, Karabín M, Nešpor J, Dostálek P (2018) Therapeutic perspectives of 8-prenylnaringenin, a potent phytoestrogen from hops. Molecules 23(3):660PubMedCentralCrossRefPubMedGoogle Scholar
  69. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K (2005) Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agric Food Chem 53(11):4578–4582PubMedCrossRefGoogle Scholar
  70. Terao J, Mukai R (2014) Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch Biochem Biophys 559:12–16PubMedCrossRefGoogle Scholar
  71. van Breemen RB, Yuan Y, Banuvar S, Shulman LP, Qiu X, Ramos Alvarenga RF, Nikolic D (2014) Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol Nutr Food Res 58(10):1962–1969PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vanhoecke BW, Delporte F, Van Braeckel E, Heyerick A, Depypere HT, Nuytinck M, … Bracke ME (2005) A safety study of oral tangeretin and xanthohumol administration to laboratory mice. Vivo 19(1):103–108Google Scholar
  73. Vene R, Benelli R, Minghelli S, Astigiano S, Tosetti F, Ferrari N (2012) Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol Med 18(9):1292–1302PubMedPubMedCentralCrossRefGoogle Scholar
  74. Venturelli S, Burkard M, Biendl M, Lauer UM, Frank J, Busch C (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32(11–12):1171–1178PubMedCrossRefGoogle Scholar
  75. Weiss RF (1988) Herbal medicine. AB Arcanum, GothenburgGoogle Scholar
  76. Wong WW, Lewis RD, Steinberg FM, Murray MJ, Cramer MA, Amato P, … Smith EOB (2009) Soy isoflavone supplementation and bone mineral density in menopausal women: a 2-y multicenter clinical trial 1–4. Am J Clin Nutr 90(5):1433–1439PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wood CE, Clarkson TB, Appt SE, Franke AA, Boue SM, Burow ME, … Cline JM (2006) Effects of soybean glyceollins and estradiol in postmenopausal female monkeys. Nutr Cancer 56(1):74–81PubMedCrossRefGoogle Scholar
  78. Xiang C, Qiao X, Wang Q, Li R, Miao W, Guo D, Ye M (2011) From single compounds to herbal extract: a strategy to systematically characterize the metabolites of lLicorice in rats. Drug Metab Dispos 39(9):1597–1608PubMedCrossRefGoogle Scholar
  79. Xiaoying W, Han Z, Yu W (2017) Glycyrrhiza glabra (Licorice). In: Sustained energy for enhanced human functions and activity. Elsevier Inc., pp 231–250Google Scholar
  80. Yang X, Jiang Y, Yang J, He J, Sun J, Chen F, … Yang B (2015) Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci Technol 44(1):93–104CrossRefGoogle Scholar
  81. Yen G-C, Wu S-C, Duh P-D (1996) Extraction and identification of antioxidant components from the leaves of mulberry (Morus alba L.). J Agric Food Chem 44(7):1687–1690CrossRefGoogle Scholar
  82. Yui K, Kiyofuji A, Osada K (2014) Effects of xanthohumol-rich extract from the hop on fatty acid metabolism in rats fed a high-fat diet. J Oleo Sci 63(2):159–168PubMedCrossRefGoogle Scholar
  83. Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 116(3):383–396PubMedCrossRefGoogle Scholar
  84. Zou Y, Chang SKC (2011) Effect of black soybean extract on the suppression of the proliferation of human AGS gastric cancer cells via the induction of apoptosis. J Agric Food Chem 59(9):4597–4605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Maurice D. Awouafack
    • 1
    • 2
  • Chin Piow Wong
    • 1
  • Pierre Tane
    • 2
  • Hiroyuki Morita
    • 1
    Email author
  1. 1.Institute of Natural MedicineUniversity of ToyamaToyamaJapan
  2. 2.Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of ScienceUniversity of DschangDschangCameroon

Personalised recommendations