Characterization of Specialty Fibers

  • Quan Chai
  • Yushi Chu
  • Jianzhong ZhangEmail author
Reference work entry


Specialty fibers play an important role both in scientific research and industrial applications. The past decades have also witnessed a significant benefit from specialty fibers. Behind these successes is a constant understanding of the performance of these fibers. In this chapter, characteristics of specialty fibers and their measurement technologies are discussed in detail, including dispersion characterization, polarization characterization, and other special characterization techniques.


Dispersion characterization Polarization characterization Polarization mode dispersion Polarization-dependent loss Material characterization Spectral characterization 


  1. P.M. Becker, A.A. Olsson, J.R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, San Diego, 1999)Google Scholar
  2. R.D. Birch, D.N. Payne, M.P. Varnham, Fabrication of polarisation-maintaining fibres using gas-phase etching. Electron. Lett. 18(24), 1036–1038 (1982)CrossRefGoogle Scholar
  3. I.A. Bufetov, E.M. Dianov, Bi-doped fiber lasers. Laser Phys. Lett. 6(7), 487 (2009)CrossRefGoogle Scholar
  4. J.C. Chen, Y.S. Lin, C.N. Tsai, et al., 400-nm-bandwidth emission from a Cr-doped glass fiber. IEEE Photon. Technol. Lett. 19(8), 595–597 (2007)CrossRefGoogle Scholar
  5. B. Christensen, J. Mark, G. Jacobsen, et al., Simple dispersion measurement technique with high resolution. Electron. Lett. 29(1), 132 (2002)CrossRefGoogle Scholar
  6. Y. Chu, J. Ren, J. Zhang, et al., Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci. Rep. 6, 33865 (2016)CrossRefGoogle Scholar
  7. Y. Chu, J. Hao, J. Zhang et al., Temperature properties and potential temperature sensor based on the Bismuth/Erbium co-doped optical fibers[C]//Optical Fiber Sensors Conference (OFS), 2017 25th. IEEE, 1–4 (2017)Google Scholar
  8. L.G. Cohen, Comparison of single-mode fiber dispersion measurement techniques. J. Lightwave Technol. 3(5), 958–966 (1985)CrossRefGoogle Scholar
  9. B. Costa, M. Puleo, E. Vezzoni, Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs. Electron. Lett. 19(25), 1074–1076 (2007)Google Scholar
  10. G. Della Valle, A. Festa, G. Sorbello, et al., Single-mode and high power waveguide lasers fabricated by ion-exchange. Opt. Express 16(16), 12334–12341 (2008)CrossRefGoogle Scholar
  11. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, Hoboken, 2002)Google Scholar
  12. F. Devaux, Y. Sorel, J.F. Kerdiles, Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter. J. Lightwave Technol. 11(12), 1937–1940 (1993)CrossRefGoogle Scholar
  13. V.V. Dvoyrin, V.M. Mashinsky, L.I. Bulatov, et al., Bismuth-doped-glass optical fibers – a new active medium for lasers and amplifiers. Opt. Lett. 31(20), 2966–2968 (2006)CrossRefGoogle Scholar
  14. V.V. Dvoyrin, O.I. Medvedkov, V.M. Mashinsky, et al., Optical amplification in 1430–1495 nm range and laser action in Bi-doped fibers. Opt. Express 16(21), 16971–16976 (2008)CrossRefGoogle Scholar
  15. W. Eickhoff, E. Brinkmeyer, Scattering loss vs polarization holding ability of single-mode fibers. Appl. Opt. 23(8), 1131–1132 (1984)CrossRefGoogle Scholar
  16. N. Gisin, J.P.V.D. Weid, J. Pellaux, Polarization mode dispersion of short and long single-mode fibers. J. Lightwave Technol. 9(7), 821–827 (1991)CrossRefGoogle Scholar
  17. J. Hao, Y. Chu, Z. Ma et al., Effects of thermal treatment on photoluminescence properties of bismuth/erbium co-doped optical fibers. Opt. Fiber Technol 46, 141–146 (2018)CrossRefGoogle Scholar
  18. B.L. Heffner, Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992)CrossRefGoogle Scholar
  19. B.L. Heffner, Accurate, automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis. IEEE Photon. Technol. Lett. 5(7), 814–817 (1993)CrossRefGoogle Scholar
  20. C. Hentschel, S. Schmidt, PDL Measurements Using the Agilent 8169A Polarization Controller, Product Note, Agilent Technologies.Google Scholar
  21. P. Hernday, in Fiber-Optic Test and Measurement, ed. by D. Derickson. Dispersion measurement (Prentice Hall, Upper Saddle River, 1998)Google Scholar
  22. T. Hosaka, Y. Sasaki, J. Noda, et al., Low-loss and low-crosstalk polarisation-maintaining optical fibres. Electron. Lett. 21(20), 920–921 (1985)CrossRefGoogle Scholar
  23. Z. Hu, W. Qiu, X. Cheng, et al., Optical amplification of Eu (TTA) 3 Phensolution-filled hollow optical fiber. Opt. Lett. 36(10), 1902–1904 (2011)CrossRefGoogle Scholar
  24. X. Huang, Z. Fang, Z. Peng, et al., Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Opt. Express 25(17), 19691–19700 (2017)CrossRefGoogle Scholar
  25. R. Hui, M. O’Sullivan, in Fiber Optic Measurement Techniques. Optical fiber measurement (Elsevier/Academic Press, Amsterdam/London, 2009), p. 365–479Google Scholar
  26. S.T. Huntington, P. Mulvaney, A. Roberts, et al., Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: a quantitative study. J. Appl. Phys. 82(6), 2730–2734 (1997)CrossRefGoogle Scholar
  27. S.D. Jackson, 2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm. Appl. Phys. B 76(7), 793–795 (2003)CrossRefGoogle Scholar
  28. S. Jarabo, J.M. Álvarez, Experimental cross sections of erbium-doped silica fibers pumped at 1480 nm. Appl. Opt. 37(12), 2288–2295 (1998)CrossRefGoogle Scholar
  29. I. Kaminow, Polarization in optical fibers. IEEE J. Quantum Electron. 17(1), 15–22 (1981)CrossRefGoogle Scholar
  30. I.P. Kaminow, V. Ramaswamy, Single-polarization optical fibers: slab model. Appl. Phys. Lett. 34(4), 268–270 (1979)CrossRefGoogle Scholar
  31. T. Kasamatsu, Y. Yano, H. Sekita, 1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05-and 1.56-μm dual-wavelength pumping. Opt. Lett. 24(23), 1684–1686 (1999)CrossRefGoogle Scholar
  32. A.S. Kurkov, E.M. Sholokhov, O.I. Medvedkov, et al., Holmium fiber laser based on the heavily doped active fiber. Laser Phys. Lett. 6(9), 661 (2009)CrossRefGoogle Scholar
  33. H. Liang, Q. Zhang, Z. Zheng, et al., Optical amplification of Eu (DBM) 3 Phen-doped polymer optical fiber. Opt. Lett. 29(5), 477–479 (2004)CrossRefGoogle Scholar
  34. P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, et al., Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron 15(1), 85–92 (2009)CrossRefGoogle Scholar
  35. E.G. Neumann, Single-Mode Fibers Fundamentals, vol 57(4) (Springer, Tokyo, 1988), pp. 201–203CrossRefGoogle Scholar
  36. Y. Nishida, M. Yamada, T. Kanamori, et al., Development of an efficient praseodymium-doped fiber amplifier. IEEE J. Quantum Electron. 34(8), 1332–1339 (1998)CrossRefGoogle Scholar
  37. J. Noda, K. Okamoto, Y. Sasaki, Polarization-maintaining fibers and their applications. J. Lightwave Technol. 4(8), 1071–1089 (1986)CrossRefGoogle Scholar
  38. Y. Ohishi, E. Snitzer, G.H. Sigel, et al., Pr3+-doped fluoride fiber amplifier operating at 1.31 μm. Opt. Lett. 16(22), 1747–1749 (1991)CrossRefGoogle Scholar
  39. R. Paschotta, J. Nilsson, A.C. Tropper, et al., Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)CrossRefGoogle Scholar
  40. D.N. Payne, A. Barlow, J.J. Ramskov Hansen, Development of low- and high-birefringence optical fibers. IEEE J. Quantum Electron. 18(4), 477–488 (1982)CrossRefGoogle Scholar
  41. G.D. Peng, Y. Luo, J. Zhang, et al., Recent development of new active optical fibres for broadband photonic applications. Photonics (ICP), 2013 IEEE 4th International Conference on. IEEE, 2013, pp. 5–9.Google Scholar
  42. C.D. Poole, D.L. Favin, Polarization-mode dispersion measurements based on transmission spectra through a polarizer. J. Lightwave Technol. 12(6), 917–929 (1994)CrossRefGoogle Scholar
  43. C.D. Poole, C.R. Giles, Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber. Opt. Lett. 13(2), 155–157 (1988)CrossRefGoogle Scholar
  44. C.D. Poole, J. Nagel, Polarization effects in lightwave systems. Opt. Fiber Telecommun. IIIA, 114–161 (1997)CrossRefGoogle Scholar
  45. R.S. Quimby, W.J. Miniscalco, B. Thompson, Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption. J. Appl. Physiol. 76(8), 4472–4478 (1994)CrossRefGoogle Scholar
  46. C. Saekeang, P.L. Chu, T.W. Whitbread, Nondestructive measurement of refractive-index profile and cross-sectional geometry of optical fiber preforms. Appl. Opt. 19(12), 2025–2030 (1980)CrossRefGoogle Scholar
  47. R.H. Stolen, R.P. De Paula, Single-mode fiber components. Proc. IEEE 75(11), 1498–1511 (1987)CrossRefGoogle Scholar
  48. R.H. Stolen, W. Pleibel, J.R. Simpson, High-birefringence optical fibers by preform deformation. J. Lightwave Technol. 2(5), 639–641 (1984)CrossRefGoogle Scholar
  49. L. Tan, S. Kang, Z. Pan, et al., Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification. Advanced Optical Materials 4(10), 1624–1634 (2016)CrossRefGoogle Scholar
  50. A. Tünnermann, T. Schreiber, J. Limpert, Fiber lasers and amplifiers: an ultrafast performance evolution. Appl. Opt. 49(25), F71–F78 (2010)CrossRefGoogle Scholar
  51. H.H. Wahba, T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry. Appl. Opt. 48(8), 1573–1582 (2009)CrossRefGoogle Scholar
  52. J.P. Weid, L. Thevenaz, J.P. Pellaux, Interferometric measurements of chromatic and polarisation mode dispersion in highly birefringent single-mode fibres. Electron. Lett. 23(4), 151–152 (1987)CrossRefGoogle Scholar
  53. K.I. White, Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles. Opt. Quant. Electron. 11(2), 185–196 (1979)CrossRefGoogle Scholar
  54. E. Yahel, A. Hardy, Modeling high-power Er3+-Yb3+ codoped fiber lasers. J. Lightwave Technol. 21(9), 2044 (2003)CrossRefGoogle Scholar
  55. S.M. Yeh, S.L. Huang, Y.J. Chiu, et al., Broadband chromium-doped fiber amplifiers for next-generation optical communication systems. J. Lightwave Technol. 30(6), 921–927 (2012)CrossRefGoogle Scholar
  56. S. Yliniemi, J. Albert, Q. Wang, et al., UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides. Opt. Express 14(7), 2898–2903 (2006)CrossRefGoogle Scholar
  57. J. Zhang, Y. Luo, Z.M. Sathi, et al., Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping. Opt. Express 20(18), 20623–20628 (2012)CrossRefGoogle Scholar
  58. J. Zhang, Z.M. Sathi, Y. Luo, et al., Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830 nm laser diode pump. Opt. Express 21(6), 7786–7792 (2013)CrossRefGoogle Scholar
  59. A.S. Zlenko, V.V. Dvoyrin, V.M. Mashinsky, et al., Furnace chemical vapor deposition bismuth-doped silica-core holey fiber. Opt. Lett. 36(13), 2599–2601 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of In-Fiber Integrated Optics, Ministry Education of ChinaHarbin Engineering UniversityHarbinChina
  2. 2.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUNSWSydneyAustralia
  3. 3.interdisciplinary Photonics Laboratories (iPL), Global Big Data Technologies Centre (GBDTC), Tech Lab, School of Electrical and Data EngineeringUniversity of Technology SydneySydneyAustralia
  4. 4.Key Lab of In-fiber Integrated Optics, Ministry of EducationHarbin Engineering UniversityHarbinChina

Section editors and affiliations

  • Jianzhong Zhang
    • 1
  1. 1.Department of Computer ScienceHarbin Engineering UniversityHarbinChina

Personalised recommendations