Advertisement

Multicore Fibers

  • Ming TangEmail author
Reference work entry

Abstract

Optical fibers, especially the silica single mode fibers (SMFs), play essential roles in building the infrastructure of information technology. However, with the great development of Internet services like cloud computing, HD video, and virtual reality, the current optical fiber communication system based on SMF is suffering from severe burden of sharp burst of capacity. The space division multiplexing (SDM), which multiplexes the information in the spatial degree, is able to increase the capacity greatly. Among the SDM techniques, the multicore fiber (MCF)-based SDM transmission system has broken the current system’s capacity records again and again. The design, manufacturing, testing, connection, and application of MCFs compatible with the state-of-the-art fiber/telecom industry are indispensable to investigate.

This chapter mainly considers the all-solid silica-based MCF in which all the cores are shared by a single cladding. After the introduction of general description regarding the SDM oriented MCF, detailed information is given about the design, fabrication, and parameter optimization of MCF for efficient data transmission. The advances of highly efficient fan-in/fan-out coupling and splicing techniques for MCF are also reviewed. Recent demonstrations of MCF-enabled fiber transmission experiments are discussed, including the record long-haul large capacity transmission, fiber-radio convergent access system, high speed passive optical network, and real-time data-center interconnections. Finally, the MCF-based SDM fiber sensing technology developed very recently is summarized as a promising solution toward real-world application of fiber sensing.

References

  1. Y. Abe, K. Shikama, S. Yanagi, T. Takahashi, Low-loss physical-contact-type fan-out device for 12-core multicore fiber, in European Conference and Exhibition on Optical Communications (ECOC), vol. 49, no. 11 (2013)Google Scholar
  2. K.S. Abedin, T.F. Taunay, M. Fishteyn, M.F. Yan, B. Zhu, J.M. Fini, E.M. Monberg, F.V. Dimarcello, P.W. Wisk, Amplification and noise properties of an erbium-doped multicore fiber amplifier. Opt. Express 19(17), 16715–16721 (2011)CrossRefGoogle Scholar
  3. K.S. Abedin, T.F. Taunay, M. Fishteyn, D.J. Digiovanni, V.R. Supradeepa, J.M. Fini, M.F. Yan, B. Zhu, E.M. Monberg, F.V. Dimarcello, Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20(18), 20191 (2012)CrossRefGoogle Scholar
  4. K.S. Abedin, J.M. Fini, T.F. Thierry, V.R. Supradeepa, B. Zhu, M.F. Yan, L. Bansal, E.M. Monberg, D.J. Digiovanni, Multicore erbium doped fiber amplifiers for space division multiplexing systems. J. Lightwave Technol. 32(16), 2800–2808 (2014a)CrossRefGoogle Scholar
  5. K.S. Abedin, J.M. Fini, T.F. Thierry, B. Zhu, M.F. Yan, L. Bansal, F.V. Dimarcello, E.M. Monberg, D.J. Digiovanni, Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber. Opt. Lett. 39(4), 993–996 (2014b)CrossRefGoogle Scholar
  6. K.S. Abedin, M.F. Yan, T.F. Taunay, B. Zhu, E.M. Monberg, D.J. Digiovanni, State-of-the-art multicore fiber amplifiers for space division multiplexing. Opt. Fiber Technol. 35, 64–71 (2017)CrossRefGoogle Scholar
  7. E. Agrell, M. Karlsson, A.R. Chraplyvy, D.J. Richardson, P.M. Krummrich, P. Winzer, Roadmap of optical communications. J. Opt. 18 (2016)CrossRefGoogle Scholar
  8. Y. Amma, A. Takahashi, K. Takenaga, S. Matsuo, Low-loss fusion splice technique for multicore fiber with a large cladding diameter, in Technical Report of IEICE OCS, vol. 113 (2013), pp. 27–32Google Scholar
  9. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, High-density multicore fiber with heterogeneous core arrangement, in Optical Fiber Communications Conference and Exhibition (2015), pp. 1–3Google Scholar
  10. Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, Fusion splice techniques for multicore fibers. Opt. Fiber Technol. 35, 72–79 (2017)CrossRefGoogle Scholar
  11. J.E. Antonio-Lopez, Z.S. Eznaveh, P. Likamwa, A. Schülzgen, R. Amezcua-Correa, Multicore fiber sensor for high-temperature applications up to 1000°C. Opt. Lett. 39(15), 4309 (2014)CrossRefGoogle Scholar
  12. D. Barrera, I. Gasulla, S. Sales, Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber. J. Lightwave Technol. 33(12), 2445–2450 (2015)CrossRefGoogle Scholar
  13. D.L. Butler, M.-J. Li, S. Li, Y. Geng, R.R. Khrapko, R.A. Modavis, V.N. Nazarov, A.V. Koklyushkin, Space division multiplexing in short reach optical interconnects. J. Lightwave Technol. 35(4), 677–682 (2017)CrossRefGoogle Scholar
  14. H.M. Chan, A.R. Parker, Inventors, In-situ three-dimensional shape rendering from strain values obtained through optical fiber sensors. U.S. Parent 8,970,845, (3), (2015)Google Scholar
  15. S. Chandrasekhar, A.H. Gnauck, X. Liu, P.J. Winzer, Y. Pan, E.C. Burrows, T.F. Taunay, B. Zhu, M. Fishteyn, M.F. Yan, et al., WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km.b/s/Hz. Opt. Express 20(2), 706–711 (2012)CrossRefGoogle Scholar
  16. H. Chen, C. Jin, B. Huang, N.K. Fontaine, R. Ryf, K. Shang, N. Grégoire, S. Morency, R.J. Essiambre, G. Li, Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nat. Photonics 10(8), 529 (2016)CrossRefGoogle Scholar
  17. Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P.P. Shum, D. Liu, Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt. Express 25(17), 20183–20193 (2017)CrossRefGoogle Scholar
  18. L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing. Opt. Express 24(18), 20210 (2016)CrossRefGoogle Scholar
  19. R.G. Duncan, M.E. Froggatt, S.T. Kreger, D.K. Gifford, A.K. Sang, High-accuracy fiber-optic shape sensing. Int. Soc. Opt. Eng. 6530, 65301S-65301S-65311 (2007)Google Scholar
  20. A.E.A. Farghal, H.M.H. Shalaby, Reducing inter-core crosstalk impact via code-interleaving and bipolar 2-PPM for core-multiplexed SAC OCDMA PON. J. Opt. Commun. Netw. 10(1), 35 (2018)CrossRefGoogle Scholar
  21. A. Fender, W.N. Macpherson, R.R.J. Maier, J.S. Barton, D.S. George, R.I. Howden, G.W. Smith, B.J.S. Jones, S. Mcculloch, X. Chen, Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sensors J. 8(7), 1292–1298 (2008)CrossRefGoogle Scholar
  22. Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, et al., Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation. IEEE Photon. J. 7(4), 1–9 (2015)CrossRefGoogle Scholar
  23. J.M. Fini, B.Y. Zhu, T.F. Taunay, M.F. Yan, Statistics of crosstalk in bent multicore fibers. Opt. Express 18(14), 15122–15129 (2010)CrossRefGoogle Scholar
  24. J.M. Fini, B. Zhu, T.F. Taunay, M.F. Yan, K.S. Abedin, Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations. Opt. Express 20(2), 949–959 (2012a)CrossRefGoogle Scholar
  25. J.M. Fini, B. Zhu, T.F. Taunay, M.F. Yan, K.S. Abedin, Statistical models of multicore fiber crosstalk including time delays. J. Lightwave Technol. 30(12), 2003–2010 (2012b)CrossRefGoogle Scholar
  26. G.M.H. Flockhart, W.N. Macpherson, J.S. Barton, J.D.C. Jones, L. Zhang, I. Bennion, Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt. Lett. 28(6), 387–389 (2003)CrossRefGoogle Scholar
  27. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement. IEEE Photon. J. 8(1), 1–8 (2016)CrossRefGoogle Scholar
  28. M.J. Gander, W.N. Macpherson, R. Mcbride, J.D.C. Jones, Bend measurement using Bragg gratings in multicore fibre. Electron. Lett. 36(2), 120–121 (2000a)CrossRefGoogle Scholar
  29. M.J. Gander, D. Macrae, E.A.C. Galliot, R. Mcbride, J.D.C. Jones, P.M. Blanchard, J.G. Burnett, A.H. Greenaway, M.N. Inci, Two-axis bend measurement using multicore optical fibre. Opt. Commun. 182(1), 115–121 (2000b)CrossRefGoogle Scholar
  30. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, E. Sasaoka, Crosstalk variation of multi-core fibre due to fibre bend, in European Conference and Exhibition on Optical Communications (ECOC) (2010), p. 34Google Scholar
  31. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19(17), 16576–16592 (2011)CrossRefGoogle Scholar
  32. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Lightwave Technol. 30(4), 583–589 (2012)CrossRefGoogle Scholar
  33. J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P.P. Shum, D. Liu, Experimental demonstration of bidirectional OFDM/OQAM-MIMO signal over a multicore fiber system. IEEE Photon. J. 8(5), 1–8 (2016)CrossRefGoogle Scholar
  34. J. He, L. Deng, B. Li, M. Tang, S. Fu, D. Liu, P.P. Shum, Experimental demonstration of MCF enabled bidirectional colorless CAP-PON system with wavelength reuse technique, in Opto-Electronics and Communications Conference (2017), pp. 1–3Google Scholar
  35. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, 1.03-Exabit/skm Super-Nyquist-WDM transmission over 7,326-km seven-core fiber, in European Conference and Exhibition on Optical Communication (2013), pp. 1–3Google Scholar
  36. K. Imamura, Design optimization of large Aeff multi-core fiber, in Opto-Electronics and Communications Conference (2010)Google Scholar
  37. K. Imamura, K. Mukasa, M. Yu, T. Yagi, Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission, in Optical Fiber Communication Conference and Exposition (2009), pp. 1–3Google Scholar
  38. K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, Multi core fiber with large Aeff of 140 mm2 and low crosstalk, in European Conference and Exhibition on Optical Communications (2012), pp. 1–3Google Scholar
  39. C. Jin, B. Ung, Y. Messaddeq, S. Larochelle, Annular-cladding erbium doped multicore fiber for SDM amplification. Opt. Express 23(23), 29647–29659 (2015)CrossRefGoogle Scholar
  40. J.D.C. Jones, D. Zhao, N. Metje, Tunnel monitoring using multicore fiber displacement sensor. Meas. Sci. Technol. 17(5), 1180 (2005)Google Scholar
  41. A. Kanno, B.J. Puttnam, H. Inaba, J. Sakaguchi, K. Imamura, K. Mukasa, M. Watanabe, N. Wada, R. Sugizaki, T. Kawanishi, 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. J. Lightwave Technol. 31(4), 554–562 (2013)CrossRefGoogle Scholar
  42. W. Klaus, J. Sakaguchi, B.J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, M. Watanabe, Free-space coupling optics for multicore fibers. IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012)CrossRefGoogle Scholar
  43. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, 2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation, in European Conference and Exhibition on Optical Communication (2013), pp. 1–3Google Scholar
  44. Y. Koyamada, M. Imahama, K. Kubota, K. Hogari, Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave Technol. 27(9), 1142–1146 (2009)CrossRefGoogle Scholar
  45. P.M. Krummrich, Efficient optical amplification for spatial division multiplexing. Int. Soc. Opt. Eng. 8284(1), 13 (2012)Google Scholar
  46. B.G. Lee, 120-Gb/s 100-m transmission in a single multicore multimode fiber containing six cores interfaced with a matching VCSEL array, in IEEE Summer Topicals (2010)Google Scholar
  47. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, P.P. Shum, Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt. Express 23(9), 10997–11006 (2015)CrossRefGoogle Scholar
  48. R. Lin, J. Van Kerrebrouck, X. Pang, M. Verplaetse, O. Ozolins, A. Udalcovs, L. Zhang, L. Gan, M. Tang, S. Fu, et al., Real-time 100 Gbps/lambda/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks. Opt. Express 26(8), 10519–10526 (2018)CrossRefGoogle Scholar
  49. Y. Liu, L. Ma, C. Yang, W. Tong, Z. He, Multimode and single-mode fiber compatible graded-index multicore fiber for high density optical interconnect application. Opt. Express 26(9), 11639–11648 (2018)CrossRefGoogle Scholar
  50. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, M. Koshiba, Large-effective-area ten-core fiber with cladding diameter of about 200 μm. Opt. Lett. 36(23), 4626–4628 (2011)CrossRefGoogle Scholar
  51. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, 12-core fiber with one ring structure for extremely large capacity transmission. Opt. Express 20(27), 28398–28408 (2012)CrossRefGoogle Scholar
  52. S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, et al., High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems. J. Lightwave Technol. 34(6), 1464–1475 (2016)CrossRefGoogle Scholar
  53. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, Failure prediction for long length optical fiber based on proof testing. J. Appl. Phys. 53(7), 4847–4853 (1982)CrossRefGoogle Scholar
  54. T. Mizuno, Y. Miyamoto, High-capacity dense space division multiplexing transmission. Opt. Fiber Technol. 35, 108–117 (2017)CrossRefGoogle Scholar
  55. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, 32-core Dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line, in Optical Fiber Communications Conference and Exhibition. Th5C.3 (2016a)Google Scholar
  56. T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto, Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightwave Technol. 34(6), 1484–1493 (2016b)CrossRefGoogle Scholar
  57. T. Mizuno, K. Shibahara, F. Ye, Y. Sasaki, Y. Amma, K. Takenaga, Y. Jung, K. Pulverer, H. Ono, Y. Abe, et al., Long-haul dense space-division multiplexed transmission over low-crosstalk heterogeneous 32-core transmission line using a partial recirculating loop system. J. Lightwave Technol. 35(3), 488–498 (2017)CrossRefGoogle Scholar
  58. J. Moore, Shape sensing using multi-core fiber, in Optical Fiber Communications Conference and Exhibition (2015), pp. 1–3Google Scholar
  59. J.P. Moore, M.D. Rogge, Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt. Express 20(3), 2967–2973 (2012)CrossRefGoogle Scholar
  60. M. Morant, R. Llorente, Experimental demonstration of LTE-A M×4×4 MIMO radio-over-multicore fiber fronthaul, in Optical Fiber Communications Conference and Exhibition. Th4E.4 (2017a)Google Scholar
  61. M. Morant, R. Llorente, Reconfigurable radio-over-multicore optical fronthaul for seamless 2G, UMTS and LTE-A MIMO wireless provision, in Optical Fiber Communications Conference and Exhibition. W2A.43 (2017b)Google Scholar
  62. M. Morant, A. Macho, R. Llorente, Optical fronthaul of LTE-advanced MIMO by spatial multiplexing in multicore fiber, in Optical Fiber Communications Conference and Exhibition (2015), pp. 1–3Google Scholar
  63. M. Nakazawa, Giant leaps in optical communication technologies towards 2030 and beyond, in European Conference and Exhibition on Optical Communications (ECOC) (2010)Google Scholar
  64. A.V. Newkirk, J.E. Antonio-Lopez, G. Salceda-Delgado, M.U. Piracha, R. Amezcua-Correa, A. Schülzgen, Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photon. Technol. Lett. 27(14), 1523–1526 (2015)CrossRefGoogle Scholar
  65. H. Ono, K. Takenaga, K. Ichii, S. Matsuo, 12-core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module, in European Conference and Exhibition on Optical Communication (2013), pp. 1–3Google Scholar
  66. F. Peng, J. Yang, X. Li, Y. Yuan, B. Wu, A. Zhou, L. Yuan, In-fiber integrated accelerometer. Opt. Lett. 36(11), 2056–2058 (2011)CrossRefGoogle Scholar
  67. B.J. Puttnam, J. Sakaguchi, J.M. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link. Opt. Express 21(2), 1561–1566 (2013)CrossRefGoogle Scholar
  68. B.J. Puttnam, R.S. Luís, W. Klaus, J. Sakaguchi, J.M.D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb, in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3Google Scholar
  69. M.D. Rogge, J.P. Moore, Inventors; WO, Assignee, Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces. U.S. Parent 8, 746, 076, (10), (2014)Google Scholar
  70. R. Ryf, R. Essiambre, A.H. Gnauck, S. Randel, Space-division multiplexed transmission over 4200-km 3-core microstructured fiber, in Optical Fiber Communication Conference and Exposition (2012a), pp. 1–3Google Scholar
  71. R. Ryf, R.J. Essiambre, S. Randel, M.A. Mestre, C. Schmidt, P.J. Winzer, IEEE, Impulse response analysis of coupled-core 3-core fibers, in European Conference and Exhibition on Optical Communications (ECOC) (2012b)Google Scholar
  72. R. Ryf, N.K. Fontaine, B. Guan, R.J. Essiambre, 1705-km transmission over coupled-core fibre supporting 6 spatial modes, in European Conference and Exhibition on Optical Communications (ECOC) (2014a), pp. 1–3Google Scholar
  73. R. Ryf, N.K. Fontaine, M. Montoliu, S. Randel, S.H. Chang, H. Chen, S. Chandrasekhar, A.H. Gnauck, R.J. Essiambre, P.J. Winzer, et al., Space-division multiplexed transmission over 3×3 coupled-core multicore fiber, in Optical Fiber Communication Conference and Exposition (2014b)Google Scholar
  74. K. Saito, T. Sakamoto, T. Matsui, K. Nakajima, T. Kurashima, Side-view based angle alignment technique for multi-core fiber, in Optical Fiber Communications Conference and Exhibition. M3F.3 (2016)Google Scholar
  75. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, Multi-core hole-assisted fibers for high core density space division multiplexing, in Opto-Electronics and Communications Conference (2010), pp. 164–165Google Scholar
  76. J. Sakaguchi, W. Klaus, J.M. Delgado Mendinueta, B.J. Puttnam, R.S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, et al., Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber. J. Lightwave Technol. 34(1), 93–103 (2016)CrossRefGoogle Scholar
  77. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor, in Optical Fiber Communication Conference and Exposition. Th5A.2 (2016)Google Scholar
  78. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, et al., Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 μm. J. Lightwave Technol. 35(3), 443–449 (2017a)CrossRefGoogle Scholar
  79. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, K. Nakajima, Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems. Opt. Fiber Technol. 35, 8–18 (2017b)CrossRefGoogle Scholar
  80. G. Salceda-Delgado, A. Van Newkirk, J.E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, R. Amezcua Correa, Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber. Opt. Lett. 40(7), 1468–1471 (2015)CrossRefGoogle Scholar
  81. A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt. Express 21(14), 16777–16783 (2013)CrossRefGoogle Scholar
  82. L. Shen, L. Gan, Z. Dong, B. Li, D. Liu, S. Fu, W. Tong, M. Tang, End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photon. J. 9(2), 1–8 (2017)CrossRefGoogle Scholar
  83. O. Shimakawa, M. Shiozaki, T. Sano, A. Inoue, Pluggable fan-out realizing physical-contact and low coupling loss for multi-core fiber, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2013), pp. 1–3Google Scholar
  84. O. Shimakawa, H. Arao, M. Harumoto, T. Sano, Compact multi-core fiber fan-out with grin-lens and micro-lens array, in Optical Fiber Communications Conference and Exhibition (2014), pp. 1–3Google Scholar
  85. M. Silva-Lopez, C. Li, W.N. Macpherson, A.J. Moore, J.S. Barton, J.D. Jones, D. Zhao, L. Zhang, I. Bennion, Differential birefringence in Bragg gratings in multicore fiber under transverse stress. Opt. Lett. 29(19), 2225–2227 (2004)CrossRefGoogle Scholar
  86. A. Srinivasan, B. Snyder, N. Dan, G. Lepage, J. Park, J. Singer, J.V. Campenhout, M.S. Wlodawski, M. Pantouvaki, P.D. Heyn, Ultra-dense 16 × 56Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896Gb/s optical links, in Optical Fiber Communications Conference and Exhibition. Th1B.7 (2017)Google Scholar
  87. E. Tagoudi, K. Milenko, S. Pissadakis, Intercore coupling effects in multicore optical fiber tapers using magnetic fluid out-claddings. J. Lightwave Technol. 34(23), 5561–5565 (2016)CrossRefGoogle Scholar
  88. H. Takahashi, T. Tsuritani, E.L. de Gabory, T. Ito, W.R. Peng, K. Igarashi, K. Takeshima, Y. Kawaguchi, I. Morita, Y. Tsuchida, First demonstration of MC-EDFA-repeatered SDM transmission of 40 × 128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF. Opt. Express 21(1), 789–795 (2013)CrossRefGoogle Scholar
  89. H. Takahashi, K. Igarashi, T. Tsuritani, Long-haul transmission using multicore fibers, in Optical Fiber Communications Conference and Exhibition (2014), pp. 1–3Google Scholar
  90. H. Takara, T. Mizuno, H. Kawakami, Y. Miyamoto, H. Masuda, K. Kitamura, H. Ono, S. Asakawa, Y. Amma, K. Hirakawa, 120.7-Tb/s MCF-ROPA unrepeatered transmission of PDM-32QAM channels over 204 km. J. Lightwave Technol. 33(7), 1473–1478 (2015)CrossRefGoogle Scholar
  91. S. Takasaka, H. Matsuura, W. Kumagai, M. Tadakuma, Cladding-pumped seven-core EDFA using a multimode pump light coupler, in European Conference and Exhibition on Optical Communication (2013), pp. 1–3Google Scholar
  92. K. Takenaga, Multicore fiber with dual-ring structure, in Opto-Electronics and Communications Conference (2014), pp. 51–53Google Scholar
  93. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, M. Koshiba, A large effective area multi-core fiber with an optimized cladding thickness. Opt. Express 19(26), B543 (2011)CrossRefGoogle Scholar
  94. K. Takeshima, T. Tsuritani, Y. Tsuchida, K. Maeda, T. Saito, K. Watanabe, T. Sasa, K. Imamura, R. Sugizaki, K. Igarashi, 51.1-Tbit/s MCF transmission over 2,520 km using cladding pumped 7-core EDFAs, in Optical Fiber Communications Conference and Exhibition (2015), pp. 1–3Google Scholar
  95. M. Tang, Z. Zhao, L. Gan, H. Wu, R. Wang, B. Li, S. Fu, S. Liu, D. Liu, H. Wei, W. Tong, Spatial-division multiplexed optical sensing using MCF and FMF, in Specialty Optical Fibers (2016)Google Scholar
  96. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, D. Kracht, Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers. Opt. Express 20(27), 28125–28141 (2012)CrossRefGoogle Scholar
  97. Y. Tottori, T. Kobayashi, M. Watanabe, Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photon. Technol. Lett. 24(21), 1926–1928 (2012)CrossRefGoogle Scholar
  98. Y. Tottori, H. Tsuboya, T. Kobayashi, M. Watanabe, Integrated optical connection module for 7-core multi-core fiber and 7 single mode fibers. Paper presented at IEEE Photonics Society Summer Topical Meeting Series, 2013Google Scholar
  99. Y. Tsuchida, K. Maeda, K. Watanabe, K. Takeshima, T. Sasa, T. Saito, S. Takasaka, Y. Kawaguchi, T. Tsuritani, R. Sugizaki, Cladding pumped seven-core EDFA using an absorption-enhanced erbium doped fibre, in European Conference and Exhibition on Optical Communication (2016)Google Scholar
  100. H. Uemura, K. Omichi, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Fused taper type fan-in/fan-out device for 12 core multi-core fiber, in Opto-Electronics and Communications Conference (2014), pp. 49–50Google Scholar
  101. R.G.H. van Uden, R.A. Correa, E.A. Lopez, F.M. Huijskens, C. Xia, G. Li, A. Schulzgen, H. de Waardt, A.M.J. Koonen, C.M. Okonkwo, Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics 8(11), 865–870 (2014)CrossRefGoogle Scholar
  102. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, R. Amezcua-Correa, Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 41(4), 832–835 (2016)CrossRefGoogle Scholar
  103. J. Villatoro, E. Antoniolopez, A. Schülzgen, R. Amezcuacorrea, Miniature multicore optical fiber vibration sensor. Opt. Lett. 42(10), 2022 (2017)CrossRefGoogle Scholar
  104. R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, D. Liu, Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge. IEEE Photon. J. 9(99), 1 (2017)Google Scholar
  105. K. Watanabe, T. Saito, K. Imamura, Y. Nakayama, M. Shiino, Study of fusion splice for single-mode multicore fiber, in Microopics Conference (2011)Google Scholar
  106. T. Watanabe, M. Hikita, Y. Kokubun, Laminated polymer waveguide fan-out device for uncoupled multi-core fibers. Opt. Express 20(24), 26317–26325 (2012)CrossRefGoogle Scholar
  107. K. Watanabe, T. Saito, M. Shiino, Development of fiber bundle type fan-out for 19-core multicore fiber, in Opto-Electronics and Communications Conference (2014), pp. 44–46Google Scholar
  108. P.S. Westbrook, T. Kremp, K.S. Feder, W. Ko, E.M. Monberg, H. Wu, D.A. Simoff, T.F. Taunay, R.M. Ortiz, Continuous multicore optical fiber grating arrays for distributed sensing applications. J. Lightwave Technol. 1248–1252, 1 (2017)Google Scholar
  109. C. Xia, M.A. Eftekhar, R.A. Correa, J.E. Antonio-Lopez, A. Schulzgen, D. Christodoulides, G. Li, Supermodes in coupled multi-core waveguide structures. IEEE J. Sel. Top. Quantum Electron. 22(2), 196–207 (2016)CrossRefGoogle Scholar
  110. B. Yao, K. Ohsono, N. Shiina, K. Fukuzato, Reduction of crosstalk by hole-walled multi-core fibers, in Optical Fiber Communication Conference and Exposition (2012), pp. 1–3Google Scholar
  111. F. Ye, K. Saitoh, H. Takara, R. Asif, T. Morioka, High-count multi-core fibers for space-division multiplexing with propagation-direction interleaving, in Optical Fiber Communications Conference and Exhibition (2015), pp. 1–3Google Scholar
  112. K. Yoshida, A. Takahashi, T. Konuma, K. Sasaki, Fusion splicer for specialty optical fiber with advanced functions. Fujikura Tech. R., 41, 10–13 (2012)Google Scholar
  113. L. Yuan, J. Yang, Z. Liu, J. Sun, In-fiber integrated Michelson interferometer. Opt. Lett. 31(18), 2692 (2006)CrossRefGoogle Scholar
  114. L. Yuan, J. Yang, Z. Liu, A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE Sensors J. 8(7), 1114–1117 (2008)CrossRefGoogle Scholar
  115. X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination. Opt. Express 26(12), 15332–15342 (2018)CrossRefGoogle Scholar
  116. H. Zhang, Z. Wu, P.P. Shum, R. Wang, Q.D. Xuan, S. Fu, W. Tong, M. Tang, Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. 18(8), 085705 (2016)CrossRefGoogle Scholar
  117. C. Zhang, T. Ning, J. Li, L. Pei, C. Li, H. Lin, Refractive index sensor based on tapered multicore fiber. Opt. Fiber Technol. 33, 71–76 (2017a)CrossRefGoogle Scholar
  118. H. Zhang, Z. Wu, P.P. Shum, X.Q. Dinh, C.W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber. Sci. Rep. 7, 46633 (2017b)CrossRefGoogle Scholar
  119. H. Zhang, Z. Wu, P.P. Shum, X. Shao, R. Wang, X.Q. Dinh, S. Fu, W. Tong, M. Tang, Directional torsion and temperature discrimination based on a multicore fiber with a helical structure. Opt. Express 26(1), 544 (2018)CrossRefGoogle Scholar
  120. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P.P. Shum, D. Liu, All-solid multi-core fiber-based multipath Mach–Zehnder interferometer for temperature sensing. Appl. Phys. B Lasers Opt. 112(4), 491–497 (2013)CrossRefGoogle Scholar
  121. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P.P. Shum, D. Liu, Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt. Express 24(22), 25111–25118 (2016a)CrossRefGoogle Scholar
  122. Z. Zhao, M.A. Soto, M. Tang, L. Thévenaz, Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers, in Optical Sensors (2016b)Google Scholar
  123. Z. Zhao, M.A. Soto, M. Tang, L. Thévenaz, Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express 24(22), 25211 (2016c)CrossRefGoogle Scholar
  124. Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, D. Liu, Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt. Lett. 42(1), 171 (2017)CrossRefGoogle Scholar
  125. Z. Zhao, M. Tang, L. Wang, S. Fu, W. Tong, C. Lu, Enabling simultaneous DAS and DTS measurement through multicore fiber based space-division multiplexing, in Optical Fiber Communication Conference and Exposition. W2A.7 (2018)Google Scholar
  126. B. Zhu, T.F. Taunay, M.F. Yan, J.M. Fini, M. Fishteyn, E.M. Monberg, F.V. Dimarcello, Seven-core multicore fiber transmissions for passive optical network. Opt. Express 18(11), 11117–11122 (2010a)CrossRefGoogle Scholar
  127. B. Zhu, T.F. Taunay, M.F. Yan, M. Fishteyn, G. Oulundsen, D. Vaidya, 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010b)Google Scholar
  128. B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M.F. Yan, J.M. Fini, E.M. Monberg, F.V. Dimarcello, 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19(17), 16665–16671 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Wuhan National Lab for Optoelectronics (WNLO) and National Engineering Laboratory for Next Generation Internet Access System (NGIA), School of Optical and Electronic InformationHuazhong University of Science and Technology (HUST)WuhanChina

Section editors and affiliations

  • Perry Shum
    • 1
  • Zhilin Xu
  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations