Advertisement

Progress in Mid-infrared Fiber Source Development

  • Darren D. Hudson
  • Alexander Fuerbach
  • Stuart D. JacksonEmail author
Reference work entry

Abstract

Mid-infrared fiber lasers have made significant strides in the last few decades and are now beginning to compete with and, in some cases, supersede traditional laser systems in terms of performance. In this chapter, we briefly review the current state of the field of lasers in the mid-infrared including traditional workhorse systems based on parametric amplification, transition metals, and quantum cascading. This is followed by a look at the materials science of mid-infrared compatible optical fiber and rare-earth doping in soft glasses. The advances in fiber laser sources operating near 3 μm are then explored including progress in narrow-linewidth and ultrafast systems. As an example of applications of these laser sources, we also present recent results in supercontinuum generation based on the 3 μm class fiber laser.

References

  1. R. Alfano, The Supercontinuum Laser Source. Springer-Verlag New York Inc., US (2016)Google Scholar
  2. R. Alfano, S.L. Shapiro, Emission in the region 4000 to 7000 A via four-photon coupling in glass. PRL 31(2), 584 (1970)Google Scholar
  3. S. Antipov, D.D. Hudson, A. Fuerbach, S.D. Jackson, High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica 3(12), 1373 (2016)Google Scholar
  4. Y.O. Aydin, V. Fortin, F. Maes, F. Jobin, S.D. Jackson, R. Vallée, M. Bernier, Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica 4(2), 6–9 (2017)Google Scholar
  5. B. Behzadi, m. Aliannezhadi, M. Hossein-zadeh, R.K. Jain, Design of a new family of narrow-linewidth mid-infrared lasers. J. Opt. Soc. Am. B 34(12), 2501–2513 (2017)Google Scholar
  6. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, S.L. Chin, Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett. 32(5), 454–456 (2007)Google Scholar
  7. M. Bernier, V. Michaud-belleau, S. Levasseur, V. Fortin, J. Genest, R. Vallée, All-fiber DFB laser operating at 2.8 μm. Opt. Lett. 40(1), 81–84 (2015)Google Scholar
  8. G. Bharathan, R.I. Woodward, M. Ams, D.D. Hudson, S.D. Jackson, A. Fuerbach, Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers. Opt. Express 25(24), 30013 (2017)Google Scholar
  9. N. Caron, M. Bernier, D. Faucher, R. Vallée, Understanding the fiber tip thermal runaway present in 3μm fluoride glass fiber lasers. Opt. Express 20(20), 22188 (2012)Google Scholar
  10. T. Cheng, K. Nagasaka, T.H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, Y. Ohishi, Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Opt. Lett. 41(9), 2117 (2016)Google Scholar
  11. M.N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, Cr 2 + : ZnSe laser at 2420 nm. Opt. Lett. 34(20), 3056–3058 (2009)Google Scholar
  12. S. Crawford, D.D. Hudson, S.D. Jackson, High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss. IEEE Photonics J. 7(3), 1–9 (2015)Google Scholar
  13. S.A. Dekker, A.C. Judge, R. Pant, I. Gris-s, J.C. Knight, C.M. De Sterke, B.J. Eggleton, Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Opt. Express 19(18), 17766–17773 (2011)Google Scholar
  14. P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16(10), 7161–7168 (2008)Google Scholar
  15. J.M. Dudley, J.R. Taylor, Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85 (2009)Google Scholar
  16. J. M. Dudley, J. R. Taylor, Supercontinuum Generation in Optical Fibers. Cambridge University Press. UK (2016)Google Scholar
  17. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)Google Scholar
  18. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée, Femtosecond fiber lasers reach the mid-infrared. Optica 2(7), 623 (2015)Google Scholar
  19. S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, R. Vallée, Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm. Opt. Lett. 41(22), 5294 (2016)Google Scholar
  20. U. Elu, M. Baudisch, H. Pires, F. Tani, M.H. Frosz, F. Köttig, A. Ermolov, P.S.J. Russell, J. Biegert, High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4(9), 1024 (2017)Google Scholar
  21. V. Fortin, M. Bernier, S.T. Bah, R. Vallée, 30 W fluoride glass all-fiber laser at 294 μm. Opt. Lett. 40(12), 2882 (2015)Google Scholar
  22. V. Fortin, F. Maes, M. Bernier, S.T. Bah, M. D’Auteuil, R. Vallée, Watt-level erbium-doped all-fiber laser at 344 μm. Opt. Lett. 41(3), 559 (2016)Google Scholar
  23. M. F. A. Gaeta, Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Opt. Express, 12, 3137–3143 (2004)Google Scholar
  24. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2(4), 219–225 (2008)Google Scholar
  25. R.R. Gattass, L. Brandon Shaw, V.Q. Nguyen, P.C. Pureza, I.D. Aggarwal, J.S. Sanghera, All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt. Fiber Technol. 18(5), 345–348 (2012)Google Scholar
  26. P. Golding, S. Jackson, T. King, M. Pollnau, Energy transfer processes in Er3+−doped and Er3+,Pr3+−codoped ZBLAN glasses. Phys. Rev. B 62(2), 856–864 (2000)Google Scholar
  27. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press Book) (2004)Google Scholar
  28. M. Hemmer, M. Baudisch, A. Thai, A. Couairon, J. Biegert, Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics. Opt. Express 21, 28095–28102 (2013)Google Scholar
  29. O. Henderson-Sapir, J. Munch, D.J. Ottaway, Mid-infrared fiber lasers at and beyond 3.5um using dual-wavelength pumping. Opt. Lett. 39(3), 493–496 (2014)Google Scholar
  30. O. Henderson-Sapir, S.D. Jackson, D.J. Ottaway, Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett. 41(7), 1676 (2016)Google Scholar
  31. K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. Macdonald, CW three-wave mixing in single-mode optical fibers. J. Appl. Phys. 49, 5098 (1978)Google Scholar
  32. T. Hu, D.D. Hudson, S.D. Jackson, Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class. Opt. Lett. 39(7), 2133–2136 (2014)Google Scholar
  33. T. Hu, S.D. Jackson, D.D. Hudson, Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett. 40(18), 4226 (2015)Google Scholar
  34. D. Hudson, E. Mägi, A. Judge, S. Dekker, B. Eggleton, Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Opt. Commun. 285(23), 4660–4669 (2012)Google Scholar
  35. D.D. Hudson, R.J. Williams, M.J. Withford, S.D. Jackson, Single-frequency fiber laser operating at 2.9 μm. Opt. Lett. 38(14), 2388 (2013)Google Scholar
  36. D. Hudson, S.A. Antipov, L. Lizhu, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M.R. Rochette, S. Jackson, A. Fuerbach, Toward all-fiber supercontinuum spanning the mid-infrared. Optica 4(10), 1163–1166 (2017)Google Scholar
  37. S.D. Jackson, Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm. Opt. Lett. 29, 334 (2004)Google Scholar
  38. S.D. Jackson, High-power erbium cascade fibre laser. Electron. Lett. 45(16), 830 (2009a)Google Scholar
  39. S.D. Jackson, High-power and highly efficient diode-cladding- pumped holmium-doped fluoride fiber laser operating at 2 . 94 m. Opt. Lett. 34(15), 2327–2329 (2009b)Google Scholar
  40. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, S. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635 (2000)Google Scholar
  41. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. Ams, M. J. Withford, Fibre Grating Inscription and Applications. Topics in applied physics. Heidelberg, vol. 123. 2012Google Scholar
  42. R. Kashyap, Fiber Bragg Gratings. Academic Press, US (2010)Google Scholar
  43. O.P. Kulkarni, V.V. Alexander, M. Kumar, M.J. Freeman, M.N. Islam, F.L. Terry, M. Neelakandan, A. Chan, Supercontinuum generation from ∼1.9 to 4.5 μ m in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier. J. Opt. Soc. Am. B 28(10), 2486–2498 (2011)Google Scholar
  44. J. Li, D. Hudson, S. Jackson, High-power diode-pumped fiber laser operating at 3 μm. Opt. Lett. 36(18), 3642–3644 (2011)Google Scholar
  45. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6(1), 30361 (2016)Google Scholar
  46. M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, Y. Ohishi, Five-octave-spanning supercontinuum generation in fluoride glass. Appl. Phys. Express 6(3), 4–7 (2013)Google Scholar
  47. A.F.H. Librantz, S.D. Jackson, L. Gomes, S.J.L. Ribeiro, Y. Messaddeq, Pump excited state absorption in holmium-doped fluoride glass. J. Appl. Phys. 103(2), 1–9 (2008)Google Scholar
  48. K. Liu, J. Liu, H. Shi, F. Tan, P. Wang, High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt. Express 22(20), 24384–24391 (2014)Google Scholar
  49. J. Liu, M. Wu, B. Huang, P. Tang, C. Zhao, D. Shen, D. Fan, S.K. Turitsyn, Widely wavelength-tunable mid-infrared fluoride fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 0900507 (2018)Google Scholar
  50. F. Maes, V. Fortin, M. Bernier, R. Vallée, 5.6 W monolithic fiber laser at 3.55 μm. Opt. Lett. 42(11), 2054 (2017)Google Scholar
  51. M.R. Majewski, S.D. Jackson, Tunable dysprosium laser. Opt. Lett. 41(19), 4496 (2016)Google Scholar
  52. U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang, Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 23(3), 3282 (2015)Google Scholar
  53. P.M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S.R. Keiding, Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared. Proc. SPIE 8381, 83811A–83811A–6 (2012)Google Scholar
  54. C.K.N. Patel, Interpretation of CO2 optical maser experiments. Phys. Rev. Lett. 12(21), 588–590 (1964)Google Scholar
  55. C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)Google Scholar
  56. C.R. Petersen, P.M. Moselund, C. Petersen, U. Møller, O. Bang, Spectral-temporal composition matters when cascading supercontinua into the mid-infrared. Opt. Express 24(2), 749–758 (2016)Google Scholar
  57. J.H.V. Price, X. Feng, A.M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W.H. Loh, H.N. Rutt, D.J. Richardson, Supercontinuum generation in non-silica fibers. Opt. Fiber Technol. 18(5), 327–344 (2012)Google Scholar
  58. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian, Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett. 41(1), 56 (2016)Google Scholar
  59. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, P. Fendel, Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm. Opt. Express 23(24), 30592 (2015)Google Scholar
  60. J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009)Google Scholar
  61. J. Schneider, Mid-infrared fluoride fiber lasers in multiple cascade operation. IEEE Photon. Technol. Lett. 7(4), 354–356 (1995)Google Scholar
  62. L.B. Shaw, R.R. Gattass, J. Sanghera, I. Aggarwal, All-fiber mid-IR supercontinuum source from 1.5 to 5 μm. Fiber Lasers VIII: Technol. Syst. Appl. 7914, 79140P–79140P–5 (2011)Google Scholar
  63. Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, J. Si, Wavelength-tunable passively mode-locked mid-infrared Er3+−doped ZBLAN fiber laser. Sci. Rep. 7(1), 14913 (2017)Google Scholar
  64. N. Singh, D.D. Hudson, Y. Yu, C. Grillet, S.D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S.G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D.J. Moss, B.J. Eggleton, Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica 2(9), 797 (2015)Google Scholar
  65. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450(7172), 1054–1057 (2007)Google Scholar
  66. R.H. Stolen, A. Ashkin, Optical Kerr effect in glass waveguide. Appl. Phys. Lett. 294(1973), 20–23 (2003)Google Scholar
  67. R. Stolen, C. Lin, Self-phase modulation in silica optical fibers. Phys. Rev. A 17(4), 1448 (1978)Google Scholar
  68. T. Sumiyoshi, H. Sekita, Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser. Opt. Lett. 23(23), 1837–1839 (1998)Google Scholar
  69. T. Sumiyoshi, H. Sekita, T. Arai, Cascade Ho : ZBLAN fiber laser and its medical applications. Quantum 5(4), 936–943 (1999)Google Scholar
  70. J. Swiderski, High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog. Quantum Electron. 38(5), 189–235 (2014)Google Scholar
  71. D.C. Tran, G.H. Sigel, B. Bendow, Heavy metal fluoride glasses and fibers: a review. J. Lightwave Technol. 2(5), 566–586 (1984)Google Scholar
  72. C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, Y. Liu, 34 nm-wavelength-tunable picosecond Ho^3+/Pr^3+−codoped ZBLAN fiber laser. Opt. Express 25(16), 19170 (2017)Google Scholar
  73. C. Xia, Z. Xu, M.N. Islam, F.L. Terry, M.J. Freeman, A. Zakel, J. Mauricio, 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009)Google Scholar
  74. W. Yang, B. Zhang, K. Yin, X. Zhou, J. Hou, High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system. Opt. Express 21(17), 19732–19742 (2013)Google Scholar
  75. S. Yin, P. Ruffin, C. Brantley, E. Edwards, C. Luo, Mid-IR supercontinuum generation and applications: a review. Proc. SPIE 9200, 92000U (2014)Google Scholar
  76. K. Yin, B. Zhang, L. Yang, J. Hou, 15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3. 8 μm. Opt. Lett. 42(12), 2334 (2017)Google Scholar
  77. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, B. Luther-Davies, Mid-infrared supercontinuum generation in chalcogenides. Opt. Mater. Express 3(8), 1075–1086 (2013)Google Scholar
  78. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, B. Luther-davies, 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide Fiber using low peak pump power. Opt. Lett. 40(6), 1081 (2015)Google Scholar
  79. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, R. Wang, 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Opt. Lett. 41(22), 5222–5225 (2016)Google Scholar
  80. X. Zhu, R. Jain, 10 W level diode pumepd compact 2.78 μm ZBLAN fiber laser. Opt. Lett. 32(1), 26–28 (2007)Google Scholar
  81. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R.A. Norwood, T. Manzur, N. Peyghambarian, Towards ten-watt-level 3-5 μm Raman lasers using tellurite fiber. Opt. Express 23(6), 7559 (2015)Google Scholar
  82. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R.A. Norwood, N. Peyghambarian, Graphene mode-locked fiber laser at 2.8 μm. IEEE Photon. Technol. Lett. 28(1), 7–10 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Darren D. Hudson
    • 1
  • Alexander Fuerbach
    • 1
  • Stuart D. Jackson
    • 2
    Email author
  1. 1.MQ Photonics Research Centre, Department of Physics and AstronomyMacquarie UniversityNorth RydeAustralia
  2. 2.Department of Engineering, MQ Photonics Research Centre, School of EngineeringMacquarie UniversityNorth RydeAustralia

Section editors and affiliations

  • Kyunghwan Oh
    • 1
  1. 1.Department of Physics and Applied PhysicsYonsei UniversitySeoulSouth Korea

Personalised recommendations