Artificial Host Molecules Modifying Biomacromolecules

  • Tian-Guang Zhan
  • Kang-Da ZhangEmail author
Living reference work entry


Regulating the functions of biomacromolecules through chemical modifications has long been concerned as a key issue in chemistry and biochemistry. Although significant progress has been made in the modification of biomacromolecules by utilizing traditional covalent chemistry, the recently emerged supramolecular approaches, particularly those based on specific host-guest recognition, have been recognized as alternative strategies which can offer new opportunities in modulating biomolecular functions. In this chapter, we mainly focus on the discussion of the host-guest recognition assisted modifications of biomacromolecules including proteins/peptides, carbohydrates, as well as DNA and nucleic acids. We hope that this chapter can provide a worth learning summary in multidisciplinary fields of supramolecular chemistry and biochemistry, which may shine light on exploring the future of such flourishing and vibrant topic with myriad possibilities by encouraging and opening the windows to researchers from different backgrounds.


  1. 1.
    Smith BD (2015) Synthetic receptors for biomolecules: design principles and applications. The Royal Society of Chemistry, LondonCrossRefGoogle Scholar
  2. 2.
    Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev 115:7794PubMedCrossRefGoogle Scholar
  3. 3.
    Liu Z, Nalluri SKM, Stoddart JF (2017) Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev 46:2459PubMedCrossRefGoogle Scholar
  4. 4.
    Shetty D, Khedkar JK, Parkad KM, Kim K (2015) Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. Chem Soc Rev 44:8747PubMedCrossRefGoogle Scholar
  5. 5.
    Liu W, Samanta SK, Smith BD, Isaacs L (2017) Synthetic mimics of biotin/(strept)avidin. Chem Soc Rev 46:2391PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    van Dun S, Ottmann C, Milroy L-G, Brunsveld L (2017) Supramolecular chemistry targeting proteins. J Am Chem Soc 139:13960PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Park KM, Murray J, Kim K (2017) Ultrastable artificial binding pairs as a supramolecular latching system: a next generation chemical tool for proteomics. Acc Chem Res 50:644PubMedCrossRefGoogle Scholar
  8. 8.
    Hou C, Zeng X, Gao Y, Qiao S, Zhang X, Xu J, Liu J (2018) Cucurbituril as a versatile tool to tune the functions of proteins. Isr J Chem 58:286CrossRefGoogle Scholar
  9. 9.
    Finbloom JA, Francis MB (2018) Supramolecular strategies for protein immobilization and modification. Curr Opin Chem Biol 46:91PubMedCrossRefGoogle Scholar
  10. 10.
    Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou X, Pathak P, Jayawickramarajah J (2018) Design, synthesis, and applications of DNA-macrocyclic host conjugates. Chem Commun 54:11668CrossRefGoogle Scholar
  12. 12.
    Ganapati S, Isaacs L (2018) Acyclic cucurbit[n]uril-type receptors: preparation, molecular recognition properties and biological applications. Isr J Chem 58:250PubMedCrossRefGoogle Scholar
  13. 13.
    Hou C, Huang Z, Fang Y, Liu J (2017) Construction of protein assemblies by host-guest interactions with cucurbiturils. Org Biomol Chem 15:4272PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang L, Wu Y, Brunsveld L (2007) A synthetic supramolecular construct modulating protein assembly in cells. Angew Chem Int Ed 46:1798CrossRefGoogle Scholar
  15. 15.
    Nguyen HD, Dang DT, van Dongen JLJ, Brunsveld L (2010) Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angew Chem Int Ed 49:895CrossRefGoogle Scholar
  16. 16.
    Uhlenheuer DA, Young JF, Nguyen HD, Scheepstra M, Brunsveld L (2011) Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chem Commun 47:6798CrossRefGoogle Scholar
  17. 17.
    de Vink PJ, Briels JM, Schrader T, Milroy L-G, Brunsveld L, Ottmann C (2017) A binary bivalent supramolecular assembly platform based on cucurbit[8]uril and dimeric adapter protein 14-3-3. Angew Chem Int Ed 56:8998CrossRefGoogle Scholar
  18. 18.
    Rennie ML, Fox GC, Pérez J, Crowley PB (2018) Auto-regulated protein assembly on a supramolecular scaffold. Angew Chem Int Ed 57:13764CrossRefGoogle Scholar
  19. 19.
    Dang DT, Schill J, Brunsveld L (2012) Cucurbit[8]uril-mediated protein homotetramerization. Chem Sci 3:2679CrossRefGoogle Scholar
  20. 20.
    Luo Q, Hou C, Bai Y, Wang R, Liu J (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116:13571PubMedCrossRefGoogle Scholar
  21. 21.
    Hou C, Li J, Zhao L, Zhang W, Luo Q, Dong Z, Xu J, Liu J (2013) Construction of protein nanowires through cucurbit[8]uril-based highly specific host-guest interactions: an approach to the assembly of functional proteins. Angew Chem Int Ed 52:5590Google Scholar
  22. 22.
    Si C, Li J, Luo Q, Hou C, Pan T, Li H, Liu J (2016) An ion signal responsive dynamic protein nano-spring constructed by high ordered host-guest recognition. Chem Commun 52:2924PubMedCrossRefGoogle Scholar
  23. 23.
    Li X, Bai Y, Huang Z, Si C, Dong Z, Luo Q, Liu J (2017) A highly controllable protein self-assembly system with morphological versatility induced by reengineered host-guest interactions. Nanoscale 9:7991PubMedCrossRefGoogle Scholar
  24. 24.
    Young JF, Nguyen HD, Yang L, Huskens J, Jonkheijm P, Brunsveld L (2010) Strong and reversible monovalent supramolecular protein immobilization. Chem Bio Chem 11:180Google Scholar
  25. 25.
    Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L (2015) Supramolecular protein immobilization on lipid bilayers. Chem Eur J 21:18466CrossRefGoogle Scholar
  26. 26.
    Uhlenheuer DA, Wasserberg D, Haase C, Nguyen HD, Schenkel JH, Huskens J, Ravoo BJ, Jonkheijm P, Brunsveld L (2012) Directed supramolecular surface assembly of SNAP-tag fusion proteins. Chem Eur J 18:6788CrossRefGoogle Scholar
  27. 27.
    Jiao D, Geng J, Loh XJ, Das D, Lee T-C, Scherman OA (2012) Supramolecular peptide amphiphile vesicles through host-guest complexation. Angew Chem Int Ed 51:9633PubMedCrossRefGoogle Scholar
  28. 28.
    Biedermann F, Rauwald U, Zayed JM, Scherman OA (2011) A supramolecular route for reversible protein-polymer conjugation. Chem Sci 2:279CrossRefGoogle Scholar
  29. 29.
    Webber MJ, Appel EA, Vinciguerra B, Cortinas AB, Thapa LS, Jhunjhunwala S, Isaacs L, Langer R, Anderson DG (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci U S A 113:14189CrossRefGoogle Scholar
  30. 30.
    Aucagne V, Leigh DA, Lock JS, Thomson AR (2006) Rotaxanes of cyclic peptides. J Am Chem Soc 128:1784PubMedCrossRefGoogle Scholar
  31. 31.
    Bruns CJ, Liu H, Francis MB (2016) Near-quantitative aqueous synthesis of rotaxanes via bioconjugation to oligopeptides and proteins. J Am Chem Soc 138:15307PubMedCrossRefGoogle Scholar
  32. 32.
    Finbloom JA, Han K, Slack CC, Furst AL, Francis MB (2017) Cucurbit[6]uril-promoted click chemistry for protein modification. J Am Chem Soc 139:9691PubMedCrossRefGoogle Scholar
  33. 33.
    Kwant RL, Jaffe J, Palmere PJ, Francis MB (2015) Controlled levels of protein modification through a chromatography-mediated bioconjugation. Chem Sci 6:2596PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lee D-W, Park KM, Banerjee M, Ha SH, Lee T, Suh K, Paul S, Jung H, Kim J, Selvapalam N, Ryu SH, Kim K (2011) Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. Nat Chem 3:154PubMedCrossRefGoogle Scholar
  35. 35.
    Murray J, Sim J, Oh K, Sung G, Lee A, Shrinidhi A, Thirunarayanan A, Shetty D, Kim K (2017) Enrichment of specifically labeled proteins by an immobilized host molecule. Angew Chem Int Ed 56:2395CrossRefGoogle Scholar
  36. 36.
    Lee JW, Shin MH, Mobley W, Urbach AR, Kim HI (2015) Supramolecular enhancement of protein analysis via the recognition of phenylalanine with cucurbit[7]uril. J Am Chem Soc 137:15322PubMedCrossRefGoogle Scholar
  37. 37.
    Sonzini S, Marcozzi A, Gubeli RJ, van der Walle CF, Ravn P, Herrmann A, Scherman OA (2016) High affinity recognition of a selected amino acid epitope within a protein by cucurbit[8]uril complexation. Angew Chem Int Ed 55:14000CrossRefGoogle Scholar
  38. 38.
    Paul D, Suzumura A, Sugimoto H, Teraoka J, Shinoda S, Tsukube H (2003) Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol. J Am Chem Soc 125:11478PubMedCrossRefGoogle Scholar
  39. 39.
    Ghosh S, Issacs L (2010) Biological catalysis regulated by cucurbit[7]uril molecular containers. J Am Chem Soc 132:4445PubMedCrossRefGoogle Scholar
  40. 40.
    Dang DT, Nguyen HD, Merkx M, Brunsveld L (2013) Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angew Chem Int Ed 52:2915CrossRefGoogle Scholar
  41. 41.
    Bosmans RPG, Briels JM, Milroy L-G, de Greef TFA, Merkx M, Brunsveld L (2016) Supramolecular control over split-luciferase complementation. Angew Chem Int Ed 55:8899CrossRefGoogle Scholar
  42. 42.
    Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM (2010) Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem 2:962PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yeh Y-C, Rana S, Mout R, Yan B, Alfonsoa FS, Rotello VM (2014) Supramolecular tailoring of protein–nanoparticle interactions using cucurbituril mediators. Chem Commun 50:5565CrossRefGoogle Scholar
  44. 44.
    Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh Y-C, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Le NDB, Tonga GY, Mout R, Kim S-T, Wille ME, Rana S, Dunphy KA, Jerry DJ, Yazdani M, Ramanathan R, Rotello CM, Rotello VM (2017) Cancer cell discrimination using host-guest“doubled”arrays. J Am Chem Soc 139:8008PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yu Y, Rebek J Jr (2018) Reactions of folded molecules in water. Acc Chem Res 51:3031PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang K-D, Ajami D, Gavette JV, Rebek J Jr (2014) Complexation of alkyl groups and ghrelin in a deep, water-soluble cavitand. Chem Commun 50:4895CrossRefGoogle Scholar
  48. 48.
    Liu Y, Perez L, Gill AD, Mettry M, Li L, Wang Y, Hooley RJ, Zhong W (2017) Site-selective sensing of histone methylation enzyme activity via an arrayed supramolecular tandem assay. J Am Chem Soc 139:10964PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu Y, Perez L, Mettry M, Gill AD, Byers SR, Easley CJ, Bardeen CJ, Zhong W, Hooley RJ (2017) Site selective reading of epigenetic markers by a dual-mode synthetic receptor array. Chem Sci 8:3960PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu Y, Lee J, Perez L, Gill AD, Hooley RJ, Zhong W (2018) Selective sensing of phosphorylated peptides and monitoring kinase and phosphatase activity with a supramolecular tandem assay. J Am Chem Soc 140:13869PubMedCrossRefGoogle Scholar
  51. 51.
    Liu Y, Liao P, Cheng Q, Hooley RJ (2010) Protein and small molecule recognition properties of deep cavitands in a supported lipid membrane determined by calcination-enhanced SPR spectroscopy. J Am Chem Soc 132:10383PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ghang Y-J, Lloyd JJ, Moehlig MP, Arguelles JK, Mettry M, Zhang X, Julian RR, Cheng Q, Hooley RJ (2014) Labeled protein recognition at a membrane bilayer interface by embedded synthetic receptors. Langmuir 30:10161PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ghang Y-J, Perez L, Morgan MA, Si F, Hamdy OM, Beecher CN, Larive CK, Julian RR, Zhong W, Cheng Q, Hooley RJ (2014) Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. Soft Matter 10:9651PubMedCrossRefGoogle Scholar
  54. 54.
    Lis H, Sharon N (1998) Lectins:carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637PubMedCrossRefGoogle Scholar
  55. 55.
    Kubik S (2009) Synthetic lectins. Angew Chem Int Ed 48:1722PubMedCrossRefGoogle Scholar
  56. 56.
    Mazik M (2009) Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev 38:935PubMedCrossRefGoogle Scholar
  57. 57.
    Laughrey ZR, Kiehna SE, Riemen AJ, Waters ML (2008) Carbohydrate-π interactions: what are they worth?. J Am Chem Soc 130:14625PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aoyama Y, Tanaka Y, Toi H, Ogoshi H (1988) Polar host-guest interaction. Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host. J Am Chem Soc 110:634CrossRefGoogle Scholar
  59. 59.
    Davis AP, Wareham RS (1999) Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angew Chem Int Ed 38:2978CrossRefGoogle Scholar
  60. 60.
    Aoyama Y, Nagai Y, Otsuki J-i, Kobayashi K, Toi H (1992) Selective binding of sugar to β-cyclodextrin: a prototype for sugar-sugar interactions in water. Angew Chem Int Ed 31:745CrossRefGoogle Scholar
  61. 61.
    Král V, Rusin O, Schmidtchen FP (2001) Novel porphyrin-cryptand cyclic systems: receptors for saccharide recognition in water. Org Lett 3:873PubMedCrossRefGoogle Scholar
  62. 62.
    Jang Y, Natarajan R, Ko YH, Kim K (2014) Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water. Angew Chem Int Ed 53:1003CrossRefGoogle Scholar
  63. 63.
    Ferrand Y, Klein E, Barwell NP, Crump MP, Jiménez-Barbero J, Vicent C, Boons G-J, Ingale S, Davis AP (2009) A synthetic lectin for O-linked β-N-acetylglucosamine. Angew Chem Int Ed 48:1775CrossRefGoogle Scholar
  64. 64.
    Tromans RA, Carter TS, Chabanne L, Crump MP, Li H, Matlock JV, Orchard MG, Davis AP (2019) A biomimetic receptor for glucose. Nat Chem 11:52PubMedCrossRefGoogle Scholar
  65. 65.
    Ferrand Y, Crump MP, Davis AP (2007) A synthetic lectin analog for biomimetic disaccharide recognition. Science 318:619PubMedCrossRefGoogle Scholar
  66. 66.
    Sookcharoenpinyo B, Klein E, Ferrand Y, Walker DB, Brotherhood PR, Ke C, Crump MP, Davis AP (2012) High-affinity disaccharide binding by tricyclic synthetic lectins. Angew Chem Int Ed 51:4586Google Scholar
  67. 67.
    Mooibroek TJ, Casas-Solvas JM, Harniman RL, Renney CM, Carter TS, Crump MP, Davis AP (2016) A threading receptor for polysaccharides. Nat Chem 8:69PubMedCrossRefGoogle Scholar
  68. 68.
    Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park K-H, Hoffman AS, Hahn SK, Kim K (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960PubMedCrossRefGoogle Scholar
  69. 69.
    Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J Am Chem Soc 134:11767PubMedCrossRefGoogle Scholar
  70. 70.
    Rowland MJ, Atgie M, Hoogland D, Scherman OA (2015) Preparation and supramolecular recognition of multivalent peptide-polysaccharide conjugates by cucurbit[8]uril in hydrogel formation. Biomacromolecules 16:2436PubMedCrossRefGoogle Scholar
  71. 71.
    Janeček E-R, McKee JR, Tan CSY, Nykänen A, Kettunen M, Laine J, Ikkala O, Scherman OA (2015) Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew Chem Int Ed 54:5383CrossRefGoogle Scholar
  72. 72.
    Fujimoto K, Yamada S, Inouye M (2009) Synthesis of versatile fluorescent sensors based on Click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chem Commun 45:7164Google Scholar
  73. 73.
    Chiba J, Sakai A, Yamada S, Fujimoto K, Inouye M (2013) A supramolecular DNA self-assembly based on β-cyclodextrin-adamantane complexation as a bioorthogonal sticky end motif. Chem Commun 49:6454CrossRefGoogle Scholar
  74. 74.
    Thelu HVP, Albert SK, Golla M, Krishnan N, Ram D, Srinivasula SM, Varghese R (2018) Size controllable DNA nanogels from the self-assembly of DNA nanostructures through multivalent host-guest interactions. Nanoscale 10:222CrossRefGoogle Scholar
  75. 75.
    Albert SK, Thelu HVP, Golla M, Krishnan N, Varghese R (2017) Modular synthesis of supramolecular DNA amphiphiles through host-guest interactions and their self-assembly into DNA-decorated nanovesicles. Nanoscale 9:5425PubMedCrossRefGoogle Scholar
  76. 76.
    Wang S-R, Wang J-Q, Xu G-H, Wei L, Fu B-S, Wu L-Y, Song Y-Y, Yang X-R, Li C, Liu S-M, Zhou X (2018) The cucurbit[7]uril-based supramolecular chemistry for reversible B/Z-DNA transition. Adv Sci 5:1800231CrossRefGoogle Scholar
  77. 77.
    Ihara T, Uemura A, Futamura A, Shimizu M, Baba N, Nishizawa S, Teramae N, Jyo A (2009) Cooperative DNA probing using a β-cyclodextrin-DNA conjugate and a nucleobase-specific fluorescent ligand. J Am Chem Soc 131:1386PubMedCrossRefGoogle Scholar
  78. 78.
    Garcia MAA, Hu Y, Willner I (2016) Switchable supramolecular catalysis using DNA-templated scaffolds. Chem Commun 52:2153CrossRefGoogle Scholar
  79. 79.
    Harris DC, Saks BR, Jayawickramarajah J (2011) Protein-binding molecular switches via host-guest stabilized DNA hairpins. J Am Chem Soc 133:7676PubMedCrossRefGoogle Scholar
  80. 80.
    Jiang Y, Pan X, Chang J, Niu W, Hou W, Kuai H, Zhao Z, Liu J, Wang M, Tan W (2018) Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery. J Am Chem Soc 140:6780PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou X, Su X, Pathak P, Vik R, Vinciguerra B, Isaacs L, Jayawickramarajah J (2017) Host-guest tethered DNA transducer: ATP fueled release of a protein inhibitor from cucurbit[7]uril. J Am Chem Soc 139:13916PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina

Personalised recommendations