Advertisement

Optical Fibers in Terahertz Domain

  • Georges HumbertEmail author
Reference work entry

Abstract

The terahertz (THz) frequency range spans between the microwave and the photonic domains. For more than 20 years, it is experiencing growing expansion justified by the new properties offered in telecommunication, spectroscopy, and imaging technologies, enabling numerous applications for today’s society needs. Similarly as the optical fibers in the optical domain, THz fibers are key components for realizing complex, compact, and robust systems that are required by THz applications. Nevertheless, the developments of THz fibers are hindered by the strong degradations of material properties at THz frequencies. These constraints require to investigate and to develop THz fibers with innovative and disruptive designs, which make the development of THz fibers challenging and very stimulating. Numerous strategies are inspired from the recent innovations in the field of specialty optical fibers. Since dry air is certainly the most favorable medium to propagate THz radiations. Two major approaches have been investigated. The first one is based on the propagation of THz waves into a fiber with a design that favors a large portion of evanescent field in air. The second way of beating these limits is by confining the THz waves in a hollow-core fiber with the help of reflectors in the fiber cladding. The main recent developments of THz fibers are presented in this chapter. The guiding mechanism of each THz fiber is detailed, in addition to a presentation of the recent experimental demonstrations and analyses of their drawbacks and advantageous properties.

Keywords

THz fiber THz waveguide Hollow-core fiber specialty optical fibers Photonic crystal fibers 

References

  1. Y. Abe, Y. Matsuura, Y.-W. Shi, Y. Wang, H. Uyama, M. Miyagi, Polymer-coated hollow fiber for CO2 laser delivery. Opt. Lett. 23, 89–90 (1998)CrossRefGoogle Scholar
  2. J. Anthony, R. Leonhardt, A. Argyros, M.C.J. Large, Characterization of a microstructured Zeonex terahertz fiber. J. Opt. Soc. Am. B 28(5), 1013–1018 (2011a)CrossRefGoogle Scholar
  3. J. Anthony, R. Leonhardt, S.G. Leon-Saval, A. Argyros, THz propagation in Kagome hollow-core microstructured fibers. Opt. Express 19, 18470–18478 (2011b)CrossRefGoogle Scholar
  4. S. Atakaramians, S. Afshar V, B.M. Fischer, D. Abbott, T.M. Monro, Porous fibers: a novel approach to low loss THz waveguides. Opt. Express 16(12), 8845–8854 (2008)CrossRefGoogle Scholar
  5. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, THz porous fibers: design, fabrication and experimental characterization. Opt. Express 17(16), 14053–15062 (2009)CrossRefGoogle Scholar
  6. H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20, 29507–29517 (2012)CrossRefGoogle Scholar
  7. H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Design and optimization of mechanically down-doped terahertz fiber directional couplers. Opt. Express 22, 9486–9497 (2014)CrossRefGoogle Scholar
  8. W. Belardi, J.C. Knight, Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 39, 1853–1856 (2014)CrossRefGoogle Scholar
  9. F. Benabid, J.C. Knight, G. Antonopoulos, P. St, J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002)CrossRefGoogle Scholar
  10. B. Bowden, J.A. Harrington, O. Mitrofanov, Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32, 2945–2947 (2007)CrossRefGoogle Scholar
  11. B. Bowden, J.A. Harrington, O. Mitrofanov, Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings. Appl. Phys. Lett. 93(18), 181104 (2008)CrossRefGoogle Scholar
  12. H.-C. Chang, C.-K. Sun, Subwavelength dielectric-fiber-based THz coupler. J. Lightwave Technol. 27(11), 1489–1495 (2009)CrossRefGoogle Scholar
  13. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, C.-K. Sun, Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett. 31, 308–310 (2006)CrossRefGoogle Scholar
  14. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, C.-K. Sun, Investigation on spectral loss characteristics of subwavelength terahertz fibers. Opt. Lett. 32, 1017–1019 (2007a)CrossRefGoogle Scholar
  15. H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, C.-K. Sun, in THz Fiber Directional Coupler. Proceedings of CLEO/QELS’2007, Baltimore (2007b)Google Scholar
  16. H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, C.-K. Sun, Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors. Opt. Express 19, 19523–19531 (2011)CrossRefGoogle Scholar
  17. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, C.-K. Sun, All-terahertz fiber-scanning near-field microscopy. Opt. Lett. 34, 1084–1086 (2009)CrossRefGoogle Scholar
  18. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, H. Han, Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. Opt. Express 16, 7–12 (2008)CrossRefGoogle Scholar
  19. F. Couny, F. Benabid, P. Roberts, P. Light, M. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs. Science 318(5853), 1118–1121 (2007)CrossRefGoogle Scholar
  20. P.D. Cunningham, N.N. Valdes, F.A. Vallejo, L.M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A.K. Jen, J.C. Williams, R.J. Twieg, Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109(4), 043505 (2011)CrossRefGoogle Scholar
  21. P. Doradla, C.S. Joseph, J. Kumar, R.H. Giles, Characterization of bending loss in hollow flexible terahertz waveguides. Opt. Express 20, 19176–19184 (2012)CrossRefGoogle Scholar
  22. M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49, 13 (1986)CrossRefGoogle Scholar
  23. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, M. Skorobogatiy, Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Opt. Express 17(10), 8012–8028 (2009)CrossRefGoogle Scholar
  24. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, M. Skorobogatiy, Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique. Opt. Express 18(13), 13813–13828 (2010)CrossRefGoogle Scholar
  25. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, M. Skorobogatiy, Transmission measurements of hollow-core THz Bragg fibers. J. Opt. Soc. Am. B 28, 896–907 (2011)CrossRefGoogle Scholar
  26. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)CrossRefGoogle Scholar
  27. Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, E.L. Thomas, Guiding optical light in air using an all-dielectric structure. J. Lightwave Technol. 17, 2039–2041 (1999)CrossRefGoogle Scholar
  28. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, J.-M. Blondy, Simplified hollow-core photonic crystal fiber. Opt. Lett. 35, 1157–1159 (2010)CrossRefGoogle Scholar
  29. H. Han, H. Park, M. Cho, J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80, 2634–2636 (2002)CrossRefGoogle Scholar
  30. J.A. Harrington, R. George, P. Pedersen, E. Mueller, Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt. Express 12, 5263–5268 (2004)CrossRefGoogle Scholar
  31. A. Hassani, A. Dupuis, M. Skorobogatiy, Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)CrossRefGoogle Scholar
  32. B. Hong, M. Swithenbank, N. Somjit, J. Cunningham, I. Robertson, Asymptotically single-mode small-core terahertz Bragg fibre with low loss and low dispersion. J. Phys. D. Appl. Phys. 50(4), 045104 (2017)CrossRefGoogle Scholar
  33. M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, J.D. Joannopoulos, An all-dielectric coaxial waveguide. Science 289, 415–419 (2000)CrossRefGoogle Scholar
  34. J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)CrossRefGoogle Scholar
  35. C.H. Lai, Y.C. Hsueh, H.W. Chen, Y.J. Huang, H.C. Chang, C.K. Sun, Low-index terahertz pipe waveguides. Opt. Lett. 34(21), 3457–3459 (2009)CrossRefGoogle Scholar
  36. C.H. Lai, B. You, J.Y. Lu, T.A. Liu, J.L. Peng, C.K. Sun, H.C. Chang, Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Opt. Express 18(1), 309–322 (2010)CrossRefGoogle Scholar
  37. C.-H. Lai, T. Chang, Y.-S. Yeh, Characteristics of bent terahertz antiresonant reflecting pipe waveguides. Opt. Express 22, 8460–8472 (2014)CrossRefGoogle Scholar
  38. J. Li, K. Nallappan, H. Guerboukha, M. Skorobogatiy, 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Opt. Express 25, 4126–4144 (2017)CrossRefGoogle Scholar
  39. J. Lou, L. Tong, Z. Ye, Modeling of silica nanowires for optical sensing. Opt. Express 13, 2135–2140 (2005)CrossRefGoogle Scholar
  40. W. Lu, A. Argyros, Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J. Lightwave Technol. 32(23), 4019–4025 (2014)Google Scholar
  41. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, C.-K. Sun, THz interferometric imaging using subwavelength plastic fiber based THz endoscopes. Opt. Express 16, 2494–2501 (2008)CrossRefGoogle Scholar
  42. J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, C.-K. Sun, Bending loss of terahertz pipe waveguides. Opt. Express 18, 26332–26338 (2010)CrossRefGoogle Scholar
  43. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, I.-J. Chen, Y.-J. Hwang, H.-c. Chang, C.-K. Sun, Terahertz polarization-sensitive rectangular pipe waveguides. Opt. Express 19, 21532–21539 (2011a)CrossRefGoogle Scholar
  44. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-c. Chang, C.-K. Sun, Terahertz pipe-waveguide-based directional couplers. Opt. Express 19, 26883–26890 (2011b)CrossRefGoogle Scholar
  45. W. Lu, S. Lou, A. Argyros, Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation. IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016)CrossRefGoogle Scholar
  46. T. Ma, A. Markov, L. Wang, M. Skorobogatiy, Graded index porous optical fibers – dispersion management in terahertz range. Opt. Express 23, 7856–7869 (2015)CrossRefGoogle Scholar
  47. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, M. Skorobogatiy, Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz. J. Opt. Soc. Am. B 29, 2116–2123 (2012)CrossRefGoogle Scholar
  48. R.W. McGowan, G. Gallot, D. Grischkowsky, Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt. Lett. 24, 1431–1433 (1999)CrossRefGoogle Scholar
  49. O. Mitrofanov, J.A. Harrington, Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion. Opt. Express 18(3), 1898–1903 (2010)CrossRefGoogle Scholar
  50. M. Miyagi, A. Hongo, S. Kawakami, Design theory of dielectric coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. LT-2, 116–126 (1984)CrossRefGoogle Scholar
  51. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 102(4), 043517 (2007)CrossRefGoogle Scholar
  52. M. Navarro-Cía, M.S. Vitiello, C.M. Bledt, J.E. Melzer, J.A. Harrington, O. Mitrofanov, Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5–5 THz band. Opt. Express 21, 23748–23755 (2013)CrossRefGoogle Scholar
  53. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, J.-M. Blondy, Broadband terahertz transmission within the air channel of thin-wall pipe. Opt. Lett. 36, 1782–1784 (2011)CrossRefGoogle Scholar
  54. K. Nielsen, H.K. Rasmussen, A.J.L. Adam, P.C.M. Planken, O. Bang, P.U. Jepsen, Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2009)CrossRefGoogle Scholar
  55. K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Porous-core honeycomb bandgap THz fiber. Opt. Lett. 36(5), 666–668 (2011)CrossRefGoogle Scholar
  56. G.J. Pearce, G.S. Wiederhecker, C.G. Poulton, S. Burger, P. St, J. Russell, Models for guidance in Kagome-structured hollow-core photonic crystal fibers. Opt. Express 15, 12680–12685 (2007)CrossRefGoogle Scholar
  57. F. Poletti, Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014)CrossRefGoogle Scholar
  58. A.D. Pryamikov, A.S. Biriukov, A.F. Kosolapov, V.G. Plotnichenko, S.L. Semjonov, E.M. Dianov, Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm. Opt. Express 19(2), 1441–1448 (2011)CrossRefGoogle Scholar
  59. M. Rozé, B. Ung, A. Mazhorova, M. Walther, M. Skorobogatiy, Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Opt. Express 19, 9127–9138 (2011)CrossRefGoogle Scholar
  60. P.S.J. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)CrossRefGoogle Scholar
  61. V. Setti, L. Vincetti, A. Argyros, Flexible tube lattice fibers for terahertz applications. Opt. Express 21, 3388–3399 (2013)CrossRefGoogle Scholar
  62. M. Skorobogatiy, A. Dupuis, Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90, 113514 (2007)CrossRefGoogle Scholar
  63. A.W. Snyder, J. Love, Optical Waveguide Theory (Springer, Norwell, 1983). ISBN 978-0-412-09950-2, 738. HardcoverGoogle Scholar
  64. M. Sumetsky, How thin can a microfiber be and still guide light? Opt. Lett. 31, 870–872 (2006)CrossRefGoogle Scholar
  65. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, M. Miyagi, Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film. Opt. Lett. 34, 2231–2233 (2009)CrossRefGoogle Scholar
  66. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)CrossRefGoogle Scholar
  67. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, M. Skorobogatiy, High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. J. Opt. Soc. Am. B 28, 917–921 (2011a)CrossRefGoogle Scholar
  68. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, M. Skorobogatiy, Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19, B848–B861 (2011b)CrossRefGoogle Scholar
  69. L. Vincetti, Single-mode propagation in triangular tube lattice hollow-core terahertz fiber. Opt. Commun. 283, 979–984 (2010)CrossRefGoogle Scholar
  70. L. Vincetti, V. Setti, Waveguiding mechanism in tube lattice fibers. Opt. Express 18(22), 23133–23146 (2010)CrossRefGoogle Scholar
  71. L. Vincetti, V. Setti, M. Zoboli, Terahertz tube lattice fibers with octagonal symmetry. IEEE Photon. Technol. Lett. 22, 972–974 (2010)CrossRefGoogle Scholar
  72. M.S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H.E. Beere, D.A. Ritchie, Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide. J. Appl. Phys. 110, 063112 (2011)CrossRefGoogle Scholar
  73. Y.Y. Wang, N.V. Wheeler, F. Couny, P.J. Roberts, F. Benabid, Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011)CrossRefGoogle Scholar
  74. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express 15, 11952–11958 (2007)CrossRefGoogle Scholar
  75. D.S. Wu, A. Argyros, S.G. Leon-Saval, Reducing the size of hollow terahertz waveguides. J. Lightwave Technol. 29(1), 97–103 (2011)CrossRefGoogle Scholar
  76. M. Xiao, J. Liu, W. Zhang, J. Shen, Y. Huang, THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique. Opt. Commun. 298–299, 101–105 (2013a)CrossRefGoogle Scholar
  77. M. Xiao, J. Liu, W. Zhang, J. Shen, Y. Huang, Self-supporting polymer pipes for low loss single-mode THz transmission. Opt. Express 21, 19808–19815 (2013b)CrossRefGoogle Scholar
  78. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, W. Liu, 3D printed low-loss THz waveguide based on Kagome photonic crystal structure. Opt. Express 24, 22454–22460 (2016)CrossRefGoogle Scholar
  79. B. You, J.-Y. Lu, Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide. Opt. Express 24, 18013–18023 (2016)CrossRefGoogle Scholar
  80. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, J.-L. Peng, Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides. Opt. Express 18, 19353–19360 (2010a)CrossRefGoogle Scholar
  81. B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, Subwavelength plastic wire terahertz time-domain spectroscopy. Appl. Phys. Lett. 96, 051105 (2010b)CrossRefGoogle Scholar
  82. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, J.-L. Peng, Terahertz refractive index sensors using dielectric pipe waveguides. Opt. Express 20, 5858–5866 (2012)CrossRefGoogle Scholar
  83. L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express 16, 13349–13353 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.XLIM Research Institute, UMR 7252 CNRS, University of LimogesLimogesFrance

Section editors and affiliations

  • Perry Shum
    • 1
  • Zhilin Xu
  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations