Distributed Rayleigh Sensing

  • Xinyu FanEmail author
Reference work entry


Rayleigh backscattering (RBS) in optical fiber is a fundamental phenomenon caused by random fluctuations in the index profile along the fiber length. Optical reflectometry is the best tool to obtain RBS signals with a distributed way along the fiber and is widely used as a nondestructive measurement at one end of the fiber. With the help of optical reflectometry, RBS signals are used for distributed fiber-optic sensing with temperature/strain/vibration information along the fiber. Understanding the mechanisms of RBS provides a powerful technique for static and vibration sensing used for applications such as structural health monitoring and damage assessment analysis. The technology based on RBS signals to extract the environmental perturbation is mature, but researches on obtaining a high spatial resolution together with a long measurement range are still very active, promoting the technology to be used in more industrial applications with strict requirements on these parameters such as monitoring the optical fiber inside the aircraft wings with a spatial resolution of better than 1 mm over several 100 m.

In this book chapter, after a first description of RBS mechanism in optical fibers, the working principle of static and vibration measurement based on RBS signals is provided. Then, different kinds of optical reflectometry based on time-domain, frequency-domain, and coherence-domain techniques are introduced in details. In the final section, advanced methods to improve both the spatial resolution and the measurement range are presented which pave the way for new horizons in high-end applications.


Rayleigh backscattering (RBS) Static measurement Vibration measurement Optical reflectometry Optical time-domain reflectometry (OTDR) Optical frequency-domain reflectometry (OFDR) Optical coherence-domain reflectometry (OCDR) Optical low coherence reflectometry (OLCR) Pulse compression Synthesis of optical coherence function (SOCF) Spatial resolution Measurement range Sensitivity 


  1. C. Baker, Y. Lu, J. Song, et al., Incoherent optical frequency domain reflectometry based on a Kerr phase-interrogator. Opt. Express 22(13), 15370–15375 (2014)CrossRefGoogle Scholar
  2. M.K. Barnoski, S.M. Jensen, Fiber waveguides: A novel technique for investigating attenuation characteristics. Appl. Optics 15, 2112–2115 (1976)CrossRefGoogle Scholar
  3. C.G. Bethea, S. Cova, G. Ripamonti, B.F. Levine, High-resolution and high-sensitivity optical-time-domain reflectometer. Opt. Lett. 13, 233–235 (1988)CrossRefGoogle Scholar
  4. E. Brinkmeyer, Analysis of the backscattering method for single-mode optical fibers. J. Opt. Soc. Am. 70, 1010–1012 (1980)CrossRefGoogle Scholar
  5. D. Chen, Q. Liu, Z. He, Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Opt. Express 25(7), 8315–8325 (2017)CrossRefGoogle Scholar
  6. X. Clivaz, F. Marquis-Weible, R.P. Salathe, Optical low coherence reflectometry with 1.9 mu m spatial resolution. Electron. Lett. 28(16), 1553–1555 (1992)CrossRefGoogle Scholar
  7. C. Dorrer, D.C. Kilper, H.R. Stuart, G. Raybon, M.G. Raymer, Linear optical sampling. IEEE Photon. Technol. Lett. 15, 1746–1748 (2003)CrossRefGoogle Scholar
  8. W. Eickhoff, R. Ulrich, Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39(9), 693–695 (1981)CrossRefGoogle Scholar
  9. X. Fan, Y. Koshikiya, F. Ito, Phase noise compensated optical frequency domain reflectometry. IEEE J. Quantum Electron. 45, 594–602 (2009)CrossRefGoogle Scholar
  10. M.E. Froggatt, D.K. Gifford, S. Kreger, et al., Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry. J. Lightwave Technol. 24(11), 4149–4154 (2006)CrossRefGoogle Scholar
  11. Z. He, H. Takahashi, K Hotate, Optical coherence-domain reflectometry by use of optical frequency comb[C]//Conference on Lasers and Electro-Optics. Optical Society of America, 2010. CFH4Google Scholar
  12. K. Hotate, Z. He, Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing. J. Lightwave Technol. 24(7), 2541–2557 (2006)CrossRefGoogle Scholar
  13. K. Hotate, K. Makino, M. Ishikawa, et al., High-spatial-resolution fiber optic distributed force sensing with synthesis of optical coherence function//Optical Technologies for Industrial, Environmental, and Biological Sensing. Proc. SPIE 5272, Industrial and Highway Sensors Technology (8 March 2004), 5272:157–163 (2004)Google Scholar
  14. H. Iida, Y. Koshikiya, F. Ito, K. Tanaka, High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing. J. Lightwave Technol. 30, 1121–1126 (2012)CrossRefGoogle Scholar
  15. F. Ito, X. Fan, Y. Koshikiya, Long range coherent OFDR with light source phase noise compensation. J. Lightwave Technol. 30, 1015–1024 (2012)CrossRefGoogle Scholar
  16. M. Kashiwagi, K. Hotate, Long range and high resolution reflectometry by synthesis of optical coherence function at region beyond the coherence length[J]. IEICE Electron. Exp. 6(8), 497–503 (2009)CrossRefGoogle Scholar
  17. J. King, D. Smith, K. Richards, P. Timson, R. Epworth, S. Wright, Development of a coherent OTDR instrument. J. Lightwave Technol. 5, 616–624 (1987)CrossRefGoogle Scholar
  18. Y. Koshikiya, X. Fan, F. Ito, Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser. J. Lightwave Technol. 26(18), 3287–3294 (2008)CrossRefGoogle Scholar
  19. Y. Koyamada, M. Imahama, K. Kubota, et al., Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave Technol. 27(9), 1142–1146 (2009)CrossRefGoogle Scholar
  20. M. Legré, R. Thew, H. Zbinden, N. Gisin, High resolution optical time domain reflectometer based on 1.55μm up-conversion photon-counting module. Opt. Express 15, 8237–8242 (2007)CrossRefGoogle Scholar
  21. S. Liehr, N. Nöther, K. Krebber, Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers. Meas. Sci. Technol. 21(1), 017001 (2009)CrossRefGoogle Scholar
  22. Q. Liu, X. Fan, Z. He, Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range. Opt. Express 23(20), 25988–25995 (2015)CrossRefGoogle Scholar
  23. Y. Lu, T. Zhu, L. Chen, X. Bao, Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol. 28, 3243–3249 (2010)Google Scholar
  24. D. Marcuse, Rayleigh scattering and the impulse response of optical fibers. Bell Syst. Tech. J. 53, 705–715 (1974)CrossRefGoogle Scholar
  25. H.F. Martins, S. Martin-Lopez, P. Corredera, M.L. Filograno, O. Frazão, M. González-Herráez, Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves. J. Lightwave Technol. 31, 3631–3637 (2013)CrossRefGoogle Scholar
  26. S. Ohno, D. Iida, K. Toge, et al., Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry [J]. Opt. Express 24(17), 19651–19660 (2016)CrossRefGoogle Scholar
  27. T. Okamoto, D. Iida, K. Toge, et al., Optical correlation domain reflectometry based on coherence synchronization: Theoretical analysis and proof-of-concept [J]. J. Lightwave Technol. 34(18), 4259–4265 (2016)CrossRefGoogle Scholar
  28. A.J. Rogers, Polarization-optical time domain reflectometry: A technique for the measurement of field distributions. Appl. Optics 20, 1060–1074 (1981)CrossRefGoogle Scholar
  29. S.V. Shatalin, V.N. Treschikov, A.J. Rogers, Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Appl. Optics 37, 5600–5604 (1998)CrossRefGoogle Scholar
  30. G.-L. Shentu, Q.-C. Sun, X. Jiang, X.-D. Wang, J.S. Pelc, M.M. Fejer, Q. Zhang, J.-W. Pan, 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector. Opt. Express 21, 24674–24679 (2013)CrossRefGoogle Scholar
  31. K. Shimizu, T. Horiguchi, Y. Koyamada, Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components. J. Lightwave Technol. 10, 982–987 (1992)CrossRefGoogle Scholar
  32. M. Shizuka, S. Shimada, N. Hayashi, Y. Mizuno, K. Nakamura, Optical correlation-domain reflectometry without optical frequency shifter. Appl. Phys. Express 9(3), 032702 (2016)CrossRefGoogle Scholar
  33. B. Soller, D. Gifford, M. Wolfe, et al., High resolution optical frequency domain reflectometry for characterization of components and assemblies [J]. Opt. Express 13(2), 666–674 (2005)CrossRefGoogle Scholar
  34. W.V. Sorin, D.M. Baney, A simple intensity noise reduction technique for optical low-coherence reflectometry. IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992)CrossRefGoogle Scholar
  35. M.A. Soto, X. Lu, H.F. Martins, et al., Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers. Opt. Express 23(19), 24923–24936 (2015)CrossRefGoogle Scholar
  36. W.B. Spillman, P.L. Fuhr, B.L. Anderson, Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors, in Fiber Optic Smart Structures and Skins, ed. by E. Udd, Proc. SPIE986, 106–118 (1988)Google Scholar
  37. K. Takada, A. Himeno, K. Yukimatsu, Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry. Appl. Phys. Lett. 59(20), 2483–2485 (1991)CrossRefGoogle Scholar
  38. S. Venkatesh, W.V. Sorin, Phase noise considerations in coherent optical FMCW reflectometry[J]. J. Lightwave Technol. 11(10), 1694–1700 (1993)CrossRefGoogle Scholar
  39. Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, et al., Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Opt. Lett. 40, 5192–5195 (2015a)CrossRefGoogle Scholar
  40. Z. Wang, M. Fan, L. Zhang, H. Wu, D. Churkin, Y. Li, X. Qian, Y. Rao, Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source. Opt. Express 23, 15514–15520 (2015b)CrossRefGoogle Scholar
  41. B. Wang, X. Fan, S. Wang, J. Du, Z. He, Long-range millimeter-resolution OFDR based on 100 GHz linear frequency-sweep of optical source by injection-locking technique and cascaded FWM process. Opt. Express 25, 3514–3524 (2017a)CrossRefGoogle Scholar
  42. S. Wang, X. Fan, Z. He, Ultra-high resolution optical reflectometry based on linear optical sampling technique with digital dispersion compensation. IEEE Photonics J 9, 6804710 (2017b)Google Scholar
  43. S. Wang, X. Fan, B. Wang, G. Yang, Z. He, Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications. Opt. Express 25, 10224–10233 (2017c)CrossRefGoogle Scholar
  44. M. Wegmuller, F. Scholder, N. Gisin, Photon-counting OTDR for local birefringence and fault analysis in the metro environment. J. Lightwave Technol. 22, 390–400 (2004)CrossRefGoogle Scholar
  45. D. Xu, J. Du, X. Fan, Z He, 10-times broadened fast optical frequency sweeping for high spatial resolution OFDR[C]//Optical Fiber Communication Conference. Optical Society of America, 2014. W3D. 2Google Scholar
  46. G. Yang, X. Fan, S. Wang, B. Wang, Q. Liu, Z. He, Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR. IEEE Photonics Journal 8, 1–12 (2016)Google Scholar
  47. G. Yang, X. Fan, Q. Liu, Z. He, Increasing the frequency response of direct-detection phase-sensitive OTDR by using frequency division multiplexing, in Proceedings of Optical Fiber Sensors Conference (OFS26), (Jeju, 2017)Google Scholar
  48. L. Zhang, B. Pan, G. Chen, D. Lu, L. Zhao, Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Appl. Optics 56, 1253–1256 (2017)CrossRefGoogle Scholar
  49. Q. Zhao, J. Hu, X. Zhang, L. Zhang, T. Jia, L. Kang, J. Chen, P. Wu, Photon-counting optical time-domain reflectometry with superconducting nanowire single-photon detectors, in Superconductive Electronics Conference (ISEC), 2013 IEEE 14th International, 2013, pp. 1–3Google Scholar
  50. D.P. Zhou, Z. Qin, W. Li, et al., Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. Express 20(12), 13138–13145 (2012)CrossRefGoogle Scholar
  51. L. Zhou, F. Wang, X. Wang, et al., Distributed strain and vibration sensing system based on phase-sensitive OTDR. IEEE Photon. Technol. Lett. 27(17), 1884–1887 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiChina

Section editors and affiliations

  • Yosuke Mizuno
    • 1
  1. 1.Institute of Innovative ResearchTokyo Institute of TechnologyTokyoJapan

Personalised recommendations