Polypseudorotaxanes Constructed by Crown Ethers

  • Hong-Guang Fu
  • Yong Chen
  • Yu LiuEmail author
Living reference work entry


Polypseudorotaxane, characterized by the mechanical linkage of its components, exhibits unique chemical, physical, rheological, and mechanical properties and has attracted much attention of scientists due to its wide applications in various fields including drug delivery carriers, stimuli-responsive materials, and healable materials. Polypseudorotaxanes can be mainly divided into three classes: side-chain polypseudorotaxanes, main-chain polypseudorotaxanes, and others (such as cross-linked and branched polypseudorotaxanes). In this chapter, the recent advances of these three classes of polypseudorotaxanes constructed by crown ethers are reviewed. Moreover, their future developments are also prospected.



We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for the financial support.


  1. 1.
    Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  2. 2.
    Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77CrossRefGoogle Scholar
  3. 3.
    Wei P, Li J, Yan X, Zhou Q (2014) Metallosupramolecular poly[2]pseudorotaxane constructed by metal coordination and crown-ether-based molecular recognition. Org Lett 16:126–129CrossRefGoogle Scholar
  4. 4.
    Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96–107CrossRefGoogle Scholar
  5. 5.
    Johnston AG, Leigh DA, Pritchard RJ, Deegan MD (2014) Facile synthesis and solid-state structure of a benzylic amide [2]catenane. Angew Chem Int Ed 34:1209–1212CrossRefGoogle Scholar
  6. 6.
    Niu Z, Slebodnick C, Gibson HW (2011) Pseudocryptand-type [3]Pseudorotaxane and “hook-ring” polypseudo[2]catenane based on a bis(m-phenylene)-32-crown-10 derivative and bisparaquat derivatives. Org Lett 13:4616–4619CrossRefGoogle Scholar
  7. 7.
    He L, Liu X, Liang J, Cong Y, Weng Z, Bu W (2015) Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem Commun 51:7148–7151CrossRefGoogle Scholar
  8. 8.
    Andrew TL, Swager TM (2011) Structure – property relationships for exciton transfer in conjugated polymers. J Polym Sci B Polym Phys 49:476–498CrossRefGoogle Scholar
  9. 9.
    Hu R, Maldonado JL, Rodriguez M, Deng C, Jim CKW, Lam JWY et al (2012) Luminogenic materials constructed from tetraphenylethene building blocks: synthesis, aggregation-induced emission, two-photon absorption, light refraction, and explosive detection. J Mater Chem 22:232–240CrossRefGoogle Scholar
  10. 10.
    He L, Liang J, Cong Y, Chen X, Bu W (2014) Concentration and acid–base controllable fluorescence of a metallosupramolecular polymer. Chem Commun 50:10841–10844CrossRefGoogle Scholar
  11. 11.
    Wang Z, Chen S, Lam JWY, Qin W, Kwok RTK, Xie N et al (2013) Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J Am Chem Soc 135:8238–8245CrossRefGoogle Scholar
  12. 12.
    Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773CrossRefGoogle Scholar
  13. 13.
    Pardo E, Train C, Gontard G, Boubekeur K, Fabelo O, Liu H et al (2011) High proton conduction in a chiral ferromagnetic metal–organic quartz-like framework. J Am Chem Soc 133:15328–15331CrossRefGoogle Scholar
  14. 14.
    Li L, He L, Wang B, Ge P, Jing L, Liu H et al (2018) Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chem Commun 54:8092–8095CrossRefGoogle Scholar
  15. 15.
    Xing H, Wei P, Yan X (2014) Supramolecular side-chain poly[2]pseudorotaxanes formed by orthogonal coordination-driven self-assembly and crown-ether-based host–guest interactions. Org Lett 16:2850–2853CrossRefGoogle Scholar
  16. 16.
    Gong C, Balanda PB, Gibson HW (1998) Supramolecular chemistry with macromolecules: new self-assembly based main chain polypseudorotaxanes and their properties. Macromolecules 31:5278–5289CrossRefGoogle Scholar
  17. 17.
    Lee M, Moore RB, Gibson HW (2011) Supramolecular pseudorotaxane graft copolymer from a crown ether polyester and a complementary paraquat-terminated polystyrene guest. Macromolecules 44:5987–5993CrossRefGoogle Scholar
  18. 18.
    Ashton PR, Chrystal EJT, Glink PT, Menzer S, Schiavo C, Spencer N et al (1996) Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem Eur J 2:709–728CrossRefGoogle Scholar
  19. 19.
    Huang F, Gibson HW, Bryant WS, Nagvekar DS, Fronczek FR (2003) First pseudorotaxane-like [3]complexes based on cryptands and paraquat: self-assembly and crystal structures. J Am Chem Soc 125:9367–9371CrossRefGoogle Scholar
  20. 20.
    Huang F, Fronczek FR, Gibson HW (2003) A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation. J Am Chem Soc 125:9272–9273CrossRefGoogle Scholar
  21. 21.
    Huang F, Switek KA, Zakharov LN, Fronczek FR, Slebodnick C, Lam M et al (2005) Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives. J Org Chem 70:3231–3241CrossRefGoogle Scholar
  22. 22.
    Wang F, Han C, He C, Zhou Q, Zhang J, Wang C et al (2008) Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc 130:11254–11255CrossRefGoogle Scholar
  23. 23.
    Wang F, Zheng B, Zhu K, Zhou Q, Zhai C, Li S et al (2009) Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host–guest recognition motifs. Chem Commun 29:4375–4377CrossRefGoogle Scholar
  24. 24.
    Jung JH, Kobayashi H, Masuda M, Shimizu T, Shinkai S (2001) Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. J Am Chem Soc 123:8785–8789CrossRefGoogle Scholar
  25. 25.
    Kawano S-i, Fujita N, Shinkai S (2003) Novel host–guest organogels as stabilized by the formation of crown–ammonium pseudo-rotaxane complexes. Chem Commun 12:1352–1353CrossRefGoogle Scholar
  26. 26.
    Jung JH, Lee SJ, Rim JA, Lee H, Bae T-S, Lee SS et al (2005) Stabilization of crown-based organogelators by charge-transfer interaction. Chem Mater 17:459–462CrossRefGoogle Scholar
  27. 27.
    Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y et al (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed 50:1905–1909CrossRefGoogle Scholar
  28. 28.
    Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32:1083–1122CrossRefGoogle Scholar
  29. 29.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) “High-tech”-Anwendungen von supramolekularen nanostrukturierten Gelmaterialien – von der regenerativen Medizin bis hin zu elektronischen Bauelementen. Angew Chem Int Ed 120:8122–8139CrossRefGoogle Scholar
  30. 30.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018CrossRefGoogle Scholar
  31. 31.
    Shome A, Debnath S, Das PK (2008) Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12. Langmuir 24:4280–4288CrossRefGoogle Scholar
  32. 32.
    Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem Int Ed 121:1830–1834CrossRefGoogle Scholar
  33. 33.
    Yan X, Xu D, Chi X, Chen J, Dong S, Ding X et al (2012) A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24:362–369CrossRefGoogle Scholar
  34. 34.
    Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511CrossRefGoogle Scholar
  35. 35.
    Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B et al (2012) Self-healing supramolecular gels formed by crown ether based host–guest interactions. Angew Chem Int Ed 51:7011–7015CrossRefGoogle Scholar
  36. 36.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574CrossRefGoogle Scholar
  37. 37.
    Nelson TL, O’Sullivan C, Greene NT, Maynor MS, Lavigne JJ (2006) Cross-reactive conjugated polymers: analyte-specific aggregative response for structurally similar diamines. J Am Chem Soc 128:5640–5641CrossRefGoogle Scholar
  38. 38.
    Satrijo A, Swager TM (2007) Anthryl-doped conjugated polyelectrolytes as aggregation-based sensors for nonquenching multicationic analytes. J Am Chem Soc 129:16020–16028CrossRefGoogle Scholar
  39. 39.
    Chong JH, MacLachlan MJ (2009) Iptycenes in supramolecular and materials chemistry. Chem Soc Rev 38:3301–3315CrossRefGoogle Scholar
  40. 40.
    Su Y-S, Liu J-W, Jiang Y, Chen C-F (2011) Assembly of a self-complementary monomer: formation of supramolecular polymer networks and responsive gels. Chem Eur J 17:2435–2441CrossRefGoogle Scholar
  41. 41.
    Li S, Lu H-Y, Shen Y, Chen C-F (2013) A stimulus-response and self-healing supramolecular polymer gel based on host–guest interactions. Macromol Chem Phys 214:1596–1601CrossRefGoogle Scholar
  42. 42.
    Zeng F, Meng Z, Han Y, Chen C-F (2014) Formation of a “pseudosuitane”-type complex between a triptycene-derived bis(crown ether) host and 1,1′-(anthracene-9,10-diyl)bis(N-benzylmethanaminium): a new method for the synthesis of linear polyrotaxanes. Chem Commun 50:7611–7613CrossRefGoogle Scholar
  43. 43.
    Meng Z, Xiang J-F, Chen C-F (2014) Tristable [n]rotaxanes: from molecular shuttle to molecular cable car. Chem Sci 5:1520–1525CrossRefGoogle Scholar
  44. 44.
    Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F (2007) Benzo-21-Crown-7/secondary dialkylammonium salt [2]pseudorotaxane- and [2]rotaxane-type threaded structures. Org Lett 9:5553–5556CrossRefGoogle Scholar
  45. 45.
    Chen L, Tian Y-K, Ding Y, Tian Y-J, Wang F (2012) Multistimuli responsive supramolecular cross-linked networks on the basis of the benzo-21-crown-7/secondary ammonium salt recognition motif. Macromolecules 45:8412–8419CrossRefGoogle Scholar
  46. 46.
    De Bo G, De Winter J, Gerbaux P, Fustin C-A (2011) Rotaxane-based mechanically linked block copolymers. Angew Chem Int Ed 50:9093–9096CrossRefGoogle Scholar
  47. 47.
    Shi Y, Yang Z, Liu H, Li Z, Tian Y, Wang F (2015) Mechanically linked poly[2]rotaxanes constructed via the hierarchical self-assembly strategy. ACS Macro Lett 4(1):6–10CrossRefGoogle Scholar
  48. 48.
    Gu R, Yao J, Fu X, Zhou W, Qu D-H (2015) A hyperbranched supramolecular polymer constructed by orthogonal triple hydrogen bonding and host–guest interactions. Chem Commun 51:5429–5431CrossRefGoogle Scholar
  49. 49.
    Gao L, Xu D, Zheng B (2014) Construction of supramolecular organogels and hydrogels from crown ether based unsymmetric bolaamphiphiles. Chem Commun 50:12142–12145CrossRefGoogle Scholar
  50. 50.
    Nakazono K, Ishino T, Takashima T, Saeki D, Natsui D, Kihara N et al (2014) Directed one-pot syntheses of crown ether wheel-containing main chain-type polyrotaxanes with controlled rotaxanation ratios. Chem Commun 50:15341–15344CrossRefGoogle Scholar
  51. 51.
    Xu C, Chen Y, Zhang H-Y, Liu Y (2016) Photo-induced secondary assembly of bis(terpyridyl)dibenzo-24-crown-8/Zn2+ supramolecular polymer. J Photochem Photobiol A Chem 331:240–246CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry, State Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations