Mechanically Self-Locked Molecules

  • Sheng-Hua Li
  • Yong Chen
  • Yu LiuEmail author
Living reference work entry


Macrocycles, as a class of cyclic molecules, have been broadly researched by supramolecular chemists due to their efficient dynamic binding behaviors with suitable guest molecules. When the macrocycle and its corresponding guest were covalently tied up, an ingenious topological architecture named as “mechanically self-locked molecule” formed. Mechanically self-locked molecules using noncovalent interaction as driving force were designed and engineered at molecular resolution, providing a possibility to realize the motion of molecular machine in one molecule. On the basis of the number and position of the covalent connected sites between the macrocycle and the guest molecule, we will summarize the mechanically self-locked architectures according to the following categories: pseudo[1]rotaxanes, pseudo[1]catenanes, molecular figures-of-eight, pretzelanes, and double-lasso molecules. We wish this chapter focusing on the progress of these unique structures could expand the horizon for people who are interested in or working on the mechanically self-locked architectures or molecular machines.


  1. 1.
    Corey EJ, Cheng XM (1989) The logic of chemical synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:44–122CrossRefGoogle Scholar
  3. 3.
    Eaton PE, Cole TW (1964) Cubane. J Am Chem Soc 86:3157–3158CrossRefGoogle Scholar
  4. 4.
    Wasserman E (1960) The preparation of interlocking rings: a catenane1. J Am Chem Soc 82:4433–4434CrossRefGoogle Scholar
  5. 5.
    Frisch HL, Wasserman E (1961) Chemical topology1. J Am Chem Soc 83:3789–3795CrossRefGoogle Scholar
  6. 6.
    Dietrich-Buchecker CO, Sauvage JP, Kintzinger JP (1983) Une nouvelle famille de molecules: Les metallo-catenanes. Tetrahedron Lett 24:5095–5098CrossRefGoogle Scholar
  7. 7.
    Hubin TJ, Busch DH (2000) Template routes to interlocked molecular structures and orderly molecular entanglements. Coord Chem Rev 200–202:5–52CrossRefGoogle Scholar
  8. 8.
    Reuter C, Mohry A, Sobanski A, Vögtle F (2000) [1]rotaxanes and pretzelanes: synthesis, chirality, and absolute configuration. Chem Eur J 6:1674–1682PubMedCrossRefGoogle Scholar
  9. 9.
    Ashton PR, Ballardini R, Balzani V, Boyd SE, Credi A, Gandolfi MT, Gómez-López M, Iqbal S, Philp D, Preece JA, Prodi L, Ricketts HG, Stoddart JF, Tolley MS, Venturi M, Venturi M, White AJP, Williams DJ (1997) Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chem Eur J 3:152–170CrossRefGoogle Scholar
  10. 10.
    Ashton PR, Gómez-López M, Iqbal S, Preece JA, Stoddart JF (1997) A self-complexing macrocycle acting as a chromophoric receptor. Tetrahedron Lett 38:3635–3638CrossRefGoogle Scholar
  11. 11.
    Liu Y, Flood AH, Moskowitz RM, Stoddart JF (2005) Versatile self-complexing compounds based on covalently linked donor–acceptor cyclophanes. Chem Eur J 11:369–385CrossRefGoogle Scholar
  12. 12.
    Wang Y, Sun J, Liu Z, Nassar MS, Botros YY, Stoddart JF (2017) Radically promoted formation of a molecular lasso. Chem Sci 8:2562–2568PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Brøndsted Nielsen M, Becher J (1998) ‘Self-complexing’ tetrathiafulvalene macrocycles; a tetrathiafulvalene switch. Chem Commun 475–476Google Scholar
  14. 14.
    Brøndsted Nielsen M, Hansen JG, Becher J (1999) Self-complexing tetrathiafulvalene-based donor–acceptor macrocycles. Eur J Org Chem 1999:2807–2815CrossRefGoogle Scholar
  15. 15.
    Cooke G, Woisel P, Bria M, Delattre F, Garety JF, Hewage SG, Rabani G, Rosair GM (2006) A tuneable self-complexing molecular switch. Org Lett 8:1423–1426PubMedCrossRefGoogle Scholar
  16. 16.
    Hooley RJ, Rebek (2007) Self-complexed deep cavitands: alkyl chains coil into a nearby cavity. Org Lett 9:1179–1182PubMedCrossRefGoogle Scholar
  17. 17.
    Du X-S, Wang C-Y, Jia Q, Deng R, Tian H-S, Zhang H-Y, Meguellati K, Yang Y-W (2017) Pillar[5]arene-based [1]rotaxane: high-yield synthesis, characterization and application in knoevenagel reaction. Chem Commun 53:5326–5329CrossRefGoogle Scholar
  18. 18.
    Balzani V, Ceroni P, Credi A, Gómez-López M, Hamers C, Fraser Stoddart J, Wolf R (2001) Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New J Chem 25:25–31CrossRefGoogle Scholar
  19. 19.
    Hiratani K, Kaneyama M, Nagawa Y, Koyama E, Kanesato M (2004) Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J Am Chem Soc 126:13568–13569PubMedCrossRefGoogle Scholar
  20. 20.
    Qu D-H, Feringa BL (2010) Controlling molecular rotary motion with a self-complexing lock. Angew Chem 122:1125–1128CrossRefGoogle Scholar
  21. 21.
    Li H, Zhang H, Zhang Q, Zhang Q-W, Qu D-H (2012) A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org Lett 14:5900–5903PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Zhang J-N, Zhou W, Zhang H, Zhang Q, Qu D-H, Tian H (2013) Dual-mode operation of a bistable [1]rotaxane with a fluorescence signal. Org Lett 15:3070–3073PubMedCrossRefGoogle Scholar
  23. 23.
    Li H, Li X, Ågren H, Qu D-H (2014) Two switchable star-shaped [1](n)rotaxanes with different multibranched cores. Org Lett 16:4940–4943PubMedCrossRefGoogle Scholar
  24. 24.
    Waelès P, Clavel C, Fournel-Marotte K, Coutrot F (2015) Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8. Chem Sci 6:4828–4836PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Xue Z, Mayer MF (2010) Actuator prototype: capture and release of a self-entangled [1]rotaxane. J Am Chem Soc 132:3274–3276PubMedCrossRefGoogle Scholar
  26. 26.
    Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T (2015) Linear–cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy. Chem Commun 51:5606–5609CrossRefGoogle Scholar
  27. 27.
    Onagi H, Blake CJ, Easton CJ, Lincoln SF (2003) Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Chem Eur J 9:5978–5988PubMedCrossRefGoogle Scholar
  28. 28.
    Ma X, Wang Q, Tian H (2007) Disparate orientation of [1]rotaxanes. Tetrahedron Lett 48:7112–7116CrossRefGoogle Scholar
  29. 29.
    Ma X, Qu D, Ji F, Wang Q, Zhu L, Xu Y, Tian H (2007) A light-driven [1]rotaxane via self-complementary and suzuki-coupling capping. Chem Commun 1409–1411Google Scholar
  30. 30.
    Di Motta S, Avellini T, Silvi S, Venturi M, Ma X, Tian H, Credi A, Negri F (2013) Photophysical properties and conformational effects on the circular dichroism of an azobenzene–cyclodextrin [1]rotaxane and its molecular components. Chem Eur J 19:3131–3138PubMedCrossRefGoogle Scholar
  31. 31.
    Cao J, Ma X, Min M, Cao T, Wu S, Tian H (2014) Inhibit logic operations based on light-driven β-cyclodextrin pseudo[1]rotaxane with room temperature phosphorescence addresses. Chem Commun 50:3224–3226CrossRefGoogle Scholar
  32. 32.
    Franchi P, Fanì M, Mezzina E, Lucarini M (2008) Increasing the persistency of stable free-radicals: synthesis and characterization of a nitroxide based [1]rotaxane. Org Lett 10:1901–1904PubMedCrossRefGoogle Scholar
  33. 33.
    Miyawaki A, Kuad P, Takashima Y, Yamaguchi H, Harada A (2008) Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J Am Chem Soc 130:17062–17069PubMedCrossRefGoogle Scholar
  34. 34.
    Yamauchi K, Miyawaki A, Takashima Y, Yamaguchi H, Harada A (2010) Switching from altro-α-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling. Org Lett 12:1284–1286PubMedCrossRefGoogle Scholar
  35. 35.
    Legros V, Vanhaverbeke C, Souard F, Len C, Désiré J (2013) Β-cyclodextrin–glycerol dimers: synthesis and NMR conformational analysis. Eur J Org Chem 2013:2583–2590CrossRefGoogle Scholar
  36. 36.
    Gao C, Ma X, Zhang Q, Wang Q, Qu D, Tian H (2011) A light-powered stretch–contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org Biomol Chem 9:1126–1132PubMedCrossRefGoogle Scholar
  37. 37.
    Liu Y, Chipot C, Shao X, Cai W (2014) Threading or tumbling? Insight into the self-inclusion mechanism of an altro-α-cyclodextrin derivative. J Phys Chem C 118:19380–19386CrossRefGoogle Scholar
  38. 38.
    Wolf R, Asakawa M, Ashton PR, Gómez-López M, Hamers C, Menzer S, Parsons IW, Spencer N, Stoddart JF, Tolley MS, Williams DJ (1998) A molecular chameleon: chromophoric sensing by a self-complexing molecular assembly. Angew Chem Int Ed 37:975–979CrossRefGoogle Scholar
  39. 39.
    Ogoshi T, Akutsu T, Yamafuji D, Aoki T, Yamagishi T-a (2013) Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo[1]catenane. Angew Chem 125:8269–8273CrossRefGoogle Scholar
  40. 40.
    Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma JJ, Fukuhara G, Mori T, Inoue Y, Yang C (2017) Temperature-driven planar chirality switching of a pillar[5]arene-based molecular universal joint. Angew Chem Int Ed 56:6869–6873CrossRefGoogle Scholar
  41. 41.
    Lee E, Ju H, Park I-H, Jung JH, Ikeda M, Kuwahara S, Habata Y, Lee SS (2018) Pseudo[1]catenane-type pillar[5]thiacrown whose planar chiral inversion is triggered by metal cation and controlled by anion. J Am Chem Soc 140:9669–9677PubMedCrossRefGoogle Scholar
  42. 42.
    Li S-H, Zhang H-Y, Xu X, Liu Y (2015) Mechanically selflocked chiral gemini-catenanes. Nat Commun 6:7590–7596PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Reuter C, Wienand W, Schmuck C, Vögtle F (2001) A self-threaded “molecular 8”. Chem Eur J 7:1728–1733PubMedCrossRefGoogle Scholar
  44. 44.
    Boyle MM, Forgan RS, Friedman DC, Gassensmith JJ, Smaldone RA, Stoddart JF, Sauvage J-P (2011) Donor–acceptor molecular figures-of-eight. Chem Commun 47:11870–11872CrossRefGoogle Scholar
  45. 45.
    Boyle MM, Gassensmith JJ, Whalley AC, Forgan RS, Smaldone RA, Hartlieb KJ, Blackburn AK, Sauvage J-P, Stoddart JF (2012) Stereochemistry of molecular figures-of-eight. Chem Eur J 18:10312–10323PubMedCrossRefGoogle Scholar
  46. 46.
    Liu Y, Vignon SA, Zhang X, Bonvallet PA, Khan SI, Houk KN, Stoddart JF (2005) Dynamic chirality in donor−acceptor pretzelanes. J Org Chem 70:9334–9344PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao Y-L, Trabolsi A, Stoddart JF (2009) A bistable pretzelane. Chem Commun 4844–4846Google Scholar
  48. 48.
    Han M, Zhang H-Y, Yang L-X, Ding Z-J, Zhuang R-J, Liu Y (2011) A [2]catenane and pretzelane based on sn–porphyrin and crown ether. Eur J Org Chem 2011:7271–7277CrossRefGoogle Scholar
  49. 49.
    Romuald C, Ardá A, Clavel C, Jiménez-Barbero J, Coutrot F (2012) Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem Sci 3:1851–1857CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry, State Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinChina
  2. 2.College of Chemical Engineering and Materials ScienceTianjin University of Science & TechnologyTianjinChina
  3. 3.Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations