All Optical Fiber Optofluidic or Ferrofluidic Microsensors Fabricated by Femtosecond Laser Micromachining

  • Hai XiaoEmail author
  • Lei Yuan
  • Baokai Cheng
  • Yang Song
Reference work entry


Research and development in photonic micro-/nanostructures functioned as sensors have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical, and biological quantities. Compared with conventional sensors with bulky assemblies, recent progress in femtosecond (fs) laser three-dimensional (3D) micromachining technique has been proven an effective way for one-step fabrication of assembly-free microstructures in various transparent materials (i.e., fused silica). When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers (i.e., ns laser). The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance.

Recently, fiber-optic sensors have been widely used in many application areas, such as aeronautics and astronautics, petrochemical industry, chemical detection, biomedical science, homeland security, etc. In addition to the well-known advantages of miniaturized in size, high sensitivity, immunity to electromagnetic interference (EMI), and resistance to corrosion, fiber-optic sensors are becoming more and more desirable when designed with characteristics of assembly-free and operation in the reflection configuration. Additionally, such sensors are also needed in optofluidic/ferrofluidic systems for chemical/biomedical sensing applications.

In this chapter, liquid-assisted laser micromachining techniques were investigated for the fabrication of assembly-free, all-optical fiber sensor probes. All-in-fiber optofluidic sensor and fiber in-line ferrofluidic sensor were presented as examples with respect to these laser processing techniques.


  1. R. An, Y. Li, Y. Dou, H. Yang, Q. Gong, Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt. Express 13, 1855–1859 (2005)CrossRefGoogle Scholar
  2. R.J. Bates, Optical Switching and Networking Handbook (McGraw-Hill, New York, 2001)Google Scholar
  3. Y. Bellouard, A. Said, M. Dugan, P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004)CrossRefGoogle Scholar
  4. M. Beresna, M. Gecevičius, P.G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293–339 (2014)CrossRefGoogle Scholar
  5. V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, P. Corkum, Optically produced arrays of planar nanostructures inside fused silica. Phys. Rev. Lett. 96, 057404 (2006)CrossRefGoogle Scholar
  6. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)Google Scholar
  7. Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid. Opt. Lett. 38, 3999–4001 (2013)CrossRefGoogle Scholar
  8. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)CrossRefGoogle Scholar
  9. A. Chimmalgi, T. Choi, C. Grigoropoulos, K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003)CrossRefGoogle Scholar
  10. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)CrossRefGoogle Scholar
  11. A. Crespi, Y. Gu, B. Ngamsom, H.J. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. van den Vlekkert, P. Watts, G. Cerullo, Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab. Chip 10, 1167–1173 (2010)CrossRefGoogle Scholar
  12. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)CrossRefGoogle Scholar
  13. M. Deng, C. Huang, D. Liu, W. Jin, T. Zhu, All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 23, 20668–20674 (2015)CrossRefGoogle Scholar
  14. P. Domachuk, I. Littler, M. Cronin-Golomb, B. Eggleton, Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513-1–093513-3 (2006)CrossRefGoogle Scholar
  15. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994)CrossRefGoogle Scholar
  16. X. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011)CrossRefGoogle Scholar
  17. E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73, 214101 (2006)CrossRefGoogle Scholar
  18. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)CrossRefGoogle Scholar
  19. E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997)CrossRefGoogle Scholar
  20. Y. Gong, Y.-J. Rao, Y. Guo, Z.-L. Ran, Y. Wu, Temperature-insensitive micro Fabry–Pérot strain sensor fabricated by chemically etching Er-doped fiber. IEEE Photon. Technol. Lett. 21, 1725–1727 (2009)CrossRefGoogle Scholar
  21. S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015)CrossRefGoogle Scholar
  22. M. Haque, K.K. Lee, S. Ho, L.A. Fernandes, P.R. Herman, Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab. Chip 14, 3817–3829 (2014)CrossRefGoogle Scholar
  23. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press on Demand, Oxford, 2004)Google Scholar
  24. S. Ho, P.R. Herman, J.S. Aitchison, Single-and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels. Appl. Phys. A 106, 5–13 (2012)CrossRefGoogle Scholar
  25. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)CrossRefGoogle Scholar
  26. J.B. Jensen, L.H. Pedersen, P.E. Hoiby, L.B. Nielsen, T.P. Hansen, J.R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 29, 1974–1976 (2004)CrossRefGoogle Scholar
  27. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 412, 697–698 (2001)CrossRefGoogle Scholar
  28. S. Kiyama, S. Matsuo, S. Hashimoto, Y. Morihira, Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C 113, 11560–11566 (2009)CrossRefGoogle Scholar
  29. T. Kruse, H.-G. Krauthäuser, A. Spanoudaki, R. Pelster, Agglomeration and chain formation in ferrofluids: two-dimensional x-ray scattering. Phys. Rev. B 67, 094206 (2003)CrossRefGoogle Scholar
  30. S. Küper, M. Stuke, Femtosecond UV excimer laser ablation. Appl. Phys. B Lasers Opt. 44, 199–204 (1987)CrossRefGoogle Scholar
  31. Y. Lai, K. Zhou, L. Zhang, I. Bennion, Microchannels in conventional single-mode fibers. Opt. Lett. 31, 2559–2561 (2006)CrossRefGoogle Scholar
  32. Y. Liu, S. Qu, Y. Li, Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett. 38, 335–337 (2013)CrossRefGoogle Scholar
  33. R.-Q. Lv, Y. Zhao, D. Wang, Q. Wang, Magnetic fluid-filled optical fiber Fabry–Pérot sensor for magnetic field measurement. IEEE Photon. Technol. Lett. 26, 217–219 (2014)CrossRefGoogle Scholar
  34. T. H. Maiman, Stimulated optical radiation in ruby, 1960CrossRefGoogle Scholar
  35. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004)CrossRefGoogle Scholar
  36. C. Monat, P. Domachuk, B. Eggleton, Integrated optofluidics: a new river of light. Nat. Photonics 1, 106–114 (2007)CrossRefGoogle Scholar
  37. R. Osellame, V. Maselli, R.M. Vazquez, R. Ramponi, G. Cerullo, Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 90, 231118-1–231118-3 (2007)Google Scholar
  38. M.D. Perry, G. Mourou, Terawatt to petawatt subpicosecond lasers. Sci.-AAAS-Wkly. Pap. Ed.-Incl. Guide Sci. Inf. 264, 917–923 (1994)Google Scholar
  39. P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106–110 (1995)CrossRefGoogle Scholar
  40. D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)CrossRefGoogle Scholar
  41. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002)CrossRefGoogle Scholar
  42. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S. Anisimov, Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A Mater. Sci. Process. 79, 767–769 (2004)CrossRefGoogle Scholar
  43. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784 (2001)CrossRefGoogle Scholar
  44. C.B. Schaffer, J.F. García, E. Mazur, Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 76, 351–354 (2003)CrossRefGoogle Scholar
  45. Y.-R. Shen, The Principles of Nonlinear Optics, vol 1 (Wiley-Interscience, New York, 1984), p. 575Google Scholar
  46. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett. 16, 42–44 (1991)CrossRefGoogle Scholar
  47. R. Stoian, D. Ashkenasi, A. Rosenfeld, E. Campbell, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B 62, 13167 (2000)CrossRefGoogle Scholar
  48. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)CrossRefGoogle Scholar
  49. B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248 (1995)CrossRefGoogle Scholar
  50. B.C. Stuart, M.D. Feit, S. Herman, A. Rubenchik, B. Shore, M. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)CrossRefGoogle Scholar
  51. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 171, 279–284 (1999)CrossRefGoogle Scholar
  52. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002)CrossRefGoogle Scholar
  53. C.J. Tuck, R. Hague, C. Doyle, Low cost optical fibre based Fabry–Perot strain sensor production. Meas. Sci. Technol. 17, 2206 (2006)CrossRefGoogle Scholar
  54. E. Udd, An overview of fiber-optic sensors. Rev. Sci. Instrum. 66, 4015–4030 (1995)CrossRefGoogle Scholar
  55. A. Wang, L. Jiang, X. Li, Y. Liu, X. Dong, L. Qu, X. Duan, Y. Lu, Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv. Mater. 27, 6238–6243 (2015)CrossRefGoogle Scholar
  56. T. Wei, Y. Han, Y. Li, H.-L. Tsai, H. Xiao, Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16, 5764–5769 (2008)CrossRefGoogle Scholar
  57. A.T. Woolley, R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. 91, 11348–11352 (1994)CrossRefGoogle Scholar
  58. E. Yablonovitch, N. Bloembergen, Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett. 29, 907 (1972)CrossRefGoogle Scholar
  59. S.Y. Yang, Y.F. Chen, H.E. Horng, C.-Y. Hong, W.S. Tse, H.C. Yang, Magnetically-modulated refractive index of magnetic fluid films. Appl. Phys. Lett. 81, 4931 (2002)CrossRefGoogle Scholar
  60. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator. IEEE Photonics J. 2, 469–481 (2010)CrossRefGoogle Scholar
  61. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, H. Xiao, High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Opt. Lett. 38, 4609–4612 (2013)CrossRefGoogle Scholar
  62. K. Zhou, L. Zhang, X. Chen, V. Mezentsev, I. Bennion, Microstructures made in optical fiber with femtosecond laser. Int. J. Smart Nano Mater. 1, 237–248 (2010)CrossRefGoogle Scholar
  63. H. Zhu, I.M. White, J.D. Suter, M. Zourob, X. Fan, Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 133, 356–360 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET)Clemson UniversityClemsonUSA

Section editors and affiliations

  • Yuan Gong
    • 1
  1. 1.University of Electronic Science and Technology of China (UESTC)ChengduChina

Personalised recommendations