Advertisement

Cyclodextrin-Based Supramolecular Hydrogel

  • Qian Zhao
  • Yong Chen
  • Yu LiuEmail author
Living reference work entry

Abstract

Cyclodextrins (CDs), as a kind of cyclic host molecules, have been widely investigated due to their specific complexation with a series of guest molecules of matched sizes and properties. And gels, possessing advantages of both elasticity and mobility, are under fast development in soft material field, while supramolecular CD gels combining both CD hosts’ specific binding ability and gels’ soft characteristic are playing an increasingly important role in various kinds of materials. Therefore, we focus on a summary of fabrications and applications of supramolecular CD gels in this chapter. Firstly, we will discuss CD gels based on polyrotaxanes and pseudopolyrotaxanes and complex with small guest molecules. Then related researches on the applications of CD gels including biologic, sensing, separation, and smart materials will be summarized. We hope this chapter could provide a reference or inspirations for chemists working on supramolecular gels.

Notes

Acknowledgment

We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for the financial support.

References

  1. 1.
    Lai W-F, Rogach AL, Wong W-T (2017) Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 46:6379–6419CrossRefGoogle Scholar
  2. 2.
    Prochowicz D, Kornowicz A, Lewiński J (2017) Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem Rev 117:13461–13501CrossRefGoogle Scholar
  3. 3.
    Varan G, Varan C, Erdoğar N, Hıncal AA, Bilensoy E (2017) Amphiphilic cyclodextrin nanoparticles. Int J Pharm 531:457–469CrossRefGoogle Scholar
  4. 4.
    Harada A, Nakahata M, Takashima Y (2017) Supramolecular polymeric materials containing cyclodextrins. Chem Pharm Bull 65:330–335CrossRefGoogle Scholar
  5. 5.
    Kolesnichenko IV, Anslyn EV (2017) Practical applications of supramolecular chemistry. Chem Soc Rev 46:2385–2390CrossRefGoogle Scholar
  6. 6.
    Liu B-W, Zhou H, Zhou S-T, Yuan J-Y (2015) Macromolecules based on recognition between cyclodextrin and guest molecules: synthesis, properties and functions. Eur Polym J 65:63–81CrossRefGoogle Scholar
  7. 7.
    Schmidt BVKJ, Barner-Kowollik C (2017) Dynamic macromolecular material design—the versatility of cyclodextrin-based host–guest chemistry. Angew Chem Int Ed 56:8350–8369CrossRefGoogle Scholar
  8. 8.
    Szente L, Fenyvesi É (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28:479–492CrossRefGoogle Scholar
  9. 9.
    Hu X, Gao J, Luo Y, Wei T, Dong Y, Chen G, Chen H (2017) One-pot multicomponent synthesis of glycopolymers through a combination of host–guest interaction, thiol-ene, and copper-catalyzed click reaction in water. Macromol Rapid Commun 38:1700434–1700441CrossRefGoogle Scholar
  10. 10.
    Ma X, Zhou N, Zhang T, Hu W, Gu N (2017) Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane. Mater Sci Eng C 73:357–365CrossRefGoogle Scholar
  11. 11.
    Wang J, Li Q, Yi S, Chen X (2017) Visible-light/temperature dual-responsive hydrogel constructed by α-cyclodextrin and an azobenzene linked surfactant. Soft Matter 13:6490–6498CrossRefGoogle Scholar
  12. 12.
    Xie F, Ouyang G, Qin L, Liu M (2016) Supra-dendron gelator based on azobenzene–cyclodextrin host–guest interactions: photoswitched optical and chiroptical reversibility. Chem Eur J 22:18208–18214CrossRefGoogle Scholar
  13. 13.
    Li Y, Li J, Zhao X, Yan Q, Gao Y, Hao J, Hu J, Ju Y (2016) Triterpenoid-based self-healing supramolecular polymer hydrogels formed by host–guest interactions. Chem Eur J 22:18435–18441CrossRefGoogle Scholar
  14. 14.
    Ma M, Luan T, Yang M, Liu B, Wang Y, An W, Wang B, Tang R, Hao A (2017) Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter 13:1534–1538CrossRefGoogle Scholar
  15. 15.
    Xiao Y-Y, Gong X-L, Kang Y, Jiang Z-C, Zhang S, Li B-J (2016) Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chem Commun 52:10609–10612CrossRefGoogle Scholar
  16. 16.
    Li Z, Zhang Y-M, Wang H-Y, Li H, Liu Y (2017) Mechanical behaviors of highly swollen supramolecular hydrogels mediated by pseudorotaxanes. Macromolecules 50:1141–1146CrossRefGoogle Scholar
  17. 17.
    Han S, Wang T, Yang L, Li B (2017) Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. Int J Biol Macromol 105:377–384CrossRefGoogle Scholar
  18. 18.
    Tong L, Yang Y, Luan X, Shen J, Xin X (2017) Supramolecular hydrogels facilitated by α-cyclodextrin and silicone surfactants and their use for drug release. Colloids Sur A 522:470–476CrossRefGoogle Scholar
  19. 19.
    Kong L, Zhang F, Xing P, Chu X, Hao A (2017) A binary solvent gel as drug delivery carrier. Colloids Sur A 522:577–584CrossRefGoogle Scholar
  20. 20.
    Yin L, Xu S, Feng Z, Deng H, Zhang J, Gao H, Deng L, Tang H, Dong A (2017) Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Biomater Sci 5:698–706CrossRefGoogle Scholar
  21. 21.
    Dai L, Liu K, Wang L, Liu J, He J, Liu X, Lei J (2017) Injectable and thermosensitive supramolecular hydrogels by inclusion complexation between binary-drug loaded micelles and α-cyclodextrin. Mater Sci Eng C 76:966–974CrossRefGoogle Scholar
  22. 22.
    Mu S, Liang Y, Chen S, Zhang L, Liu T (2015) MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery. Mater Sci Eng C 50:294–299CrossRefGoogle Scholar
  23. 23.
    Zhang W, Zhou X, Liu T, Ma D, Xue W (2015) Supramolecular hydrogels co-loaded with camptothecin and doxorubicin for sustainedly synergistic tumor therapy. J Mater Chem B 3:2127–2136CrossRefGoogle Scholar
  24. 24.
    Wang X, Wang C, Zhang Q, Cheng Y (2016) Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery. Chem Commun 52:978–981CrossRefGoogle Scholar
  25. 25.
    Seki T, Namiki M, Egawa Y, Miki R, Juni K, Seki T (2015) Sugar-responsive pseudopolyrotaxane composed of phenylboronic acid-modified polyethylene glycol and γ-cyclodextrin. Materials 8:1341–1349CrossRefGoogle Scholar
  26. 26.
    Tsuchido Y, Fujiwara S, Hashimoto T, Hayashita T (2017) Development of supramolecular saccharide sensors based on cyclodextrin complexes and self-assembling systems. Chem Pharm Bull 65:318–325CrossRefGoogle Scholar
  27. 27.
    Matsumoto K, Kawamura A, Miyata T (2017) Conformationally regulated molecular binding and release of molecularly imprinted polypeptide hydrogels that undergo helix–coil transition. Macromolecules 50:2136–2144CrossRefGoogle Scholar
  28. 28.
    Massaro M, Colletti CG, Lazzara G, Guernelli S, Noto R, Riela S (2017) Synthesis and characterization of halloysite–cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng 5:3346–3352CrossRefGoogle Scholar
  29. 29.
    Duan G, Zhong Q, Bi L, Yang L, Liu T, Shi X, Wu W (2017) The poly(acrylonitrule-co-acrylic acid)-graft-β-cyclodextrin hydrogel for thorium(iv) adsorption. Polymers 9:201–214CrossRefGoogle Scholar
  30. 30.
    Takashima Y, Harada A (2017) Stimuli-responsive polymeric materials functioning via host–guest interactions. J Incl Phenom Macrocycl Chem 88:85–104CrossRefGoogle Scholar
  31. 31.
    Harada A, Li J, Kamachi M (1993) Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin. Macromolecules 26:5698–5703CrossRefGoogle Scholar
  32. 32.
    Li J, Harada A, Kamachi M (1994) Sol-gel transition during complex formation between α-cyclodextrin and poly(ethylene glycol) of high molecular weight. Polym J 26:1019–1026CrossRefGoogle Scholar
  33. 33.
    Zhao Q, Chen Y, Liu Y (2018) A polysaccharide/tetraphenylethylene-mediated blue-light emissive and injectable supramolecular hydrogel. Chin Chem Lett 29:84–86CrossRefGoogle Scholar
  34. 34.
    Ito K (2017) Slide-ring materials using cyclodextrin. Chem Pharm Bull 65:326–329CrossRefGoogle Scholar
  35. 35.
    Li Z, Zheng Z, Su S, Yu L, Wang X (2016) Preparation of a high-strength hydrogel with slidable and tunable potential functionalization sites. Macromolecules 49:373–386CrossRefGoogle Scholar
  36. 36.
    Yasumoto A, Gotoh H, Gotoh Y, Imran AB, Hara M, Seki T, Sakai Y, Ito K, Takeoka Y (2017) Highly responsive hydrogel prepared using poly(N-isopropylacrylamide)-grafted polyrotaxane as a building block designed by reversible deactivation radical polymerization and click chemistry. Macromolecules 50:364–374CrossRefGoogle Scholar
  37. 37.
    Koyanagi K, Takashima Y, Yamaguchi H, Harada A (2017) Movable cross-linked polymeric materials from bulk polymerization of reactive polyrotaxane cross-linker with acrylate monomers. Macromolecules 50:5695–5700CrossRefGoogle Scholar
  38. 38.
    Uchida W, Yoshikawa M, Seki T, Miki R, Seki T, Fujihara T, Ishimaru Y, Egawa Y (2017) A polyrotaxane gel using boronic acid-appended γ-cyclodextrin as a hybrid cross-linker. J Incl Phenom Macrocycl Chem 89:281–288CrossRefGoogle Scholar
  39. 39.
    Nishida K, Tamura A, Yui N (2016) Tailoring the temperature-induced phase transition and coacervate formation of methylated β-cyclodextrins-threaded polyrotaxanes in aqueous solution. Macromolecules 49:6021–6030CrossRefGoogle Scholar
  40. 40.
    Yu H, Liu Y, Yang H, Peng K, Zhang X (2016) An injectable self-healing hydrogel based on chain-extended PEO-PPO-PEO multiblock copolymer. Macromol Rapid Commun 37:1723–1728CrossRefGoogle Scholar
  41. 41.
    Araki J, Honda Y, Kohsaka Y (2017) Acid- or photo-cleavable polyrotaxane: subdivision of supramolecular main-chain type polyrotaxane structure induced by acidolysis or photolysis. Polymer 125:134–137CrossRefGoogle Scholar
  42. 42.
    Jang K, Iijima K, Koyama Y, Uchida S, Asai S, Takata T (2017) Synthesis and properties of rotaxane-cross-linked polymers using a double-stranded γ-CD-based inclusion complex as a supramolecular cross-linker. Polymer 128:379–385CrossRefGoogle Scholar
  43. 43.
    Ohmori K, Abu Bin I, Seki T, Liu C, Mayumi K, Ito K, Takeoka Y (2016) Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility. Chem Commun 52:13757–13759CrossRefGoogle Scholar
  44. 44.
    Iijima K, Aoki D, Otsuka H, Takata T (2017) Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: the effect of the macromonomer structure on the polymer properties. Polymer 128:392–396CrossRefGoogle Scholar
  45. 45.
    Nakahata M, Mori S, Takashima Y, Yamaguchi H, Harada A (2016) Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 1:766–775CrossRefGoogle Scholar
  46. 46.
    Murakami T, Schmidt BVKJ, Brown HR, Hawker CJ (2017) Structural versatility in slide-ring gels: influence of co-threaded cyclodextrin spacers. J Polym Sci Pol Chem 55:1156–1165CrossRefGoogle Scholar
  47. 47.
    Kali G, Eisenbarth H, Wenz G (2016) One pot synthesis of a polyisoprene polyrotaxane and conversion to a slide-ring gel. Macromol Rapid Commun 37:67–72CrossRefGoogle Scholar
  48. 48.
    Jia Y-G, Jin J, Liu S, Ren L, Luo J, Zhu XX (2018) Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host–guest recognition. Biomacromolecules 19:626–632CrossRefGoogle Scholar
  49. 49.
    Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA (2018) Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjug Chem 29:905–913CrossRefGoogle Scholar
  50. 50.
    Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, Takashima Y, Harada A, Tanaka M (2017) Dynamic mechano-regulation of myoblast cells on supramolecular hydrogels cross-linked by reversible host-guest interactions. Sci Rep 7:7660–7670CrossRefGoogle Scholar
  51. 51.
    Lin Q, Yang Y, Hu Q, Guo Z, Liu T, Xu J, Wu J, Kirk TB, Ma D, Xue W (2017) Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Acta Biomater 49:456–471CrossRefGoogle Scholar
  52. 52.
    Liu X, Chen X, Chua MX, Li Z, Loh XJ, Wu Y-L (2017) Injectable supramolecular hydrogels as delivery agents of Bcl-2 conversion gene for the effective shrinkage of therapeutic resistance tumors. Adv Healthc Mater 6:1700159–1700169CrossRefGoogle Scholar
  53. 53.
    Sheng J, Wang Y, Xiong L, Luo Q, Li X, Shen Z, Zhu W (2017) Injectable doxorubicin-loaded hydrogels based on dendron-like [small beta]-cyclodextrin-poly(ethylene glycol) conjugates. Polym Chem 8:1680–1688CrossRefGoogle Scholar
  54. 54.
    Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C (2017) Injectable, nir/ph-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Inter 9:20361–20375CrossRefGoogle Scholar
  55. 55.
    Sun N, Wang T, Yan X (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59CrossRefGoogle Scholar
  56. 56.
    Niu Y, Guo T, Yuan X, Zhao Y, Ren L (2018) An injectable supramolecular hydrogel hybridized with silver nanoparticles for antibacterial application. Soft Matter 14:1227–1234CrossRefGoogle Scholar
  57. 57.
    Zhao Q, Chen Y, Li S-H, Liu Y (2018) Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chem Commun 54:200–203CrossRefGoogle Scholar
  58. 58.
    Parsamanesh M, Tehrani AD, Mansourpanah Y (2017) Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent. Eur Polym J 92:126–136CrossRefGoogle Scholar
  59. 59.
    Topuz F, Uyar T (2017) Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water. J Hazard Mater 335:108–116CrossRefGoogle Scholar
  60. 60.
    Kono H, Onishi K, Nakamura T (2013) Characterization and bisphenol a adsorption capacity of β-cyclodextrin carboxymethylcellulose-based hydrogels. Carbohydr Polym 98:784–792CrossRefGoogle Scholar
  61. 61.
    Wu Y, Qi H, Shi C, Ma R, Liu S, Huang Z (2017) Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized β-cyclodextrin and graphene oxide. RSC Adv 7:31549–31557CrossRefGoogle Scholar
  62. 62.
    Heydari A, Sheibani H (2015) Fabrication of poly(β-cyclodextrin-co-citric acid)/bentonite clay nanocomposite hydrogel: thermal and absorption properties. RSC Adv 5:82438–82449CrossRefGoogle Scholar
  63. 63.
    Huang Z, Wu Q, Liu S, Liu T, Zhang B (2013) A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydr Polym 97:496–501CrossRefGoogle Scholar
  64. 64.
    Varghese LR, Das N (2015) Removal of hg (II) ions from aqueous environment using glutaraldehyde crosslinked nanobiocomposite hydrogel modified by TETA and β-cyclodextrin: optimization, equilibrium, kinetic and ex situ studies. Ecol Eng 85:201–211CrossRefGoogle Scholar
  65. 65.
    Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun 3:1270–1277CrossRefGoogle Scholar
  66. 66.
    Yang Q, Wang P, Zhao C, Wang W, Yang J, Liu Q (2017) Light-switchable self-healing hydrogel based on host–guest macro-crosslinking. Macromol Rapid Commun 38:1600741–1600747CrossRefGoogle Scholar
  67. 67.
    Hao X, Xu M, Hu J, Yan Q (2017) Photoswitchable thermogelling systems based on a host-guest approach. J Mater Chem C 5:10549–10554CrossRefGoogle Scholar
  68. 68.
    Zhiqiang L, Guannan W, Yige W, Huanrong L (2018) Reversible phase transition of robust luminescent hybrid hydrogels. Angew Chem Int Ed 57:2194–2198CrossRefGoogle Scholar
  69. 69.
    Katsuno C, Konda A, Urayama K, Takigawa T, Kidowaki M, Ito K (2013) Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv Mater 25:4636–4640CrossRefGoogle Scholar
  70. 70.
    Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A (2017) Multifunctional stimuli-responsive supramolecular materials with stretching, coloring, and self-healing properties functionalized via host–guest interactions. Macromolecules 50:4144–4150CrossRefGoogle Scholar
  71. 71.
    Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A (2015) Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host–guest interactions. Macromolecules 48:732–738CrossRefGoogle Scholar
  72. 72.
    Nakamura T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A (2014) A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nat Commun 5:4622–4630CrossRefGoogle Scholar
  73. 73.
    Wang X, Wang J, Yang Y, Yang F, Wu D (2017) Fabrication of multi-stimuli responsive supramolecular hydrogels based on host-guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer. Polym Chem 8:3901–3909CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry, State Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinP. R. China
  2. 2.Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic SciencesTianjin UniversityTianjinP. R. China
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinP. R. China

Personalised recommendations