Emerging Macrocyclic Arenes Related to Calixarenes and Pillararenes

  • Dihua Dai
  • Jia-Rui Wu
  • Ying-Wei YangEmail author
Living reference work entry


Synthetic macrocyclic arenes are the leading workhorses in host-guest and supramolecular chemistry. In particular, calix[n]arenes and pillar[n]arenes are very influential members in virtue of their selective host-guest properties and multifarious applications. In this chapter, we give a brief introduction of the recent advances on synthetic macrocyclic arenes related to calixarenes and pillararenes, focusing on their syntheses, structures, and molecular recognition properties. Future perspectives of macrocyclic synthetic chemistry are also provided. We hope this chapter will provide a valuable reference for scientists working in the field of supramolecular macrocyclic chemistry and inspire new discoveries on synthetic macrocyclic receptors.



We thank the National Natural Science Foundation of China (21871108, 51673084), Jilin Province-University Cooperative Construction Project – Special Funds for New Materials (SXGJSF2017-3) – Jilin University Talents Cultivation Program, and the JLU Cultivation Fund for the National Science Fund for Distinguished Young Scholars for financial support.


  1. 1.
    Lehn JM (1993) Supramolecular chemistry. Science 260:1762PubMedGoogle Scholar
  2. 2.
    Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV (2011) Artificial receptors for the recognition of phosphorylated molecules. Chem Rev 111:6603–6782PubMedPubMedCentralGoogle Scholar
  3. 3.
    Yang YW, Sun YL, Song N (2014) Switchable host-guest systems on surfaces. Acc Chem Res 47:1950–1960PubMedGoogle Scholar
  4. 4.
    Jie K, Zhou Y, Yao Y, Huang F (2015) Macrocyclic amphiphiles. Chem Soc Rev 44:3568–3587PubMedGoogle Scholar
  5. 5.
    Liu Z, Nalluri SKM, Stoddart JF (2017) Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev 46:2459–2478PubMedGoogle Scholar
  6. 6.
    Pedersen CJ (1967) Cyclic Polyethers and their complexes with metal salts. J Am Chem Soc 89:2495–2596Google Scholar
  7. 7.
    Pedersen CJ (1967) Cyclic Polyethers and their complexes with metal salts. J Am Chem Soc 89: 7017–7036Google Scholar
  8. 8.
    Bell TW, Firestone A (1986) Torands: rigid toroidal macrocycles. Calcium sequestration by a member of this new ligand class. J Am Chem Soc 108:8109–8111Google Scholar
  9. 9.
    Ramaiah D, Neelakandan PP, Nair AK, Avirah RR (2010) Functional cyclophanes: promising hosts for optical biomolecular recognition. Chem Soc Rev 39:4158–4168PubMedGoogle Scholar
  10. 10.
    Barnes JC, Juricek M, Vermeulen NA, Dale EJ, Stoddart JF (2013) Synthesis of Ex(n)Box cyclophanes. J Org Chem 78:11962–11969PubMedGoogle Scholar
  11. 11.
    Ghasemabadi PG, Yao T, Bodwell GJ (2015) Cyclophanes containing large polycyclic aromatic hydrocarbons. Chem Soc Rev 44:6494–6518PubMedGoogle Scholar
  12. 12.
    Gong X, Young RM, Hartlieb KJ, Miller C, Wu Y, Xiao H, Li P, Hafezi N, Zhou J, Ma L, Cheng T, Goddard WA 3rd, Farha OK, Hupp JT, Wasielewski MR, Stoddart JF (2017) Intramolecular energy and electron transfer within a Diazaperopyrenium-based cyclophane. J Am Chem Soc 139:4107–4116PubMedGoogle Scholar
  13. 13.
    Gutsche CD, Muthukrishnan R (1978) Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J Org Chem 43:4905–4906Google Scholar
  14. 14.
    Gutsche CD (1983) Calixarenes. Acc Chem Res 16:161–170Google Scholar
  15. 15.
    Atwood JL, Koutsantonis GA, Raston CL (1994) Purification of C60 and C70 by selective complexation with calixarenes. Nature 368:229Google Scholar
  16. 16.
    Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799PubMedGoogle Scholar
  17. 17.
    Homden DM, Redshaw C (2008) The use of calixarenes in metal-based catalysis. Chem Rev 108:5086–5130PubMedGoogle Scholar
  18. 18.
    Guo DS, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41:5907–5921PubMedGoogle Scholar
  19. 19.
    Zhang F, Sun Y, Tian D, Shin WS, Kim JS, Li H (2016) Selective molecular recognition on calixarene-functionalized 3D surfaces. Chem Commun 52:12685–12693Google Scholar
  20. 20.
    Ogoshi T, Kanai S, Fujinami S, Yamagishi T-a, Nakamoto Y (2008) Para-bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022–5023PubMedGoogle Scholar
  21. 21.
    Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang FH (2011) Formation of linear supramolecular polymers that is driven by C-Hpi interactions in solution and in the solid state. Angew Chem Int Ed 50:1397–1401Google Scholar
  22. 22.
    Hu XB, Chen Z, Chen L, Zhang L, Hou JL, Li ZT (2012) Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chem Commun 48:10999–11001Google Scholar
  23. 23.
    Chen W, Zhang Y, Li J, Lou X, Yu Y, Jia X, Li CJ (2013) Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests. Chem Commun 49:7956–7958Google Scholar
  24. 24.
    Ogoshi T, Ueshima N, Sakakibara F, Yamagishi TA, Haino T (2014) Conversion from pillar[5]arene to pillar[6-15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with nanosize cavities. Org Lett 16:2896–2899PubMedGoogle Scholar
  25. 25.
    Chi X, Ji X, Xia D, Huang FH (2015) A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar[7]arene and an azobenzene-containing random copolymer. J Am Chem Soc 137:1440–1443PubMedGoogle Scholar
  26. 26.
    Tan LL, Li H, Qiu YC, Chen DX, Wang X, Pan RY, Wang Y, Zhang SXA, Wang B, Yang YW (2015) Stimuli-responsive metal–organic frameworks gated by pillar[5]arene supramolecular switches. Chem Sci 6:1640–1644PubMedGoogle Scholar
  27. 27.
    Ogoshi T, Yamagishi TA, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116:7937–8002PubMedGoogle Scholar
  28. 28.
    Cui W, Tang H, Xu L, Wang L, Meier H, Cao DR (2017) Pillar[5]arene-Diketopyrrolopyrrole fluorescent copolymer: a promising recognition and adsorption material for Adiponitrile by selective formation of a conjugated Polypseudorotaxane. Macromol Rapid Commun 38:1700161Google Scholar
  29. 29.
    Kakuta T, Yamagishi T, Ogoshi T (2017) Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition “click” reaction. Chem Commun 53:5250–5266Google Scholar
  30. 30.
    Freeman WA, Mock WL, Shih N-Y (1981) Cucurbituril. J Am Chem Soc 103:7367–7368Google Scholar
  31. 31.
    Yang HB, Wang MX (2004) A general and high yielding fragment coupling synthesis of heteroatom-bridged Calixarenes and the unprecedented examples of Calixarene cavity fine-tuned by bridging heteroatoms. J Am Chem Soc 126:15412–15422PubMedGoogle Scholar
  32. 32.
    Chun Y, Singh NJ, Hwang IC, Lee JW, Yu SU, Kim KS (2013) Calix[n]imidazolium as a new class of positively charged homo-calix compounds. Nat Commun 4:1797PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang MX (2012) Nitrogen and oxygen bridged Calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc Chem Res 45:182–195PubMedGoogle Scholar
  34. 34.
    Maes W, Dehaen W (2008) Oxacalix[n](het)arenes. Chem Soc Rev 37:2393–2402PubMedGoogle Scholar
  35. 35.
    Zhang C, Wang Z, Song S, Meng X, Zheng YS, Yang XL, Xu HB (2014) Tetraphenylethylene-based expanded oxacalixarene: synthesis, structure, and its supramolecular grid assemblies directed by guests in the solid state. J Org Chem 79:2729–2732PubMedGoogle Scholar
  36. 36.
    Zhang C, Wang Z, Tan L, Zhai TL, Wang S, Tan B, Zheng YS, Yang XL, Xu HB (2015) A porous Tricyclooxacalixarene cage based on Tetraphenylethylene. Angew Chem Int Ed 54:9244–9248Google Scholar
  37. 37.
    Wang Z, Ma H, Zhai TL, Cheng G, Xu Q, Liu JM, Yang J, Zhang QM, Zhang QP, Zheng YS, Tan B, Zhang C (2018) Networked cages for enhanced CO2 capture and sensing. Adv Sci 5:1800141Google Scholar
  38. 38.
    Wang Z, Yan S, Cui HC, Cheng G, Ma H, Zhang QM, Zhang QP, Liu JM, Tan B, Zhang C (2018) Porous organic polymer from aggregation-induced emission macrocycle for white-light emission. Macromolecules 51:7863–7871Google Scholar
  39. 39.
    Boinski T, Cieszkowski A, Rosa B, Szumna A (2015) Hybrid [n]arenes through thermodynamically driven macrocyclization reactions. J Org Chem 80:3488–3495PubMedGoogle Scholar
  40. 40.
    Zhou J, Yang J, Hua B, Shao L, Zhang Z, Yu GC (2016) The synthesis, structure, and molecular recognition properties of a [2]calix[1]biphenyl-type hybrid[3]arene. Chem Commun 52:1622–1624Google Scholar
  41. 41.
    Boinski T, Szumna A (2017) Hybrid[4]arenes with anthracene units and tunable cavities. New J Chem 41:3387–3391Google Scholar
  42. 42.
    Yang P, Jian Y, Zhou X, Li G, Deng T, Shen H, Yang Z, Tian Z (2016) Calix[3]carbazole: one-step synthesis and host-guest binding. J Org Chem 81:2974–2980PubMedGoogle Scholar
  43. 43.
    Kondratowicz M, Mysliwiec D, Lis T, Stepien M (2014) Heteroaromatic belts through fold-in synthesis: mechanistic insights into a macrocycle-templated Friedel-crafts alkylation. Chem Eur J 20:14981–14985PubMedGoogle Scholar
  44. 44.
    Piatek P, Lynch VM, Sessler JL (2004) Calix[4]pyrrole[2]carbazole: a new kind of expanded Calixpyrrole. J Am Chem Soc 126:16073–16076PubMedGoogle Scholar
  45. 45.
    Zhu H, Shi B, Chen K, Wei P, Xia D, Mondal JH, Huang FH (2016) Cyclo[4]carbazole, an iodide anion macrocyclic receptor. Org Lett 18:5054–5057PubMedGoogle Scholar
  46. 46.
    Kim I, Ko KC, Lee WR, Cho J, Moon JH, Moon D, Sharma A, Lee JY, Kim JS, Kim S (2017) Calix[n]triazoles and related conformational studies. Org Lett 19:5509–5512PubMedGoogle Scholar
  47. 47.
    Zafrani Y, Cohen Y (2017) Calix[4, 5]tetrolarenes: a new family of macrocycles. Org Lett 19:3719–3722PubMedGoogle Scholar
  48. 48.
    Kumar P, Venkatakrishnan P (2018) Coumarin[4]arene: a fluorescent macrocycle. Org Lett 20:1295–1299PubMedGoogle Scholar
  49. 49.
    Schneebeli ST, Cheng C, Hartlieb KJ, Strutt NL, Sarjeant AA, Stern CL, Stoddart JF (2013) Asararenes--a family of large aromatic macrocycles. Chem Eur J 19(12):3860–3868PubMedGoogle Scholar
  50. 50.
    Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li CJ (2015) Biphen[n]arenes. Chem Sci 6:197–202PubMedGoogle Scholar
  51. 51.
    Ma S, Chen H, Li J, Jia X, Li CJ (2016) Molecular recognition properties of Biphen[4]arene. Chem Asian J 11:3449–3453PubMedGoogle Scholar
  52. 52.
    Zhou J, Yu G, Shao L, Hua B, Huang FH (2015) A water-soluble biphen[3]arene: synthesis, host-guest complexation, and application in controllable self-assembly and controlled release. Chem Commun 51:4188–4191Google Scholar
  53. 53.
    Zhou J, Yang J, Zhang ZH, Yu GC (2016) A cationic water-soluble biphen[3]arene: synthesis, host–guest complexation and fabrication of a supra-amphiphile. RSC Adv 6:77179–77183Google Scholar
  54. 54.
    Dai L, Ding ZJ, Cui L, Li J, Jia X, Li CJ (2017) 2,2′-Biphen[n]arenes (n = 4–8): one-step, high-yield synthesis, and host-guest properties. Chem Commun 53:12096–12099Google Scholar
  55. 55.
    Lee S, Chen CH, Flood AH (2013) A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat Chem 5:704–710PubMedGoogle Scholar
  56. 56.
    Wisner JA (2013) A star is born. Nat Chem 5:646–647PubMedGoogle Scholar
  57. 57.
    Qiao B, Hirsch BE, Lee S, Pink M, Chen CH, Laursen BW, Flood AH (2017) Ion-pair oligomerization of chromogenic Triangulenium cations with Cyanostar-modified anions that controls emission in hierarchical materials. J Am Chem Soc 139:6226–6233PubMedGoogle Scholar
  58. 58.
    Qiao B, Liu Y, Lee S, Pink M, Flood AH (2016) A high-yield synthesis and acid-base response of phosphate-templated [3]rotaxanes. Chem Commun 52:13675–13678Google Scholar
  59. 59.
    Zhao W, Qiao B, Chen CH, Flood AH (2017) High-Fidelity multistate switching with anion-anion and acid-anion dimers of organophosphates in Cyanostar complexes. Angew Chem Int Ed 56:13083–13087Google Scholar
  60. 60.
    Guieu S, Crane AK, MacLachlan MJ (2011) Campestarenes: novel shape-persistent Schiff base macrocycles with 5-fold symmetry. Chem Commun 47:1169–1171Google Scholar
  61. 61.
    Chen Z, Guieu S, White NG, Lelj F, MacLachlan MJ (2016) The rich tautomeric behavior of Campestarenes. Chem Eur J 22:17657–17672PubMedGoogle Scholar
  62. 62.
    Nam S, Ware DC, Brothers PJ (2018) Campestarenes: new building blocks with 5-fold symmetry. Org Biomol Chem 16:6460–6469PubMedGoogle Scholar
  63. 63.
    Chaudhry MT, Lelj F, MacLachlan MJ (2018) Expanded campestarene hosts for tetra- and dinuclear uranyl(vi) complexes. Chem Commun 54:11869–11872Google Scholar
  64. 64.
    Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W (2015) Oxatub[4]arene: a smart macrocyclic receptor with multiple interconvertible cavities. Chem Sci 6:6731–6738PubMedPubMedCentralGoogle Scholar
  65. 65.
    Jia F, Li DH, Yang TL, Yang LP, Dang L, Jiang W (2017) Oxatub[5,6]arene: synthesis, conformational analysis, and the recognition of C60 and C70. Chem Commmun 53:336–339Google Scholar
  66. 66.
    Gao B, Tan LL, Song N, Li K, Yang YW (2016) A high-yield synthesis of [m]biphenyl-extended pillar[n]arenes for an efficient selective inclusion of toluene and m-xylene in the solid state. Chem Commun 52:5804–5807Google Scholar
  67. 67.
    Wu JR, Wang CY, Tao YC, Wang Y, Li CJ, Yang YW (2018) A water-soluble [2]biphenyl-extended pillar[6]arene. Eur J Org Chem 2018:1321–1325Google Scholar
  68. 68.
    Kosiorek S, Rosa B, Boinski T, Butkiewicz H, Szymanski MP, Danylyuk O, Szumna A, Sashuk V (2017) Pillar[4]pyridinium: a square-shaped molecular box. Chem Commun 53: 13320–13323Google Scholar
  69. 69.
    Wu JR, Mu AU, Li B, Wang CY, Fang L, Yang YW (2018) Desymmetrized leaning pillar[6]arene. Angew Chem Int Ed 57:9853–9858Google Scholar
  70. 70.
    Shetty D, Trabolsi A (2018) Making pillar[6]arenes to lean: an art of tuning a supramolecular host. Sci China Chem.
  71. 71.
    Swager TM, Kim Y (2018) Flexible pillar[6]arene for enhanced host–guest properties. Synfacts 14:0815Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations