Advertisement

Optimized Fabrication of Thulium Doped Silica Optical Fiber Using MCVD

  • S. Z. Muhamad Yassin
  • Nasr Y. M. OmarEmail author
  • Hairul Azhar Bin Abdul Rashid
Reference work entry

Abstract

This chapter describes the fabrication of thulium (Tm) doped silica fibers using the modified chemical vapor deposition (MCVD) technique coupled with solution doping. Section “Introduction” provides an introduction to rare earth (RE)-doped fiber amplifiers. Section “Thulium Doped Fibers” reviews recent developments for thulium doped fibers. Sections “Fabrication Methods of Silica Fibers” and “MCVD-Solution Doping Technique” outline the common fabrication techniques of silica fibers and the MCVD-solution doping method, respectively. Section “Fabrication and Characterization of Optical Fiber Preforms” describes in details the experimental procedures used in this work for the fabrication and characterization of thulium-doped optical fiber preforms. The preforms characterization results are also provided in section “Fabrication and Characterization of Optical Fiber Preforms.” The spectroscopic characteristics of thulium ions in the fabricated silica fibers are given in section “Spectroscopic Characteristics of Thulium Doped Fibers (TDF).” The conclusions drawn from this work are provided in section “Conclusions.”

Keywords

Thulium Barium Gallium Optical fiber Optical preform Modified chemical vapor deposition Solution doping Fluorescence decay lifetime 

References

  1. A.N. Abramov, M.V. Yashkov, A.N. Guryanov, M.A. Melkumov, D.A. Dvoretskii, I.A. Bufetov, L.D. Iskhakova, V.V. Koltashev, M.N. Kachenyuk, M.F. Torsunov, Inorg. Mater. 50, 1283 (2014)Google Scholar
  2. B.G. Aitken, M.L. Powley, R.M. Morena, B.Z. Hanson, J. Non-Cryst. Solids 352, 488 (2006)CrossRefGoogle Scholar
  3. K. Arai, H. Namikawa, Y. Ishii, H. Imai, H. Hosono, Y. Abe, J. Non-Cryst. Solids 95, 609 (1987)CrossRefGoogle Scholar
  4. J. E. Aronson, Ph.D. thesis, University of Southampton, 2006Google Scholar
  5. R. M. Atkins, R. S. Windeler, U. S. Patent No. US20030167800A1 (11 Sept 2003)Google Scholar
  6. M. Binnewies, K. Jug, Eur. J. Inorg. Chem. 2000, 1127 (2000)CrossRefGoogle Scholar
  7. W. Blanc, T.L. Sebastian, B. Dussardier, C. Michel, B. Faure, M. Ude, G. Monnom, J. Non-Cryst. Solids 354, 435 (2008)CrossRefGoogle Scholar
  8. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  9. L. Cognolato, J. Phys. IV 5, 975 (1995)Google Scholar
  10. B. J. Cole, M. L. Dennis, U. S. Patent No. US6667257B2 23 Dec 2003Google Scholar
  11. H. Davarzani, M. Marcoux, M. Quintard, Int. J. Therm. Sci. 50, 2328 (2011)CrossRefGoogle Scholar
  12. M. Dennis, B. Cole, S-band amplification in a thulium doped silicate fiber, in Optical Fiber Communication Conference and International Conference on Quantum Information, 2001. OSA Technical Digest Series (Optical Society of America, 2001), Anaheim, California, paper TuQ3. https://doi.org/10.1364/OFC.2001.TuQ3
  13. A. Dhar, M.C. Paul, M. Pal, A.K. Mondal, S. Sen, H.S. Maiti, R. Sen, Opt. Express 14, 9006 (2006)CrossRefGoogle Scholar
  14. A. Dhar, A. Pal, M.C. Paul, P. Ray, H.S. Maiti, R. Sen, Opt. Express 16, 12835 (2008)CrossRefGoogle Scholar
  15. E.M. Dianov, J. Lightw. Technol. 31, 681 (2013)CrossRefGoogle Scholar
  16. W. Fan, M.A. Snyder, S. Kumar, P.-S. Lee, W.C. Yoo, A.V. McCormick, R.L. Penn, A. Stein, M. Tsapatsis, Nat. Mater. 7, 984 (2008)CrossRefGoogle Scholar
  17. B. Faure, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping, in Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), Francisco, California, paper OWC2. https://doi.org/10.1364/OAA.2004.OWC2
  18. B. Faure, W. Blanc, B. Dussardier, G. Monnom, J. Non-Cryst. Solids 353, 2767 (2007)CrossRefGoogle Scholar
  19. G.N. Greaves, J. Non-Cryst. Solids 71, 203 (1985)CrossRefGoogle Scholar
  20. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982)Google Scholar
  21. A. Halder, M.C. Paul, S.W. Harun, S.K. Bhadra, S. Bysakh, S. Das, M. Pal, J. Lumin. 143, 393 (2013)CrossRefGoogle Scholar
  22. A. Halder, M.C. Paul, S.K. Bhadra, S. Bysakh, S. Das, M. Pal, Sci. Adv. Mater. 7, 631 (2015)CrossRefGoogle Scholar
  23. D.C. Hanna, I.R. Perry, J.R. Lincoln, J.E. Townsend, Opt. Commun. 80, 52 (1990)CrossRefGoogle Scholar
  24. D.W. Hewak, R.S. Deol, J. Wang, G. Wylangowski, J.A.M. Neto, B.N. Samson, R.I. Laming, W.S. Brocklesby, D.N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M.D. Baro, Electron. Lett. 29, 237 (1993)CrossRefGoogle Scholar
  25. P. Jander, W.S. Brocklesby, IEEE J. Quantum Electron. 40, 509 (2004)CrossRefGoogle Scholar
  26. V.F. Khopin, A.A. Umnikov, A.N. Gur’yanov, M.M. Bubnov, A.K. Senatorov, E.M. Dianov, Inorg. Mater. 41, 303 (2005)CrossRefGoogle Scholar
  27. J. Kirchhof, A. Funke, Cryst. Res. Technol. 21, 763 (1986)CrossRefGoogle Scholar
  28. J. Kirchhof, S. Unger, A. Schwuchow, Fiber lasers: materials, structures and technologies, in Proc. SPIE4957, Optical Fibers and Sensors for Medical Applications III (2003), pp. 1–15Google Scholar
  29. C.J. Koester, E. Snitzer, Appl. Opt. 3, 1182 (1964)CrossRefGoogle Scholar
  30. S. Naumov, Hysteresis Phenomena in Mesoporous Materials (Universität Leipzig, Leipzig, 2009)Google Scholar
  31. S. Ohara, N. Sugimoto, Y. Kondo, K. Ochiai, Y. Kuroiwa, Y. Fukasawa, T. Hirose, H. Hayashi, S. Tanabe, Bi2O3-based glass for S-band amplification, in Proceedings of SPIE4645, Rare-Earth-Doped Materials and Devices VI (2002), pp. 8–15Google Scholar
  32. K.S. Park, B.W. Lee, M. Choi, Aerosol Sci. Technol. 31, 258 (1999)CrossRefGoogle Scholar
  33. M.C. Paul, B.N. Upadhyaya, S. Das, A. Dhar, M. Pal, S. Kher, K. Dasgupta, S.K. Bhadra, R. Sen, Opt. Commun. 283, 1039 (2010)CrossRefGoogle Scholar
  34. D.N. Payne, Electron. Lett. 23, 1026 (1987)CrossRefGoogle Scholar
  35. V. Petit, A. Le Rouge, F. Béclin, H. El Hamzaoui, L. Bigot, Aerosol Sci. Technol. 44, 388 (2010)CrossRefGoogle Scholar
  36. S. B. Poole, Fabrication of Al2O3 co-doped optical fibres by a solution-doping technique, in Fourteenth European Conference on Optical Communication (1988) (ECOC 88), pp. 433–436Google Scholar
  37. D. Río, A. Aguilera-Alvarado, I. Cano-Aguilera, M. Martínez-Rosales, S. Holmes, Mater. Sci. Appl. 3, 485 (2012)Google Scholar
  38. V.M. Schneider, R.R.A. Syms, Electron. Lett. 34, 1849 (1998)CrossRefGoogle Scholar
  39. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, H. Bartelt, Adv. Opt. Technol. 3, 447 (2014)Google Scholar
  40. R. Sen, A. Dhar, M. C. Paul, H. S. Maiti, Patent No. WO2010109494A2, (30 Sept 2010).Google Scholar
  41. T.P. Seward, D.R. Uhlmann, D. Turnbull, J. Am. Ceram. Soc. 51, 278 (1968)CrossRefGoogle Scholar
  42. J.E. Shelby, Introduction to Glass Science and Technology (Royal Society of Chemistry, Cambridge, 2005)Google Scholar
  43. P.G. Simpkins, S. Greenberg-Kosinski, J.B. MacChesney, J. Appl. Phys. 50, 5676 (1979)CrossRefGoogle Scholar
  44. D. A. Simpson, Ph.D. Thesis, Victoria University, 2008Google Scholar
  45. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  46. E. Snitzer, J. Appl. Phys. 32, 36 (1961)CrossRefGoogle Scholar
  47. J. Stone, C.A. Burrus, Appl. Phys. Lett. 23, 388 (1973)CrossRefGoogle Scholar
  48. S. Sudo (ed.), Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997)Google Scholar
  49. F.Z. Tang, P. McNamara, G.W. Barton, S.P. Ringer, J. Non-Cryst. Solids 352, 3799 (2006)CrossRefGoogle Scholar
  50. F.Z. Tang, P. McNamara, G.W. Barton, S.P. Ringer, J. Am. Ceram. Soc. 90, 23 (2007)CrossRefGoogle Scholar
  51. F.Z. Tang, P. McNamara, G.W. Barton, S.P. Ringer, J. Non-Cryst. Solids 354, 1582 (2008)CrossRefGoogle Scholar
  52. J.E. Townsend, S.B. Poole, D.N. Payne, Electron. Lett. 23, 329 (1987)CrossRefGoogle Scholar
  53. M. Vermillac, H. Fneich, J.-F. Lupi, J.-B. Tissot, C. Kucera, P. Vennéguès, A. Mehdi, D.R. Neuville, J. Ballato, W. Blanc, Opt. Mater. 68, 24 (2017)CrossRefGoogle Scholar
  54. G.G. Vienne, W.S. Brocklesby, R.S. Brown, Z.J. Chen, J.D. Minelly, J.E. Roman, D.N. Payne, Opt. Fiber Technol. 2, 387 (1996)CrossRefGoogle Scholar
  55. K.L. Walker, F.T. Geyling, S.R. Nagel, J. Am. Ceram. Soc. 63, 552 (1980)CrossRefGoogle Scholar
  56. B. Walsh, N. Barnes, Appl. Phys. B Lasers Opt. 78, 325 (2004)CrossRefGoogle Scholar
  57. D.L. Wood, J.B. Macchesney, J.P. Luongo, J. Mater. Sci. 13, 1761 (1978)CrossRefGoogle Scholar
  58. J. M. Zielinski, L. Kettle, Physical characterization: surface area and porosity (Intertek Chemicals and Pharmaceuticals (2013). www.intertek.com/chemicals. Accessed 11 Jan 2018

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Z. Muhamad Yassin
    • 1
  • Nasr Y. M. Omar
    • 2
    Email author
  • Hairul Azhar Bin Abdul Rashid
    • 2
  1. 1.Photonics LaboratoryTelekom Research and DevelopmentCyberjayaMalaysia
  2. 2.Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia

Section editors and affiliations

  • Hairul Rashid
    • 1
  1. 1.Faculty of EngineeringMultimedia UniversitySelangorMalaysia

Personalised recommendations