Measurement of Optical Fiber Grating

  • Zhiqiang SongEmail author
  • Jian Guo
  • Haifeng Qi
  • Weitao Wang
Reference work entry


As one of the key photonic devices, optical fiber grating has been playing an important role in the fiber communications and remote sensing. In research, development, and application of fiber gratings, it is necessary to apply a range of measurement techniques for characterization and evaluation. This chapter introduces the major types of optical fiber gratings and describes related characterization and measurement techniques. Firstly, the history of fiber grating is briefly reviewed and different types of fiber gratings are introduced. Then the theoretical definitions and experimental measurements of typical parameters for fiber gratings have been described in details.



Authors are thankful for the financial support of National Natural Science Foundation of China (61605103), Shandong Provincial Natural Science Foundation of China(ZR2016FM33) and Key Research and Development Program of Shandong Province (2018GGX101030).


  1. S.R. Abdullina, I.N. Nemov, S.A. Babin, Suppression of side lobes in a spectrum of fiber Bragg gratings due to the transverse displacement of phase mask with respect to the optical fiber. Quant. Elect. 42(9), 794–798 (2012)CrossRefGoogle Scholar
  2. G.A. Ball, W.H. Glenn, Design of a single mode linear cavity Erbium fiber laser utilizing bragg reflectors. J. Lightwave Technol. 10, 1338–1344 (1992)CrossRefGoogle Scholar
  3. I. Baumann, J. Seifert, W. Nowak, M. Sauer, Compact all-fiber add-drop-multiplexer using Fiber Bragg gratings. IEEE Photon. Technol. Lett. 8, 1331–1333 (1996)CrossRefGoogle Scholar
  4. L. Dong, J.L. Archambault, E. Taylor, M.P. Roc, Photosensitivity in tantalum-doped silica optical fibers. J Opt. Soc. Am. B 12(9), 1746–1750 (1995a)CrossRefGoogle Scholar
  5. L. Dong, J.L. Cruz, L. Reckie, Enhanced photosensitivity in tin-docodped Germanosilicate optical Fibers. IEEE Photon Tech. Lett. 7(9), 1048–1052 (1995b)CrossRefGoogle Scholar
  6. L. Dong, P. Hua, T.A. Birks, J.P. Russell, Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler. IEEE Photon. Technol. Lett. 8, 1656–1658 (1996)CrossRefGoogle Scholar
  7. K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Lightwave Tecnol. 15(8), 1263–1276 (1997)CrossRefGoogle Scholar
  8. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photo-sensitivity in optical fiber wave-guild: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)CrossRefGoogle Scholar
  9. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in Monomode photosensitive optical Fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1035–1037 (1993)CrossRefGoogle Scholar
  10. F. Jiang, Research on measurement of fiber grating dispersion by low coherence interferometry. PhD Thesis. Beijing Insititute of Machinery Industry, Beijing, 2006Google Scholar
  11. C. Jiangand, D.N. Wang, Research progress of femtosecond laser pulse inscription of fiber bragg gratings. Laser Optoelect Progr. 6, 59–66 (2008)CrossRefGoogle Scholar
  12. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Appl. Phys. B Lasers 71(1), 119–121 (2000)CrossRefGoogle Scholar
  13. P.J. Lemaire, High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped fibres. Electron. Lett. 29, 1191–1193 (1993)CrossRefGoogle Scholar
  14. W.H. Loh, M.J. Cole, M.N. Zervas, Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. Opt. Lett. 20(20), 2051–2053 (1995)CrossRefGoogle Scholar
  15. G. Meltz, W. Moreyw, N.J. Doran, Formation of Bragg gratings in optical Fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989)CrossRefGoogle Scholar
  16. P. Myslinski, C. Szubert, A.J. Bruce, Performance of high-concentration erbium-doped fiber amplifiers. IEEE Photon Tech. Lett. 11(8), 973–975 (1999)CrossRefGoogle Scholar
  17. L. Pei, T.G. Ning, T.J. Li, X.W. Dong, S.S. Jian, Studies on the dispersion compensation of fiber Bragg grating in high speed optical communication system. Acta Phys. Sin. 54(4), 1630–1635 (2005)Google Scholar
  18. G.D. Peng, Z. Xiong, P.L. Chu, Photosensitivity and gratings in dye-doped polymer optical Fibers. Opt. Fiber Technol. 5(2), 242–251 (1999)CrossRefGoogle Scholar
  19. L. Poladian, B. Ashton, W.E. Padden, C. Marra, Characterization of phase-shifts in gratings fabricated by over-dithering and simple displacement. Opt. Fiber Technol. 9, 173–188 (2003)CrossRefGoogle Scholar
  20. P.S. Russell, D.P. Hand, Y.T. Chow, L.J. Poyntzwright, Optically induced creation, transformation, and organization of defects and color centers in optical fibers. Proc. SPIE 1516(2), 47–54 (1991)CrossRefGoogle Scholar
  21. D.L. Williams, B.J. Ainslie, J.R. Armitage, R. Kashyap, Enhanced UV photosensitivity in boron codoped germanosilicate fibers. Electron. Lett. 29, 45–47 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhiqiang Song
    • 1
    Email author
  • Jian Guo
    • 1
  • Haifeng Qi
    • 1
  • Weitao Wang
    • 1
  1. 1.Shandong Key Laboratory of Optical Fiber Sensing TechnologiesQilu Industry University (Laser Institute of Shandong Academy of Sciences)JinanChina

Section editors and affiliations

  • Yanhua Luo
    • 1
  1. 1.School of Electrical Engineering & TelecommunicationsUNSWSydneyAustralia

Personalised recommendations