Advertisement

Multi-core Fibers for Space Division Multiplexing

  • Tetsuya HayashiEmail author
Reference work entry

Abstract

Space division multiplexing (SDM) through an optical fiber is an attractive technology to cope with the “capacity crunch” in single-mode fiber transmission systems anticipated in the near future, and the multi-core fiber (MCF) has been intensively researched by various groups in recent years. This chapter provides a basic understanding of the MCF for the SDM transmission. To understand the propagation and coupling behaviors in MCFs, the coupled-mode theory for the optical fibers is briefly reviewed. After that, the detailed characteristics of the propagation and coupling in uncoupled and coupled MCFs are discussed. Design factors common for these uncoupled and coupled MCFs are also described.

References

  1. S. Berdagué, P. Facq, Mode division multiplexing in optical fibers. Appl. Opt. 21, 1950–1955 (1982)CrossRefGoogle Scholar
  2. S.-L. Chuang, A coupled mode formulation by reciprocity and a variational principle. J. Lightw. Technol 5, 5–15 (1987)CrossRefGoogle Scholar
  3. R.-J. Essiambre, R.W. Tkach, Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012)CrossRefGoogle Scholar
  4. R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightw. Technol. 28, 662–701 (2010)CrossRefGoogle Scholar
  5. S. Fan, J.M. Kahn, Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005)CrossRefGoogle Scholar
  6. J. M. Fini, T. F. Taunay, B. Zhu, M. F. Yan, Low cross-talk design of multi-core fibers, in Conference on Lasers and Electro-Opticals (CLEO), Baltimore (Optical Society of America, Washington, DC, 2010a), p. CTuAA3Google Scholar
  7. J.M. Fini, B. Zhu, T.F. Taunay, M.F. Yan, Statistics of crosstalk in bent multicore fibers. Opt. Express 18, 15122–15129 (2010b)CrossRefGoogle Scholar
  8. N. Gisin, R. Passy, J.P.V. der Weid, Definitions and measurements of polarization mode dispersion: interferometric versus fixed analyzer methods. IEEE Photon. Technol. Lett. 6, 730–732 (1994)CrossRefGoogle Scholar
  9. T. Gonda, K. Imamura, R. Sugizaki, Y. Kawaguchi, T. Tsuritani, 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system, in European Conference on Optical Communication (ECOC), Dusseldorf (VDE, Frankfurt, 2016), pp. 547–549Google Scholar
  10. J.P. Gordon, H. Kogelnik, PMD fundamentals: polarization mode dispersion in optical fibers. PNAS 97, 4541–4550 (2000)CrossRefGoogle Scholar
  11. H.A. Haus, W.P. Huang, S. Kawakami, N.A. Whitaker, Coupled-mode theory of optical waveguides. J. Lightw. Technol. 5, 16–23 (1987)CrossRefGoogle Scholar
  12. T. Hayashi, Multi-core fiber for high-capacity spatially-multiplexed transmission, Ph.D. Thesis, Hokkaido University (2013)Google Scholar
  13. T. Hayashi, Coupled multicore fiber for space-division multiplexed transmission, in Proceedings of SPIE, Vol 10130, Next–Generation Optical Communication: Components, Sub–Systems, and Systems VI (IEEE, New York, 2017), p. 1013003Google Scholar
  14. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, E. Sasaoka, Crosstalk variation of multi-core fibre due to fibre bend, in European Conference on Optical Communication (ECOC), Torino (IEEE, New York, 2010), p. We.8.F.6Google Scholar
  15. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19, 16576–16592 (2011a)CrossRefGoogle Scholar
  16. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2011b), p. PDPC2Google Scholar
  17. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Lightw. Technol. 30, 583–589 (2012)CrossRefGoogle Scholar
  18. T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, M. Koshiba, Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. Opt. Express 21, 5401–5412 (2013)CrossRefGoogle Scholar
  19. T. Hayashi, T. Sasaki, E. Sasaoka, Behavior of inter-core crosstalk as a noise and its effect on Q-factor in multi-core fiber. IEICE Trans. Commun. E97.B, 936–944 (2014)CrossRefGoogle Scholar
  20. T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, T. Sasaki, 125-μm-cladding 8-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2015), p. Th5C.6Google Scholar
  21. T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, 125-μm-cladding coupled multi-core fiber with ultra-low loss of 0.158 dB/km and record-low spatial mode dispersion of 6.1 ps/km1/2, in Optical Fiber Communication Conference (OFC), Anaheim (Optical Society of America, Washington, DC, 2016), p. Th5A.1Google Scholar
  22. T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, Record-low spatial mode dispersion and ultra-low loss coupled multi-core fiber for ultra-long-haul transmission. J. Lightw. Technol. 35, 450–457 (2017)CrossRefGoogle Scholar
  23. W.-P. Huang, Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A 11, 963–983 (1994)CrossRefGoogle Scholar
  24. IEC/TR 62048 ed2.0, Optical Fibres – Reliability – Power Law Theory (International Electrotechnical Commission, Geneva, 2011)Google Scholar
  25. S. Inao, T. Sato, S. Sentsui, T. Kuroha, Y. Nishimura, Multicore optical fiber, in Optical Fiber Communication Conference (OFC), Washington, DC (Optical Society of America, Washington, DC, 1979a), p. WB1Google Scholar
  26. S. Inao, T. Sato, H. Hondo, M. Ogai, S. Sentsui, A. Otake, K. Yoshizaki, K. Ishihara, N. Uchida, High density multicore-fiber cable, in International Wire & Cable Symposium (IWCS), Fort Monmouth (1979b), pp. 370–384Google Scholar
  27. ITU-T G.650.2, Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable (2015)Google Scholar
  28. T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D.J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, T. Morioka, 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2017), p. Th5B.1Google Scholar
  29. Y. Kokubun, M. Koshiba, Novel multi-core fibers for mode division multiplexing: proposal and design principle. IEICE Electron. Express 6, 522–528 (2009)CrossRefGoogle Scholar
  30. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Opt. Express 19, B102–B111 (2011)CrossRefGoogle Scholar
  31. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photon. J. 4(5), 1987–1995 (2012)CrossRefGoogle Scholar
  32. D. Marcuse, Influence of curvature on the losses of doubly clad fibers. Appl. Opt. 21, 4208–4213 (1982)CrossRefGoogle Scholar
  33. T. Matsui, T. Sakamoto, Y. Goto, K. Saito, K. Nakajima, F. Yamamoto, T. Kurashima, Design of 125 μm cladding multi-core fiber with full-band compatibility to conventional single-mode fiber, in European Conference on Optical Communication (ECOC), Valencia (IEEE, New York, 2015), p. We.1.4.5Google Scholar
  34. T. Morioka, New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond, in OptoElectronics and Communication Conference (OECC), Hong Kong (IEEE, New York, 2009), p. FT4Google Scholar
  35. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, J. Marciante, 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb, in European Conference on Optical Communication (ECOC), Valencia (IEEE, New York, 2015), p. PDP.3.1Google Scholar
  36. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, T. Wang, 101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation. in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2011), p. PDPB5Google Scholar
  37. G. Rademacher, R.S. Luís, B.J. Puttnam, Y. Awaji, N. Wada, Crosstalk dynamics in multi-core fibers. Opt. Express 25, 12020–12028 (2017a)CrossRefGoogle Scholar
  38. G. Rademacher, R. S. Luis, B. J. Puttnam, Y. Awaji, N. Wada, Crosstalk fluctuations in homogeneous multi-core fibers, in Photonic Networks and Devices, New Orleans (Optical Society of America, Washington, DC, 2017b), p. NeTu2B.4Google Scholar
  39. R. Ryf, N. K. Fontaine, S. H. Chang, J. C. Alvarado, B. Huang, J. Antonio-Lopez, H. Chen, R.-J. Essiambre, E. Burrows, R. W. Tkach, R. Amezcua-Correa, T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, Long-haul transmission over multi-core fibers with coupled cores, in European Conference on Optical Communication (ECOC), Gothenburg (IEEE, New York, 2017), p. M.2.E.1Google Scholar
  40. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, K. Nakajima, Fiber twisting and bending induced adiabatic/nonadiabatic super-mode transition in coupled multi-core fiber. J. Lightw. Technol. 34, 1228–1237 (2016)CrossRefGoogle Scholar
  41. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, H. Masuda, 102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2012), p. PDP5C.3Google Scholar
  42. Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, Y. Miyamoto, Crosstalk-managed heterogeneous single-mode 32-core fibre, in European Conference on Optical Communication (ECOC), Dusseldorf (VDE, Frankfurt, 2016), pp. 550–552Google Scholar
  43. Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, T. Morioka, Single-mode 37-core fiber with a cladding diameter of 248 μm, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2017), p. Th1H.2Google Scholar
  44. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16 Peta-bit/s dense SDM/WDM transmission over Low-DMD 6-mode 19-core fibre across C+L band, in European Conference on Optical Communication (ECOC), Gothenburg (IEEE, New York, 2017), p. Th.PDP.A.1Google Scholar
  45. W. Streifer, M. Osinski, A. Hardy, Reformulation of the coupled-mode theory of multiwaveguide systems. J. Lightw. Technol. 5, 1–4 (1987)CrossRefGoogle Scholar
  46. Q. Sui, H. Zhang, J.D. Downie, W.A. Wood, J. Hurley, S. Mishra, A.P.T. Lau, C. Lu, H.-Y. Tam, P.K.A. Wai, Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference. Opt. Express 23, 3156–3169 (2015)CrossRefGoogle Scholar
  47. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, Reduction of crosstalk by quasi-homogeneous solid multi-core fiber, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2010), p. OWK7Google Scholar
  48. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction. IEICE Trans. Commun. E94.B, 409–416 (2011a)CrossRefGoogle Scholar
  49. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, Reduction of crosstalk by trench-assisted multi-core fiber, in Optical Fiber Communication Conference (OFC), Los Angeles (Optical Society of America, Washington, DC, 2011b), p. OWJ4Google Scholar
  50. P.J. Winzer, Scaling optical fiber networks: challenges and solutions. Opt. Photonics News 29, 28–35 (2015)CrossRefGoogle Scholar
  51. P.J. Winzer, D.T. Neilson, From scaling disparities to integrated parallelism: a decathlon for a decade. J. Lightw. Technol. (2017). https://doi.org/10.1109/JLT.2017.2662082CrossRefGoogle Scholar
  52. C. Xia, N. Bai, I. Ozdur, X. Zhou, G. Li, Supermodes for optical transmission. Opt. Express 19, 16653–16664 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Optical Communications LaboratorySumitomo Electric Industries, Ltd.YokohamaJapan

Section editors and affiliations

  • Ming-Jun Li
    • 1
  1. 1.Corning IncorporatedCorningUSA

Personalised recommendations