Advertisement

Fabrication of Negative Curvature Hollow Core Fiber

  • Muhammad Rosdi Abu HassanEmail author
Reference work entry

Abstract

In this chapter, we describe a review covering the development of the negative curvature hollow core fiber for the mid-IR region. The topics cover various types of hollow core fiber and their improvement made in term of attenuation of fiber, followed by a description of the guiding mechanism of the negative curvature hollow core fiber (NC-HCF) using antiresonant reflecting optical waveguide (ARROW) mechanism. Then, we present the general fabrication steps and the fabrication process for negative curvature fiber. In the second part of the chapter, the design and properties of the hollow core applied in the other research work are presented.

Keywords

Fiber optics Microstructured optical fiber Hollow core fiber Photonics crystal fiber 

References

  1. M.R. Abu Hassan et al., Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica 3(3), 218 (2016). https://www.osapublishing.org/abstract.cfm?URI=optica-3-3-218. Accessed 7 July 2016CrossRefGoogle Scholar
  2. M. Alharbi et al., Hypocycloid-shaped hollow-core photonic crystal fiber. Part II: cladding effect on confinement and bend loss. Opt. Express 21(23), 28609–28616 (2013). http://www.osapublishing.org/viewmedia.cfm?uri=oe-21-23-28609&seq=0&html=true. Accessed 26 Jan 2016CrossRefGoogle Scholar
  3. A. Argyros, J. Pla, Hollow-core polymer fibres with a Kagome lattice: potential for transmission in the infrared. Opt. Express 15(12), 7713 (2007). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-12-7713. Accessed 7 Dec 2016CrossRefGoogle Scholar
  4. J. Bei et al., Reduction of scattering loss in fluoroindate glass fibers. Opt. Mater. Express 3(9), 1285 (2013). http://www.opticsinfobase.org/abstract.cfm?URI=ome-3-9-1285CrossRefGoogle Scholar
  5. W. Belardi, J.C. Knight, Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers. Opt. Express 21(19), 21912 (2013). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-19-21912. Accessed 7 Dec 2016CrossRefGoogle Scholar
  6. W. Belardi, J.C. Knight, Hollow antiresonant fibers with low bending loss. Opt. Express 22(8), 10091–10096 (2014a). http://www.osapublishing.org/viewmedia.cfm?uri=oe-22-8-10091&seq=0&html=true. Accessed 15 Oct 2015CrossRefGoogle Scholar
  7. W. Belardi, J.C. Knight, Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 39(7), 1853–1856 (2014b). http://www.osapublishing.org/viewmedia.cfm?uri=ol-39-7-1853&seq=0&html=true. Accessed 26 Jan 2016CrossRefGoogle Scholar
  8. F. Benabid, P.J. Roberts, Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 58(2), 87–124 (2011). http://www.tandfonline.com/doi/abs/10.1080/09500340.2010.543706. Accessed 7 Dec 2016CrossRefGoogle Scholar
  9. F. Benabid et al., Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298(5592), 399–402 (2002)CrossRefGoogle Scholar
  10. T.A. Birks, P.J. Roberts, P.S.J. Russell, D.M. Atkin, T.J. Shepherd, et al., Full 2-D photonic bandgaps in silica/air structures. Electron. Lett. 31(22), 1941–1943 (1995)CrossRefGoogle Scholar
  11. T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997). http://www.ncbi.nlm.nih.gov/pubmed/18185719CrossRefGoogle Scholar
  12. T.A. Birks, G.J. Pearce, D.M. Bird, Approximate band structure calculation for photonic bandgap fibres. Opt. Express 14(20), 9483–9490 (2006). http://www.ncbi.nlm.nih.gov/pubmed/19529335CrossRefGoogle Scholar
  13. R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization, in OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005, vol. 3 (2005), p. 3. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1501298
  14. J.R. Carson, S.P. Mead, S.A. Schelkunoff, Hyper-frequency wave guides – mathematical theory. Bell Syst. Tech. J. 15(2), 310–333 (1936). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6772987. Accessed 7 Dec 2016CrossRefGoogle Scholar
  15. Y. Chen, T.A. Birks, Predicting hole sizes after fibre drawing without knowing the viscosity. Opt. Mater. Express 3(3), 346 (2013). http://www.osapublishing.org/viewmedia.cfm?uri=ome-3-3-346&seq=0&html=true. Accessed 7 Mar 2016CrossRefGoogle Scholar
  16. F. Couny et al., Identification of Bloch-modes in hollow-core photonic crystal fiber cladding. Opt. Express 15(2), 325 (2007). https://www.osapublishing.org/abstract.cfm?URI=oe-15-2-325. Accessed 7 Dec 2016CrossRefGoogle Scholar
  17. R.F. Cregan, Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999). http://www.sciencemag.org/cgi/doi/10.1126/science.285.5433.1537. Accessed 7 Nov 2013CrossRefGoogle Scholar
  18. B. Debord et al., Hypocycloid-shaped hollow-core photonic crystal fiber. Part I: arc curvature effect on confinement loss. Opt. Express 21(23), 28597–28608 (2013). http://www.osapublishing.org/viewmedia.cfm?uri=oe-21-23-28597&seq=0&html=true. Accessed 26 Jan 2016CrossRefGoogle Scholar
  19. M.A. Duguay et al., Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49(1), 13 (1986). http://scitation.aip.org/content/aip/journal/apl/49/1/10.1063/1.97085. Accessed 26 Jan 2016CrossRefGoogle Scholar
  20. U. Haken et al., Refractive index of silica glass: influence of fictive temperature. J. Non-Cryst. Solids 265(1–2), 9–18 (2000). http://www.sciencedirect.com/science/article/pii/S0022309399006973. Accessed 8 Mar 2016CrossRefGoogle Scholar
  21. C. Harvey et al., in Reducing Nonlinear Limitations of Ytterbium Mode-Locked Fibre Lasers with Hollow-Core Negative Curvature Fibre. CLEO: 2015 (OSA, Washington, DC, 2015), p. STh1L.5. Available at: https://www.osapublishing.org/abstract.cfm?uri=CLEO_SI-2015-STh1L.5. Accessed 23 Mar 2016
  22. O. Humbach et al., Analysis of OH absorption bands in synthetic silica. J. Non-Cryst. Solids 203, 19–26 (1996). http://www.sciencedirect.com/science/article/pii/0022309396003298. Accessed 7 Mar 2016CrossRefGoogle Scholar
  23. D.O. Il, Experimental study of dual-core photonic crystal fibre. Electron. Lett. 36(16), 1358–1359 (2000)CrossRefGoogle Scholar
  24. P. Jaworski et al., Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications. Opt. Express 21(19), 22742–22753 (2013). http://www.ncbi.nlm.nih.gov/pubmed/24104161CrossRefGoogle Scholar
  25. P. Kaiser, H.W. Astle, Low-loss single-material fibers made from pure fused silica. Bell Syst. Tech. J. 53(6), 1021–1039 (1974). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6774079. Accessed 16 Jan 2019CrossRefGoogle Scholar
  26. K.M. Kiang et al., Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546 (2002). http://digital-library.theiet.org/content/journals/10.1049/el_20020421CrossRefGoogle Scholar
  27. W.H. Kim et al., Recent progress in chalcogenide fiber technology at NRL. J. Non-Cryst. Solids 431, 8–15 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.03.028CrossRefGoogle Scholar
  28. J.C. Knight et al., All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547 (1996a). https://www.osapublishing.org/abstract.cfm?URI=ol-21-19-1547. Accessed 15 Mar 2018CrossRefGoogle Scholar
  29. J.C. Knight et al., Pure silica single-mode fiber with hexagonal photonic crystal cladding. Proc. Opt. Fiber Commun. Conference (1996b), pp. 339–342Google Scholar
  30. J.C. Knight et al., All-silica single-mode optical fiber with photonic crystal cladding: errata. Opt. Lett. 22(7), 484–485 (1997). http://www.ncbi.nlm.nih.gov/pubmed/18183242CrossRefGoogle Scholar
  31. J.C. Knight et al., Large mode area photonic crystal fibre. Electron. Lett. 34(13), 1347 (1998a). http://link.aip.org/link/ELLEAK/v34/i13/p1347/s1&Agg=doiCrossRefGoogle Scholar
  32. J.C. Knight et al., Photonic band gap guidance in optical fibers. Science 282(5393), 1476–1478 (1998b)CrossRefGoogle Scholar
  33. A.N. Kolyadin et al., Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 21(8), 9514–9519 (2013). http://www.osapublishing.org/viewmedia.cfm?uri=oe-21-8-9514&seq=0&html=true. Accessed 21 Jan 2016CrossRefGoogle Scholar
  34. V.V.R. Kumar et al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10(25), 1520–1525 (2002). http://www.ncbi.nlm.nih.gov/pubmed/19461687CrossRefGoogle Scholar
  35. N.M. Litchinitser et al., Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett. 27(18), 1592 (2002). http://www.osapublishing.org/viewmedia.cfm?uri=ol-27-18-1592&seq=0&html=true. Accessed 26 Jan 2016CrossRefGoogle Scholar
  36. N.M. Litchinitser et al., Resonances in microstructured optical waveguides. Opt. Express 11(10), 1243–1251 (2003). http://www.ncbi.nlm.nih.gov/pubmed/19465990CrossRefGoogle Scholar
  37. E.A.J. Marcatili, R.A. Schmeltzer, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43(4), 1783–1809 (1964). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773550. Accessed 28 Dec 2015CrossRefGoogle Scholar
  38. D. Mogilevtsev, T.a. Birks, P.S. Russell, Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23(21), 1662–1664 (1998). http://www.ncbi.nlm.nih.gov/pubmed/18091876CrossRefGoogle Scholar
  39. A. Ortigosa-Blanch et al., Highly birefringent photonic crystal fibers. Opt. Lett. 25(18), 1325–1327 (2000). http://www.ncbi.nlm.nih.gov/pubmed/18066205CrossRefGoogle Scholar
  40. D.G. Ouzounov et al., Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301(5640), 1702–1704 (2003). http://www.ncbi.nlm.nih.gov/pubmed/14500976. Accessed 5 Mar 2013CrossRefGoogle Scholar
  41. A.D. Pryamikov, in Negative Curvature Hollow Core Fibers: Design, Fabrication, and Applications, ed. by S. Ramachandran (2014), p. 89610I. Available at: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2041653. Accessed 7 Dec 2016
  42. A.D. Pryamikov et al., Demonstration of a waveguide regime for a silica hollow – core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm. Opt. Express 19(2), 1441–1448 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21263685CrossRefGoogle Scholar
  43. P.J. Roberts et al., Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13(1), 236 (2005). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-1-236. Accessed 7 Dec 2016CrossRefGoogle Scholar
  44. P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003). http://www.ncbi.nlm.nih.gov/pubmed/12532007. Accessed 16 Jan 2019CrossRefGoogle Scholar
  45. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006). http://ieeexplore.ieee.org/document/4063429/. Accessed 7 Dec 2016CrossRefGoogle Scholar
  46. V. Setti, L. Vincetti, A. Argyros, Flexible tube lattice fibers for terahertz applications. Opt. Express 21(3), 3388–3399 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23481799; http://www.osapublishing.org/viewmedia.cfm?uri=oe-21-3-3388&seq=0&html=true. Accessed 26 Jan 2016CrossRefGoogle Scholar
  47. J.D. Shephard et al., Silica hollow core microstructured fibers for beam delivery in industrial and medical applications. Front. Phys. 3, 24 (2015). http://journal.frontiersin.org/article/10.3389/fphy.2015.00024/abstract. Accessed 23 Mar 2016CrossRefGoogle Scholar
  48. V.S. Shiryaev, Chalcogenide glass hollow-core microstructured optical fibers. Front. Mater. 2, 24 (2015). http://journal.frontiersin.org/article/10.3389/fmats.2015.00024/abstract. Accessed 13 Nov 2015CrossRefGoogle Scholar
  49. A.W. Snyder, J. Love, Optical Waveguide Theory (Springer, New York, 2012). https://books.google.com/books?hl=en&lr=&id=DCXVBwAAQBAJ&pgis=1. Accessed 20 Apr 2016Google Scholar
  50. A. Urich et al., Flexible delivery of Er:YAG radiation at 2.94 μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures. Biomed. Opt. Express 4(2), 193–205 (2013a). http://www.osapublishing.org/viewmedia.cfm?uri=boe-4-2-193&seq=0&html=true. Accessed 15 Apr 2016CrossRefGoogle Scholar
  51. A. Urich et al., Silica hollow core microstructured fibres for mid-infrared surgical applications. J. Non-Cryst. Solids 377, 236–239 (2013b). http://www.sciencedirect.com/science/article/pii/S0022309313001166. Accessed 20 Apr 2016CrossRefGoogle Scholar
  52. M. van Eijkelenborg et al., Microstructured polymer optical fibre. Opt. Express 9(7), 319–327 (2001). http://www.ncbi.nlm.nih.gov/pubmed/19516722CrossRefGoogle Scholar
  53. L. Vincetti, V. Setti, Waveguiding mechanism in tube lattice fibers. Opt. Express 18(22), 23133–23146 (2010). http://www.ncbi.nlm.nih.gov/pubmed/21164654. Accessed 7 Dec 2016CrossRefGoogle Scholar
  54. L. Vincetti, V. Setti, Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes. Opt. Express 20(13), 14350 (2012). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-13-14350. Accessed 7 Dec 2016CrossRefGoogle Scholar
  55. Y.Y. Wang et al., in Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF. Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010), pp. 4–5Google Scholar
  56. Y.Y. Wang et al., Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36(5), 669–671 (2011)CrossRefGoogle Scholar
  57. Z. Wang, F. Yu, et al., Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering. Laser Phys. Lett. 11(10), 105807 (2014a). http://iopscience.iop.org/article/10.1088/1612-2011/11/10/105807. Accessed 3 Feb 2016CrossRefGoogle Scholar
  58. Z. Wang, W. Belardi, et al., Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber. Opt. Express 22(18), 21872 (2014b). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-18-21872CrossRefGoogle Scholar
  59. N.V. Wheeler et al., Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber. Opt. Lett. 39(2), 295–298 (2014). http://www.ncbi.nlm.nih.gov/pubmed/24562130CrossRefGoogle Scholar
  60. T.P. White et al., Resonance and scattering in microstructured optical fibers. Opt. Lett. 27(22), 1977–1979 (2002). http://www.ncbi.nlm.nih.gov/pubmed/18033417CrossRefGoogle Scholar
  61. F. Yu, J.C. Knight, Spectral attenuation limits of silica hollow core negative curvature fiber. Opt. Express 21(18), 21466–21471 (2013). http://www.ncbi.nlm.nih.gov/pubmed/24104021; http://www.osapublishing.org/viewmedia.cfm?uri=oe-21-18-21466&seq=0&html=true. Accessed 28 Sept 2015CrossRefGoogle Scholar
  62. F. Yu, J. Knight, Negative curvature hollow core optical fiber. IEEE J. Sel. Top. Quantum Electron. 22(2), 1–11 (2016). http://opus.bath.ac.uk/47694/3/07225120.pdf. Accessed 25 Jan 2016CrossRefGoogle Scholar
  63. F. Yu, W.J. Wadsworth, J.C. Knight, Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 20(10), 11153–11158 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22565738CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Optical Fibre Technology (COFT), School of Electrical, Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Section editors and affiliations

  • H. A. Abdul-Rashid
    • 1
  1. 1.Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia

Personalised recommendations