Characterization of Distributed Birefringence in Optical Fibers

  • Yongkang DongEmail author
  • Lei Teng
  • Hongying Zhang
  • Taofei Jiang
  • Dengwang Zhou
Reference work entry


Birefringence is the fundamental physical parameter of optical fibers which characterizes their polarization properties, and it can be classified into phase birefringence and group birefringence. Phase birefringence is the difference in effective index between the two orthogonal linear polarization modes of an optical fiber, while the group birefringence is related to group index representing the polarization mode dispersion. In this chapter, we introduce a distributed phase birefringence measurement method based on Brillouin dynamic grating (BDG), which creates a new horizon for optical fiber evaluation. When two parallel polarized pump waves, with a frequency offset equal to the fiber Brillouin frequency shift, counter-propagate along the fiber, a BDG can be excited through simulated Brillouin scattering (SBS), and another orthogonally polarized probe wave injected into fiber is used to detect the BDG. When the frequency difference between the probe wave and the co-propagating pump wave meets the phase-matching condition, the maximum reflection on probe wave from the BDG can be obtained. The interaction of the excitation and the probing of a BDG involves four optical waves, and the Brillouin-enhanced four-wave mixing model completely describes this coupling process. In the following sections of this chapter, the theoretical operation principles, numerical simulations, and experimental implementation of distributed phase birefringence measurement with BDG are described; some sensing applications of distributed birefringence measurement with BDG are also given including simultaneous distributed temperature and strain measurement, distributed transverse pressure sensing, and distributed hydrostatic pressure sensing.


Birefringence Polarization-maintaining fiber Distributed measurement Stimulated Brillouin scattering Brillouin dynamic grating 


  1. P. G. Agrawal (ed.), Nonlinear Fiber Optics (Academic Press, San Diego, 2007)Google Scholar
  2. X. Bao, L. Chen, Sensors 11, 4 (2011)CrossRefGoogle Scholar
  3. K. Bhowmik, G.D. Peng, Y. Luo, J. Lightwave Technol. 33, 12 (2015)CrossRefGoogle Scholar
  4. S. Chin, L. Thévenaz, Laser Photonics Rev. 6, 724 (2012)CrossRefGoogle Scholar
  5. Y. Dong, X. Bao, L. Chen, Opt. Lett. 34, 17 (2009)Google Scholar
  6. Y. Dong, L. Chen, X. Bao, Opt. Lett. 35, 2 (2010a)Google Scholar
  7. Y. Dong, L. Chen, X. Bao, Opt. Express 18, 18 (2010b)Google Scholar
  8. Y. Dong, L. Chen, X. Bao, IEEE Photon. Technol. Lett. 22, 18 (2010c)CrossRefGoogle Scholar
  9. Y. Dong, H. Zhang, Z. Lu, J. Lightwave Technol. 31, 16 (2013)Google Scholar
  10. Y. Dong, T. Jiang, L. Teng, Opt. Lett. 39, 10 (2014)Google Scholar
  11. Y. Dong, L. Teng, P. Tong, Opt. Lett. 40, 21 (2015)CrossRefGoogle Scholar
  12. T. Erdogan, J. Lightwave Technol. 15, 8 (1997)CrossRefGoogle Scholar
  13. H. Eugene (ed.), Optics (Pearson Education, San Francisco/Boston/New York, 2002)Google Scholar
  14. X. Fang, R.O. Claus, Opt. Lett. 20, 20 (1995)CrossRefGoogle Scholar
  15. P. Hlubina, D. Ciprian, Opt. Express 15, 25 (2007)Google Scholar
  16. S. Huang, Z. Lin, Appl. Opt. 24, 15 (1985)Google Scholar
  17. C. Jewart, K.P. Chen, B. McMillen, Opt. Lett. 31, 15 (2006)CrossRefGoogle Scholar
  18. C. Kaczmarek, Opt. Appl. 42, 4 (2012)Google Scholar
  19. I. Kaminow, IEEE J. Quantum Electron. 17, 1 (1981)Google Scholar
  20. G. Keiser (ed.), Optical fibers communications (Wiley, New York, 2003)Google Scholar
  21. K. Kikuchi, T. Okoshi, Opt. Lett. 8, 2 (1983)CrossRefGoogle Scholar
  22. D.H. Kim, J.U. Kang, Opt. Express 12, 19 (2004)CrossRefGoogle Scholar
  23. J.T. Kringlebotn, W.H. Loh, R.I. Laming, Opt. Lett. 21, 22 (1996)CrossRefGoogle Scholar
  24. H.C. Lefevre, The fiber-optic gyroscope (Artech House, Boston/London, 2014)Google Scholar
  25. S. Li, M.J. Li, Opt. Lett. 37, 22 (2012)CrossRefGoogle Scholar
  26. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, Opt. Express 18, 14 (2010)CrossRefGoogle Scholar
  27. J. Noda, K. Okamoto, Y. Sasaki, J. Lightwave Technol. 4, 8 (1986)CrossRefGoogle Scholar
  28. R. Pant, E. Li, C.G. Poulton, Opt. Lett. 38, 3 (2013)CrossRefGoogle Scholar
  29. J. Sancho, N. Primerov, S. Chin, Opt. Express 20, 6 (2012)Google Scholar
  30. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, Sci. Rep. 3, 1594 (2013)CrossRefGoogle Scholar
  31. L.Y. Shao, Q. Jiang, J. Albert, Appl. Opt. 49, 36 (2010)Google Scholar
  32. V. Sikka, S. Balasubramanian, A. Viswanath, Appl. Opt. 37, 2 (1998)CrossRefGoogle Scholar
  33. K.Y. Song, Opt. Lett. 36, 23 (2011)Google Scholar
  34. K.Y. Song, Opt. Express 20, 25 (2012)Google Scholar
  35. K.Y. Song, J.H. Yoon, Opt. Lett. 35, 17 (2010)Google Scholar
  36. K.Y. Song, W. Zou, Z. He, Opt. Lett. 33, 9 (2008)Google Scholar
  37. K.Y. Song, K. Hotate, W. Zou, J. Lightwave Technol. 35, 16 (2016)Google Scholar
  38. K. Suzuki, H. Kubota, S. Kawanishi, Opt. Express 9, 13 (2001)CrossRefGoogle Scholar
  39. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, Appl. Opt. 50, 17 (2011)CrossRefGoogle Scholar
  40. K. Takada, J. Noda, R. Ulrich, Appl. Opt. 24, 24 (1985)CrossRefGoogle Scholar
  41. K. Tarnowski, A. Anuszkiewicz, J. Olszewski, Opt. Lett. 38, 24 (2013)CrossRefGoogle Scholar
  42. L. Teng, H. Zhang, Y. Dong, Opt. Lett. 41, 18 (2016)CrossRefGoogle Scholar
  43. P.K.A. Wai, C.R. Menyak, J. Lightwave Technol. 14, 2 (1996)Google Scholar
  44. H.G. Winful, Opt. Express 21, 8 (2013)Google Scholar
  45. B. Xu, C.L. Zhao, F. Yang, Opt. Lett. 41, 7 (2016)Google Scholar
  46. W. Zhou, Z. He, K. Hotate, Opt. Express 17, 3 (2009)Google Scholar
  47. D.P. Zhou, Y. Dong, L. Chen, Opt. Express 19, 21 (2011)Google Scholar
  48. W. Zou, J. Chen, Opt. Express 21, 12 (2013)CrossRefGoogle Scholar
  49. W. Zou, Z. He, K.Y. Song, Opt. Lett. 34, 7 (2009)CrossRefGoogle Scholar
  50. P. Zu, C.C. Chan, Y. Jin, Meas. Sci. Technol. 22, 2 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yongkang Dong
    • 1
    Email author
  • Lei Teng
    • 1
  • Hongying Zhang
    • 2
  • Taofei Jiang
    • 1
  • Dengwang Zhou
    • 1
  1. 1.National Key Laboratory of Science and Technology on Tunable LaserHarbin Institute of TechnologyHarbinChina
  2. 2.Institute of Photonics and Optical Fiber Technology, Harbin University of Science and TechnologyHarbinChina

Section editors and affiliations

  • Jianzhong Zhang
    • 1
  1. 1.Department of Computer ScienceHarbin Engineering UniversityHarbinChina

Personalised recommendations