Optoelectronic Fibers

Reference work entry


Fibers are one of the most fundamental material forms, made by nature or by humans. In particular, optical fibers now are widely used in a multitude of applications, ranging from telecommunications to monitoring structural integrity of bridges. Integration of materials with disparate electrical, optical, thermal, or mechanical properties into a single fiber with complex architecture and diverse functionalities presents new opportunities for extending fiber applications in numerous fields, especially as optoelectronic devices. This chapter presents the development of optoelectronic fibers, from the fundamentals to in-fiber device demonstration. Especially, the integration of semiconductor materials into fiber geometries provides a unique route to introduce new optoelectronic functionality into existing glass fiber technologies. Firstly, as the core material, multi-material fibers made of semiconductor materials such as silicon, germanium, and compound semiconductors are developed, which offer different advantages in terms of the material, geometry, and waveguiding properties. Then, three main fabrication approaches to produce these fibers are summarized, in which the first approach is based on traditional drawing tower technique, the second approach involves chemical deposition inside glass capillary templates, and the third approach takes advantage of in-fiber fluid instability phenomenon. Finally, future prospects and applications of this new class of fibers are discussed.


  1. A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)CrossRefGoogle Scholar
  2. G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  3. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S.R. Sharma, R. Shori, O. Stafsudd, R.R. Rice, D.R. Powers, Silicon optical fiber. Opt. Express 16, 18675–18683 (2008)CrossRefGoogle Scholar
  4. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N.K. Hon, B. Jalali, R. Rice, Glass-clad single-crystal germanium optical fiber. Opt. Express 17, 8029–8035 (2009a)CrossRefGoogle Scholar
  5. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. Rao, R. Rice, Binary III–V core semiconductor optical fiber. Opt. Express 18, 4972–4979 (2009b)CrossRefGoogle Scholar
  6. M. Bayindir, F. Sorin, S. Hart, O. Shapira, J.D. Joannopoulos, Y. Fink, Metal-insulator-semiconductor optoelectronic fibres. Nature 431, 826–829 (2004)CrossRefGoogle Scholar
  7. A. Canales, X. Jia, U. Froriep, R. Koppes, C. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multimodal fibres for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)CrossRefGoogle Scholar
  8. D. Coucheron, M. Fokine, N. Patil, D. Werner Breiby, O. Tore Buset, N. Healy, A.C. Peacock, T. Hawkins, M. Jones, J. Ballato, U. Gibson, Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nat. Commun. 7, 13265 (2016)CrossRefGoogle Scholar
  9. P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, Sapphire-derived all-glass optical fibres. Nat. Photonics 6, 627–633 (2012)CrossRefGoogle Scholar
  10. V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva, Liquid Semiconductors (Plenum Press, New York, 1969)CrossRefGoogle Scholar
  11. A. Gumennik, L. Wei, G. Lestoquoy, A.M. Stolyarov, X. Jia, P.H. Rekemeyer, M.J. Smith, X. Liang, S.G. Johnson, S. Gradeak, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 4, 2216 (2013)CrossRefGoogle Scholar
  12. R. He, P.J.A. Sazio, A.C. Peacock, N. Healy, J.R. Sparks, M. Krishnamurthi, V. Gopalan, J.V. Badding, Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics 6, 174–179 (2012)CrossRefGoogle Scholar
  13. N. Healy, S. Mailis, N.M. Bulgakova, P.J.A. Sazio, T.D. Day, J.R. Sparks, H.Y. Cheng, J.V. Badding, A.C. Peacock, Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nat. Mater. 13, 1122–1127 (2014)CrossRefGoogle Scholar
  14. C. Hou, X. Jia, L. Wei, A.M. Stolyarov, O. Shapira, J.D. Joannopoulos, Y. Fink, Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high throughput reactive fiber drawing. Nano Lett. 13, 975–979 (2013)CrossRefGoogle Scholar
  15. C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. Joannopoulos, Y. Fink, Crystalline silicon core fibres from aluminium core preforms. Nat. Commun. 6, 6248 (2015)CrossRefGoogle Scholar
  16. B.R. Jackson, P.J.A. Sazio, J.V. Badding, Single-crystal semiconductor wires integrated into microstructured optical fibers. Adv. Mat. 20, 1135–1140 (2008)CrossRefGoogle Scholar
  17. K. Kakimoto, M. Eguchi, H. Watanabe, T. Hibiya, Natural and forced convection of molten silicon during czochralski single crystal growth. J. Cryst. Growth 94, 412–420 (1989)CrossRefGoogle Scholar
  18. J.J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D.S. Deng, X. Liang, S.G. Johnson, Y. Fink, A.F. Abouraddy, Structured spheres generated by an in-fibre fluid instability. Nature 487, 463–467 (2012)CrossRefGoogle Scholar
  19. P. Koštál, J. Málek, Viscosity of selenium melt. J. Non-Crystal. Solid 356, 2803–2806 (2010)CrossRefGoogle Scholar
  20. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, L. Wei, Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Appl. Phys. Lett. 109, 101101 (2016)CrossRefGoogle Scholar
  21. M. Lipson, Guiding, modulating, and emitting light on silicon challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)CrossRefGoogle Scholar
  22. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, J. Ballato, Reactive molten core fabrication of silicon optical fiber. Opt. Mater. Express 1, 1141–1149 (2011)CrossRefGoogle Scholar
  23. D. Ofte, The viscosities of liquid uranium, gold and lead. J. Nucl. Mater. 22, 28–32 (1967)CrossRefGoogle Scholar
  24. A.C. Peacock, J.R. Sparks, N. Healy, Semiconductor optical fibres: progress and opportunities. Laser Photonics Rev. 8, 53–72 (2014)CrossRefGoogle Scholar
  25. A.C. Peacock, U. Gibson, J. Ballato, Silicon optical fibres – past, present, and future. Adv. Phys. X, 1–22 (2016)Google Scholar
  26. R.F. Pierret, Semiconductor Device Fundamentals, 2nd edn. (Addison-Wesley, Boston, 1996)Google Scholar
  27. G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction (Wiley, Chichester, 2004)CrossRefGoogle Scholar
  28. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)CrossRefGoogle Scholar
  29. P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, J.V. Badding, Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)CrossRefGoogle Scholar
  30. M. Schmidt, A. Argyros, F. Sorin, Hybrid optical fibers – an innovative platform for in-fiber photonic devices. Adv. Opt. Mater. 4, 13 (2016)CrossRefGoogle Scholar
  31. B.L. Scott, K. Wang, G. Pickrell, Fabrication of n-type silicon optical fiber. IEEE Photon. Technol. Lett. 21, 1798–1800 (2009)CrossRefGoogle Scholar
  32. S. Shabahang, G. Tao, J.J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. Gordon, Y. Fink, Y. Bai, R.S. Hoy, A.F. Abouraddy, Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing. Nature 534, 529–533 (2016)CrossRefGoogle Scholar
  33. J.R. Sparks, R. He, N. Healy, M. Krishnamurthi, A.C. Peacock, P.J.A. Sazio, V. Gopalan, J.V. Badding, Zinc selenide optical fibers. Adv. Mat. 23, 1647–1651 (2011)CrossRefGoogle Scholar
  34. A.M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S.L. Chua, J.D. Joannopoulos, Y. Fink, Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nat. Photon. 4, 229–233 (2012)CrossRefGoogle Scholar
  35. G. Tao, A.M. Stolyarov, A.F. Abouraddy, Multimaterial fibers. I. J. Appl. Glass Sci. 3, 349–368 (2012)CrossRefGoogle Scholar
  36. A.S. Tverjanovich, Temperature dependence of the viscosity of chalcogenide glass-forming melts. Glas. Phys. Chem. 29, 532–536 (2003)CrossRefGoogle Scholar
  37. G. Urbain, Y. Bottinga, P. Richet, Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46, 1061–1072 (1982)CrossRefGoogle Scholar
  38. S. Wang, T. Zhang, K. Li, S. Ma, M. Chen, P. Lu, L. Wei, Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3, 1600449 (2017)CrossRefGoogle Scholar
  39. L. Wei, C. Hou, E. Levy, G. Lestoquoy, A. Gumennik, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater. 29, 1603033 (2017)CrossRefGoogle Scholar
  40. N. Zhang, H. Liu, A.M. Stolyarov, T. Zhang, K. Li, P. Shum, Y. Fink, X. Sun, L. Wei, Azimuthally polarized radial emission from a quantum dot fiber laser. ACS Photon. 3, 2275–2279 (2016a)CrossRefGoogle Scholar
  41. N. Zhang, G. Humbert, Z. Wu, K. Li, P. Shum, M. Zhang, Y. Cui, J. Auguste, X. Dinh, L. Wei, In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber. Opt. Express 24, 27674–27682 (2016b)CrossRefGoogle Scholar
  42. M. Zhang, D. Hu, P. Shum, Z. Wu, K. Li, T. Huang, L. Wei, Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. J. Opt. 18, 65005–65011 (2016c)CrossRefGoogle Scholar
  43. N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q.X. Dinh, M. Olivo, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sensors Actuators B Chem. 223, 195–201 (2016d)CrossRefGoogle Scholar
  44. T. Zhang, K. Li, C. Li, S. Ma, H.H. Hng, L. Wei, Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3, 1600554 (2017a)CrossRefGoogle Scholar
  45. M. Zhang, K. Li, P. Shum, X. Yu, S. Zeng, Z. Wu, Q. Wang, K. Yong, L. Wei, Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol 2, 1600185 (2017b)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Section editors and affiliations

  • Tuan Guo
    • 1
  1. 1.Institute of Photonics TechnologyJinan UniversityGuangzhouChina

Personalised recommendations