Optical Coherent Detection and Digital Signal Processing of Channel Impairments

Reference work entry


Optical transponders using coherent detection have been the mainstay in long-haul transmission since around 2010. By allowing the reconstruction of the optical electric field, coherent receivers achieve the following advantages:
  • Increased spectral efficiency: Information can be encoded in all the available dimensions (polarization + quadrature) of an optical fiber.

  • Improved optical power efficiency: Any arbitrary modulation format can be supported, allowing techniques like constellation shaping and probabilistic shaping to realize signal-to-noise performance closer to Shannon’s limit.

  • Digital signal processing compensation of channel impairments: Adaptive linear equalizers can be used to compensate linear impairments like chromatic dispersion and polarization mode dispersion. Fiber nonlinearity can also be mitigated using digital backpropagation, Volterra series, and other approaches. The combination of coherent detection and high-speed DSP enables a highly tunable receiver platform.

  • Increased receiver sensitivity: It becomes possible to overcome shot-noise limit by increasing the power of the local oscillator, allowing performance that is ultimately limited by the optical signal-to-noise ratio of the link.

  • Improved spectral management: Digital filters can be used to demultiplex an optical carrier of interest, allowing optical carriers to be spaced closer together, and facilitates “superchannel” transmission.

The first coherent systems to be widely deployed operated at 100-Gb/s using dual-polarization quadriphase shift keying (DP-QPSK). Subsequently, coherent detection has been used in 400-Gb/s superchannel transmission, with various contenders including 4 × 100-Gb/s DP-QPSK, 2 × 200-Gb/s DP-16QAM, and single-carrier 400-Gb/s DP-16QAM. As the cost and power consumption of coherent transponders have decreased over time, they have been pushed ever deeper into the network. Coherent transponders are now used in short-reach systems, and is even under consideration for intra-data center communications.

In this chapter, we review the theory of optical coherent detection, deriving mathematical models of the optical transmitter and receiver as well as an optical fiber link. We also review the most common digital signal processing operations that are performed in a coherent receiver, including linear equalization, optical phase noise compensation, and nonlinear compensation.


  1. S. Abrar, Compact constellation algorithm for blind equalization of QAM signals, in INCC 2004 (Lahore, 2004), pp. 170–174Google Scholar
  2. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic, San Diego, 2001)Google Scholar
  3. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)CrossRefGoogle Scholar
  4. M.N. Alahbabi, Y.T. Cho, T.P. Newson, 150-km range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. J. Opt. Soc. Am. B 22(6), 1321–1324 (2005)CrossRefGoogle Scholar
  5. J. Armstrong, OFDM for optical communications. J. Lightwave Technol. 27(3), 189–204 (2009)CrossRefGoogle Scholar
  6. E. Auer, An advanced variable data rate modem for Intelsat IDR/IBS services, in 2nd International Workshop Digital Signal Processing Techniques Applied to Space Communications. Paper 1–3 (Turin, 1990)Google Scholar
  7. N. Bai, G. Li, Adaptive frequency-domain equalization for mode-division multiplexed transmission. IEEE Photon. Technol. Lett. 24(21), 1918–1921 (2012)CrossRefGoogle Scholar
  8. J.R. Barry, J.M. Kahn, Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying. J. Lightwave Technol. 10(12), 1939–1951 (1992)CrossRefGoogle Scholar
  9. S. Beppu, K. Kasai, M. Yoshida, M. Nakazawa, 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt. Express 23(4), 4960–4969 (2015)CrossRefGoogle Scholar
  10. T.A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S.G. Leon-Saval, R.R. Thomson, The photonic lantern. Adv. Opt. Photon. 7(2), 107–167 (2015)CrossRefGoogle Scholar
  11. C.A. Brackett, Dense wavelength division multiplexing networks: Principles and applications. IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990)CrossRefGoogle Scholar
  12. J.-X. Cai, H.G. Batshon, M.V. Mazurczyk, O.V. SInkin, D. Wang, M. Paskov, W. Patterson, C.R. Davidson, P. Corbett, G. WOlter, T. Hammon, M. Bolshtyansky, D. Foursa, A. Pilipetskii, 70.4-Tb/s capacity over 7,600 km in C+L-band using coded modulation with hybrid constellation shaping and nonlinearity compensation, in Optical Fiber Conference (OFC), Paper Th5B.2 (Los Angeles, 2017)Google Scholar
  13. Y. Chen, T. Le-Ngoc, B. Champagne, C. Xu, Recursive least squares constant modulus algorithm for blind adaptive array. IEEE Trans. Signal Process 52(5), 1452–1456 (2004)CrossRefGoogle Scholar
  14. X. Chen, J. Ye, Y. Xiao, A. Li, J. He, Q. Hu, W. Shieh, Equalization of two-mode fiber based MIMO signals with larger receiver sets. Opt. Express 20(26), B413–B418 (2012)CrossRefGoogle Scholar
  15. A. Chowdhury, R.J. Essiambre, Optical phase conjugation and pseudolinear transmission. Opt. Lett. 29(10), 1105–1107 (2004)CrossRefGoogle Scholar
  16. E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (Wiley, New York, 2002)Google Scholar
  17. I.B Djordjevic, H.G. Batshon, L. Xu T. Wang, Coded polarization-multiplexed iterative polar modulation (PM-IPM) for beyond 400 Gb/s serial optical transmission, in Optical Fiber Conference (OFC), Paper OMK2 (San Diego, 2010)Google Scholar
  18. Z. Dong, A.P.T. Lau, C. Lu, OSNR monitoring for QPSK and 16QAM systems in presence of fiber nonlinearities for digital coherent receivers. Opt. Express 20(17), 19520–19534 (2012)CrossRefGoogle Scholar
  19. L.B. Du, A.J. Lowery, Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. Opt. Express 18(16), 17075–17088 (2010)CrossRefGoogle Scholar
  20. L. Erup, F.M. Gardner, R.A. Harris, Interpolation in digital modems – part II: implementation and performance. IEEE Trans. Commun. 41(6), 998–1008 (1993)CrossRefGoogle Scholar
  21. R.-J. Essiambre, P.J. Winzer, X.Q. Qang, W. Lee, C.A. White, E.C. Burrows, Electronic predistortion and fiber nonlinearity. IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006)CrossRefGoogle Scholar
  22. S.G. Evangelides, L.F. Mollenauer, J.P. Gordon, N.S. Bergano, Polarization multiplexing with solitons. J. Lightwave Technol. 10(1), 28–35 (1992)CrossRefGoogle Scholar
  23. J.K. Fischer, C.-A. Bunge, K. Petermann, Equivalent single-span model for dispersion-managed fiber-optics transmission systems. J. Lightwave Technol. 27(16), 3425–3432 (2009)CrossRefGoogle Scholar
  24. N.K. Fontaine, S.G. Leon-Saval, R. Ryf, J.R. Salazar Gil, B. ERcan, J. Bland-Hawthorn, Mode-selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber, in European Conference on Optical Communications (ECOC), Paper PD1.C.3 (London, 2013)Google Scholar
  25. N.K. Fontaine, R. Ryf, H. Chen, A.V. Benitez, B. Guan, R. Scott, B. Ercan, S.J.B. Yoo, L.E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez R. Amezcua-Correa, 30×30 MIMO transmission over 15 spatial modes, in Optical Fiber Communication Conference (OFC), Paper Th5C.1 (Los Angeles, 2015)Google Scholar
  26. F.M. Gardner, A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. COM-34(5), 423–429 (1986)CrossRefGoogle Scholar
  27. F.M. Gardner, Interpolation in digital modems – part I: fundamental. IEEE Trans. Commun. 41(3), 501–507 (1993)CrossRefGoogle Scholar
  28. R.D. Gitlin, S.B. Weinstein, Fractionally spaced equalization: an improved digital transversal equalizer. Bell Syst. Technol. J. 60(2), 275–296 (1981)CrossRefGoogle Scholar
  29. B. Glance, Polarization independent coherent optical receiver. J. Lightwave Technol. LT(2), 274–276 (1987)CrossRefGoogle Scholar
  30. D.N. Godard, Self- recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. COM-28, 1867–1875 (1980)CrossRefGoogle Scholar
  31. J.P. Gordon, H. Kogelnik, PMD fundamentals: Polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. 97(9), 4541–4550 (2000)CrossRefGoogle Scholar
  32. J.P. Gordon, L.F. Mollenauer, Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15(23), 1351–1353 (1990)CrossRefGoogle Scholar
  33. H.A. Haus, The noise figure of optical amplifiers. IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998)CrossRefGoogle Scholar
  34. F.N. Hauske, M. Kushnerov, B. Spinnler, B. Lankl, Optical performance monitoring in digital coherent receivers. J. Lightwave Technol. 27(16), 3623–3631 (2009)CrossRefGoogle Scholar
  35. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall, Upper Saddle River, 1998)Google Scholar
  36. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Upper Saddle River, 2002)Google Scholar
  37. Z. He, X. Li, M. Luo, R. Hu, C. Li, Y. Qiu, S. Fu, Q. Yang, S. Yu, Independent components analysis based channel equalization for 6×6 MIMO-OFDM transmission over few-mode fiber. Opt. Express 24(9), 9209–9217 (2016)CrossRefGoogle Scholar
  38. K.-P. Ho, J.M. Kahn, Statics of group delays in multimode fiber with strong mode coupling. J. Lightwave Technol. 29(21), 3119–3128 (2011)CrossRefGoogle Scholar
  39. Y.-K. Huang, E. Ip, P.N. Ji, Y. Shao, T. Wang, Y. Aono, Y. Yano, T. Tajima, Terabit/s optical superchannel with flexible modulation format for dynamic distance/route transmission, in Optical Fiber Conference (OFC), Paper OM3.H.4 (Los Angeles, 2012)Google Scholar
  40. E. Ip, J.M. Kahn, Digital equalization of chromatic dispersion and polarization mode dispersion. J. Lightwave Technol. 25(8), 2033–2043 (2007a)CrossRefGoogle Scholar
  41. E. Ip, J.M. Kahn, Feedforward carrier recovery for coherent optical communications. J. Lightwave Technol. 25(9), 2675–2692 (2007b)CrossRefGoogle Scholar
  42. E. Ip, J.M. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416–3425 (2008)CrossRefGoogle Scholar
  43. E. Ip, J.M. Kahn, Fiber impairment compensation using coherent detection and digital signal processing. J. Lightwave Technol. 28(4), 502–519 (2009)CrossRefGoogle Scholar
  44. E. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Kahn, Coherent detection in optical fiber systems. Opt. Express 16(2), 753–791 (2008)CrossRefGoogle Scholar
  45. E. Ip, N. Bai, T. Wang, Complexity versus performance tradeoff in fiber nonlinearity compensation using frequency-shaped, multi-subband backpropagation, in Optical Fiber Communication Conference (OFC), Paper OThF4 (Los Angeles, 2011)Google Scholar
  46. E. Ip, M.-J. Li, K. Bennett, Y.-K. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, Y. Yano, 146λ×6×19-Gbaud wavelength-and mode-division multiplexed transmission over 10×50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. J. Lightwave Technol. 32(4), 790–797 (2014)CrossRefGoogle Scholar
  47. E. Ip, G. Milione, Y.-K. Huang, T. Wang, Space division multiplexing for optical networks, in Asia Communications and Photonics Conference (ACP), Paper ASu5.D.1 (Hong Kong, 2015)Google Scholar
  48. O. Ishida, K. Takei, E. Yamazaki, Power efficient DSP implementation for 100G- and beyond multi-haul coherent fiber-optic communications, in Optical Fiber Conference (OFC), Paper W3G.3 (Anaheim, 2016)Google Scholar
  49. H. Ishio, J. Minowa, K. Nosu, Review and status of wavelength-division multiplexing technology and its applications. J. Lightwave Technol. LT-2(4), 448–463 (1984)CrossRefGoogle Scholar
  50. K. Iwashita, Chromatic dispersion compensation in coherent optical communications. J. Lightwave Technol. 8(3), 367–375 (1990)CrossRefGoogle Scholar
  51. E.I. Jury, Theory and Application of the z-Transform Method (Wiley, New York, 1964)Google Scholar
  52. J.M. Kahn, A.H. Gnauck, J.J. Veselka, S.K. Korotky, B.L. Kasper, 4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers. IEEE Photon. Technol. Lett. 2(4), 285–287 (1990)CrossRefGoogle Scholar
  53. J.M. Kahn, A.M. Porter, U. Padan, Heterodyne detection of 310-Mb/s quadriphase-shift keying using fourth-power optical phase-locked loop. IEEE Photon. Technol. Lett. 4(12), 1397–1399 (1992)CrossRefGoogle Scholar
  54. L.G. Kazovsky, Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements. J. Lightwave Technol. LT-4, 182–195 (1986)CrossRefGoogle Scholar
  55. R. Kline, Verizon and Nortel complete the first 100G commercial deployment,
  56. A.M.J. Koonen, H. Chen, H.P.A. van den Boom, O. Raz, Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon. Technol. Lett. 24(21), 1961–1964 (2012)CrossRefGoogle Scholar
  57. P.M. Krummrich, D. Ronnenberg, W. Schairer, D. Wienold, F. Jenau, M. Herrmann, Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events. Opt. Express 24(11), 12442–12457 (2016)CrossRefGoogle Scholar
  58. M. Kuschnerov, F.N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, B. Lankl, Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems, in Proceedings of the Optical Fiber Communication Conference (OFC 2009), Paper OMT1 (San Diego, 2009)Google Scholar
  59. M. Kushnerov, F.N. Hauske, K. Piyawanno, B. Spinnler, M.S. Alfiad, A. Napoli, B. Lankl, DSP for coherent single-carrier receivers. J. Lightwave Technol. 27(16), 3614–3622 (2009)CrossRefGoogle Scholar
  60. G. Labroille, P. Jian, N. Barré, B. Denolle, J.-F. Morizur, Mode selective 10-mode multiplexer based on multi-plane light conversion, in Optical Fiber Communication Conference (OFC), Paper Th3E.5 (Anaheim, 2016)Google Scholar
  61. J.H. Lee, M.S. Kim, Y.C. Chung, Statistical PMD emulator using variable DGD elements. IEEE Photon. Technol. Lett. 15(1), 54–56 (2003)CrossRefGoogle Scholar
  62. A. Leven, N. Kaneda Y.-K. Chen, A real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA, in OFC 2008, Paper OTuO2 (San Diego, 2008)Google Scholar
  63. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, J. C. Rasmussen, Implementation efficient nonlinear equalizer based on correlated digital backpropagation, in Optical Fiber Communication Conference (OFC), Paper OWW3 (Los Angeles, 2011)Google Scholar
  64. X. Liu, Nonlinear effects in phase shift keyed transmission, in Optical Fiber Conference (OFC), Paper ThM4 (Los Angeles, 2004)Google Scholar
  65. Y. Lu, T. Zhu, L. Chen, X. Bao, Distributed vibration sensor based on coherent detection of phase OTDR. J. Lightwave Technol. 28(22), 3243–3249 (2010)Google Scholar
  66. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, K. Kikuchi, Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. IEEE J. Lightwave Technol. 24(1), 12–21 (2006)CrossRefGoogle Scholar
  67. D.M. Malyon, Digital fiber transmission using optical homodyne detection. Electron. Lett. 20, 281–283 (1984)CrossRefGoogle Scholar
  68. D. Mansour, A.H. Gray, Unconstrained frequency-domain adaptive filter. IEEE Trans. Acoust. Speech Signal. Process. ASSP-30(5), 726–734 (1982)CrossRefGoogle Scholar
  69. D. Marcuse, C.R. Menyuk, P.K.A. Wai, Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightwave Technol. 15(9), 1735–1746 (1997)CrossRefGoogle Scholar
  70. E. Mateo, L. Zhu, G. Li, Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation. Opt. Express 16(20), 16124–16137 (2008)CrossRefGoogle Scholar
  71. A. Mecozzi, R. Essiambre, Nonlinear Shannon limit in pseudolinear coherent systems. J. Lightwave Technol. 30(12), 2011–2024 (2012)CrossRefGoogle Scholar
  72. A. Mecozzi, C. Antonelli, M. Shtaif, Kramer-Kronig coherent receiver. Optical 3(11), 1220–1227 (2016)Google Scholar
  73. J.M.D. Mendinueta, B.J. Puttnam, J. Sakaguchi, R.S. Lus, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, Investigation of receiver DSP carrier phase estimation rate for self-homodyne space-division multiplexing communication systems, in Optical Fiber Communication Conference (OFC), Paper JTh2A.48 (Anaheim, 2013)Google Scholar
  74. H. Meyr, M. Moeneclaey, S. Fechtel, Digital Communication Receivers (Wiley, New York, 1997)Google Scholar
  75. T. Miyazaki, Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier. IEEE Photon. Technol. Lett. 18(2), 388–390 (2006)CrossRefGoogle Scholar
  76. T. Mizuochi, Recent progress in forward error correction and its interplay with transmission impariments. IEEE J. Sel. Top. Quantum Electron. 12(4), 544–554 (2006)CrossRefGoogle Scholar
  77. M. Oerder, H. Meyer, Digital filter and square timing recovery. IEEE Trans. Commun. 36(5), 605–612 (1988)CrossRefGoogle Scholar
  78. T. Okoshi, Heterodyne and coherent optical fiber communications: Recent progress. IEEE Trans. Microw. Theory Tech. MIT-30(8), 1138–1148 (1982)CrossRefGoogle Scholar
  79. T. Okoshi, K. Kikuchi, Heterodyne type optical fiber communications. IEEE J. Opt. Commun. 2(3), 82–88 (1981)Google Scholar
  80. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, 1999)Google Scholar
  81. T. Ozeki, M. Yoshimura, T. Kudo, H. Lbe, Polarization-mode dispersion equalization experiment using a variable equalizing optical circuit controlled by a pulse-waveform-comparison algorithm, in Optical Fiber Conference (OFC), Paper TuN4 (San Jose, 1994)Google Scholar
  82. F. Paolucci, F. Cugini, N. Hussain, F. Fresi, L. Poti, OpenFlow-based flexible optical networks with enhanced monitoring functionalities, in European Conference on Optical Communications (ECOC), Paper Tu1.D.5 (Amsterdam, 2012)Google Scholar
  83. P. Poggiolini, The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857–3879 (2012)CrossRefGoogle Scholar
  84. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri, The GN-model of non-linear propagation and its applications. J. Lightwave Technol. 32(4), 694–721 (2014)CrossRefGoogle Scholar
  85. J. Proakis, M. Salehi, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)Google Scholar
  86. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, T. Wang, 101.7-Tb/s(370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation, in Optical Fiber Conference (OFC), Paper PDPB5 (Los Angeles, 2011)Google Scholar
  87. S.U.H. Qureshi, Adaptive equalization. Proc. IEEE 73(9), 1349–1387 (1985)CrossRefGoogle Scholar
  88. T. Rappaport, Wireless Communications: Principles and Practice (Prentice-Hall, Englewood Cliffs, 1996)Google Scholar
  89. K. Roberts, 40 Gb/s optical systems with electronic signal processing, in Proceedings of the Lasers and Electro-Optics Society (LEOS), Paper WFF4 (Hualien, 2007)Google Scholar
  90. R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, R.-J. Essiambre, P. Winzer, D.W. Peckham, A. McCurdy, R. Lingle, Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing, in Optical Fiber Communication Conference (OFC), Paper PDPB10 (Los Angeles, 2011)Google Scholar
  91. R. Ryf, N. Fontaine, R.-J. Essiambre, Spot-based mode couplers for mode-multiplexed transmission in few-mode fiber. IEEE Photon. Technol. Lett. 24(21), 1973–1976 (2012)CrossRefGoogle Scholar
  92. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, H. Masuda, 102.3-Tb/s (224×548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Optical Fiber Conference (OFC), Paper PDP5C3 (Los Angeles, 2012)Google Scholar
  93. H. Sari, G. Karam, I. Jeanclaude, Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33, 100–109 (1995)CrossRefGoogle Scholar
  94. S.J. Savory, Digital filters for coherent optical receivers. Opt. Express 16(2), 804–817 (2008)CrossRefGoogle Scholar
  95. S. Savory, Digital coherent optical receivers: Algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010)CrossRefGoogle Scholar
  96. S. Savory, Approximations for the nonlinear self-channel interference of channels with rectangular spectra. IEEE Photon. Technol. Lett. 25(10), 961–964 (2013)CrossRefGoogle Scholar
  97. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefGoogle Scholar
  98. J. Shapiro, Quantum noise and excess noise in optical homodyne and heterodyne receivers. IEEE J. Quantum Electron. QE-21(3), 237–250 (1985)CrossRefGoogle Scholar
  99. W. Shieh, K.-P. Ho, Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing. Opt. Express 16(20), 15718–15727 (2008)CrossRefGoogle Scholar
  100. J.J. Shynk, Frequency-domain multirate adaptive filtering. IEEE Signal Process. Mag. 9(1), 14–37 (1992)CrossRefGoogle Scholar
  101. J.S. Soo, K.K. Pang, Multidelay block frequency domain adaptive filter. IEEE Trans. Acoust. Speech Signal. Process. 38(2), 373–376 (1990)CrossRefGoogle Scholar
  102. M.G. Taylor, Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16(2), 674–676 (2004)CrossRefGoogle Scholar
  103. M.G. Taylor, Accurate digital phase estimation process for coherent detection using a parallel digital processor, in European Conference on Optical Communications (ECOC), Paper Tu4.2.6 (Glasgow, 2005)Google Scholar
  104. S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, K. Kikuchi, Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission, in Optical Fiber Conference (OFC), Paper PDP29 (Anaheim, 2005)Google Scholar
  105. R.G.H. van Uden, C.M. Okonkwo, V.A.J.M. Sleiffer, M. Kushnerov, H. de Waardt, A.M.J. Koonen, Single DPLL joint carrier phase compensation for few-mode fiber transmission. IEEE Photon. Technol. Lett. 25(14), 1381–1384 (2013)CrossRefGoogle Scholar
  106. A.J. Viterbi, A.M. Viterbi, Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission. IEEE Trans. Inf. Theory IT-29(4), 543–551 (1983)CrossRefGoogle Scholar
  107. R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 100G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation, in Optical Fiber Communication Conference (OFC), Paper OTuE3 (San Diego, 2010)Google Scholar
  108. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E. Murphy, D.A. Lafiaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optics communications systems. IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000)CrossRefGoogle Scholar
  109. C. Xie, Interchannel nonlinearities in coherent polarization-division multiplexed quadrature phase-shift-keying systems. IEEE Photon. Technol. Lett. 21(5), 274–276 (2009)CrossRefGoogle Scholar
  110. C. Xie, S. Chandrasekhar, Two-stage constant modulus algorithm equalizer for singularity free operation and optical performance monitoring in optical coherent receiver, in Optical Fiber Communication Conference (OFC), Paper OMK3 (San Diego, 2010)Google Scholar
  111. Y. Yamamoto, T. Kimura, Coherent optical fiber transmission systems. IEEE J. Quantum Electron. QE-17, 919–935 (1981)CrossRefGoogle Scholar
  112. L. Yan, G. Hu, Demultiplexing in mode-division multiplexing system using multichannel blind deconvolution. IEEE Photon. J. 8(2), 1–11 (2016)Google Scholar
  113. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, J.C. Rasmussen, Low complexity digital perturbation back-propagation, in European Conference on Optical Communications (ECOC), Paper Tu3.A.2 (Geneva, 2011)Google Scholar
  114. J. Yang, J.-J. Werner, G.A. Dumont, The multimodulus blind equalization and its generalized algorithms. J. Sel. Areas Commun. 20(5), 997–1015 (2002)CrossRefGoogle Scholar
  115. Q. Zhang, M.I. Hayee, Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems. J. Lightwave Technol. 26(2), 302–316 (2008)CrossRefGoogle Scholar
  116. H. Zhang, Z. Tao, L. Liu, S. Oda, T. Hoshida, J. C. Rasmussen, Polarization multiplexing based on independent component analysis in optical coherent receivers, in European Conference on Optical Communications (ECOC), Paper Mo.3.D.5 (Brussels, 2008)Google Scholar
  117. L. Zhao, G. Hu, L. Yan, H. Wang, L. Li, Mode demultiplexing based on frequency-domain independent component analysis. IEEE Photon. Technol. Lett. 27(2), 185–188 (2015)CrossRefGoogle Scholar
  118. L. Zhu, G. Li, Folded digital backward propagation for dispersion managed fiber-optic transmission. Opt. Express 19(7), 5953–5959 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.NEC Laboratories AmericaPrincetonUSA

Section editors and affiliations

  • Chao Lu
    • 1
  1. 1.Department of Electronic and Information EngineeringPolytechnic University of Hong KongKowloonHong Kong

Personalised recommendations