Advertisement

Materials Development for Advanced Optical Fiber Sensors and Lasers

  • Peter DragicEmail author
  • John Ballato
Reference work entry

Abstract

Beyond their utility for all modern communications, glass optical fibers are of significant additional present and future value for defense, sensor, and manufacturing systems. However, the extreme commercial scale of communication optical fibers has relegated these special applications to a niche dual-use industry. Accordingly, optical fibers are variations on a commercial theme and, generally, do not adequately address more extreme performance defense and sensor demands. Making matters worse, the majority of present global research into optical fibers has focused on geometric microstructuring in order to force the light to behave counter its natural inclinations. As a result, today’s “highest-performance” microstructured optical fibers (MOFs) and photonic crystal fibers (PCFs) are remarkably complex in their structures. Accordingly, their costs are significant and their availability is limited.

This chapter reviews the state of knowledge of next-generation optical fibers whose properties arise from attacking performance limitations at their fundamental origin: the interaction of the light with the material through which it propagates. The chapter is divided into two general themes: (1) intrinsically low optical nonlinearities of critical need for high-power and narrow line-width laser applications and (2) novel material effects of interest to sensing. In each case, the material considerations are first introduced, followed by a literature survey of some best results to date. A discussion then is provided that relates to the impact of such materially engineered fibers on specific laser and sensor applications followed by opportunities for further research.

References

  1. G.P. Agrawal, Nonlinear fibre optics (1995)Google Scholar
  2. J. Ballato, P. Dragic, Rethinking optical fibre: new demands, old glasses. J. Am. Ceram. Soc. 96, 2675 (2013)CrossRefGoogle Scholar
  3. J. Ballato, P. Dragic, Materials development for next generation optical fibre. Materials 7, 4411 (2014)CrossRefGoogle Scholar
  4. J. Ballato, P. Dragic, Glass: the carrier of light – a history of optical fibre. Int. J. Appl. Glas. Sci. 7, 413 (2016)CrossRefGoogle Scholar
  5. J. Ballato, E. Snitzer, Appl. Opt. 34, 6848 (1995)CrossRefGoogle Scholar
  6. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, M.J. Matthewson, On the fabrication of all-glass optical fibres from crystals. J. Appl. Phys. 105, 053110 (2009)CrossRefGoogle Scholar
  7. A. Ballato, P. Dragic, S. Martin, J. Ballato, On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate glass optical fibres, part II: acoustic properties of alumina and silica polymorphs, and approximations of the glassy state. Int. J. Appl. Glas. Sci. 7, 11 (2016)CrossRefGoogle Scholar
  8. X. Bao, L. Chen, Recent progress in distributed fibre optic sensors. Sensors 12, 8601 (2012)CrossRefGoogle Scholar
  9. N. Boling, A. Glass, A. Owyoung, Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE. J. Quant. Electron. 14, 601 (1978)CrossRefGoogle Scholar
  10. A. Boskovic, S.V. Chernikov, J.R. Taylor, L. Gruner-Nielsen, O.A. Levring, Direct continuous-wave measurement of n2 in various types of telecommunication fibre at 1.55 μm. Opt. Lett. 21, 1966 (1996)CrossRefGoogle Scholar
  11. P. Bourdon, L. Lombard, A. Durécu, J. Le Goüet, D. Goular, C. Planchat, Coherent combining of fibre lasers. Proc. SPIE 10254, 1025402–1025401 (2017)CrossRefGoogle Scholar
  12. M. Cavillon, P. Dragic, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. Hawkins, P. Dragic, J. Ballato, Properties of alkaline earth aluminosilicate glass optical fibres. J. Lightwave Technol. 34, 1435 (2016)CrossRefGoogle Scholar
  13. J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, J.E. Heebner, C.W. Siders, C.P.J. Barty, Analysis of the scalability of diffraction-limited fibre lasers and amplifiers to high average power. Opt. Express 16, 13240 (2008)CrossRefGoogle Scholar
  14. L. Dong, Stimulated thermal Rayleigh scattering in optical fibres. Opt. Express 21, 2642 (2013)CrossRefGoogle Scholar
  15. L. Dong, B. Samson, Fibre Lasers. Basics, Technology, and Application (CRC Press, Taylor and Francis, Boca Raton, 2017)Google Scholar
  16. P. Dragic, Brillouin gain reduction via B2O3 doping. J. Lightwave. Technol. 29, 967 (2011)CrossRefGoogle Scholar
  17. P. Dragic, J. Ballato, Characterization of the Raman gain spectra in Yb: YAG-derived optical fibres. Electron. Lett. 49, 895 (2013)CrossRefGoogle Scholar
  18. P. Dragic, J. Ballato, 120 years of optical glass property calculations: from the law of mixtures and the birth of glass science to mixing the unmixable. Opt. Photon. News. 25, 44 (2014)CrossRefGoogle Scholar
  19. P. Dragic, B. Ward, Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis. IEEE Photon. Technol. Lett. 22, 1698 (2010)CrossRefGoogle Scholar
  20. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, P. Foy, Brillouin spectroscopy of YAG-derived optical fibres. Opt. Express 18, 10055 (2010)CrossRefGoogle Scholar
  21. P. Dragic, T. Hawkins, S. Morris, J. Ballato, Sapphire-derived all-glass optical fibres. Nat. Photon. 6, 629 (2012)CrossRefGoogle Scholar
  22. P. Dragic, J. Ballato, S. Morris, T. Hawkins, Pockels’ coefficients of alumina in aluminosilicate optical fibre. J. Opt. Soc. Am. B 30, 244 (2013a)CrossRefGoogle Scholar
  23. P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, J. Ballato, Brillouin spectroscopy of a novel baria-doped silica glass optical fibre. Opt. Express 21, 10924 (2013b)CrossRefGoogle Scholar
  24. P. Dragic, J. Ballato, S. Morris, T. Hawkins, The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibres. Opt. Mater. 35, 1627 (2013c)CrossRefGoogle Scholar
  25. P. Dragic, D. Litzkendorf, C. Kucera, J. Ballato, K. Schuster, Brillouin scattering properties of lanthano-aluminosilicate-core optical fibre. Appl. Opt. 53, 5660 (2014)CrossRefGoogle Scholar
  26. P. Dragic, C. Ryan, C. Kucera, M. Cavillon, M. Tuggle, R. Stolen, J. Ballato, Single- and few-moded lithium aluminosilicate optical fibre for athermal Brillouin strain sensing. Opt. Lett. 40, 5030 (2015)CrossRefGoogle Scholar
  27. P. Dragic, M. Pamato, V. Iordache, J. Ballato, C. Kucera, M. Jones, T. Hawkins, J. Ballato, Athermal distributed Brillouin sensors utilizing all-glass optical fibres fabricated from rare earth garnets: LuAG. New J. Phys. 18, 015004 (2016a)CrossRefGoogle Scholar
  28. P. Dragic, S. Martin, A. Ballato, J. Ballato, On the anomalously strong dependence of the acoustic velocity of alumina on temperature in aluminosilicate optical fibres – Part I: Material modeling and experimental validation. Int. J. Appl. Glas. Sci. 7, 3 (2016b)CrossRefGoogle Scholar
  29. J.W. Fleming, Dispersion in GeO2-SiO2 glasses. Appl. Opt. 23, 4486 (1984)CrossRefGoogle Scholar
  30. T. Fujii, T. Fukuchi (eds.), Laser Remote Sensing (CRC Press, Taylor and Francis, Boca Raton, 2005)Google Scholar
  31. J. Hecht, High-power lasers: fibre lasers drill for oil. Laser Focus. World 12, 27 (2012)Google Scholar
  32. E. Honea, R.S. Afzal, M. Savage-Leuchs, N. Gitkind, R. Humphreys, J. Henrie, K. Brar, D. Jander, Spectrally beam combined fibre lasers for high power, efficiency and brightness. Proc. SPIE 8601, 860115–860111 (2013)CrossRefGoogle Scholar
  33. C. Jauregui, J. Limpert, A. Tünnermann, High-power fibre lasers. Nat. Photonics 7, 861 (2013)CrossRefGoogle Scholar
  34. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, Simulating and designing Brillouin gain spectrum in single-mode fibres. J. Lightwave Technol. 22, 631 (2004)CrossRefGoogle Scholar
  35. P.-C. Law, A. Croteau, P. Dragic, Acoustic coefficients of P2O5-doped silica fibre: the strain-optic and strain-acoustic coefficients. Opt. Mater. Express 2, 391 (2012)CrossRefGoogle Scholar
  36. J.P. Leidner, J.R. Marciante, The impact of thermal mode instability on core diameter scaling in high-power fibre amplifiers, CLEO 2016, paper SM4Q.2Google Scholar
  37. A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, P. Dragic, J. Ballato, Spinel-derived single mode optical fibre. Opt. Mater. Express 3, 511 (2013)CrossRefGoogle Scholar
  38. K. Nakajima, M. Ohashi, Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibres. IEEE Photon. Technol. Lett. 14, 492 (2002)CrossRefGoogle Scholar
  39. J.W. Nicholson, A. DeSantolo, M.F. Yan, P. Wisk, B. Mangan, G. Puc, A.W. Yu, M.A. Stephen, High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fibre amplifier. Opt. Express 24, 19961 (2016)CrossRefGoogle Scholar
  40. D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fibre lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63 (2010)CrossRefGoogle Scholar
  41. C. Ryan, P. Dragic, J. Furtick, C.J. Kucera, R. Stolen, J. Ballato, Pockels coefficients in multicomponent oxide glasses. Int. J. Appl. Glas. Sci. 6, 387 (2015)CrossRefGoogle Scholar
  42. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, H. Bartelt, Adv. Opt. Technol. 3, 447 (2014)Google Scholar
  43. R.G. Smith, Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489 (1972)CrossRefGoogle Scholar
  44. A.V. Smith, J.J. Smith, A comparison of mode instability in Yb- and Tm-doped fibre amplifiers. Proc. SPIE 9728, 97280C–972801 (2016)Google Scholar
  45. T. Taru, J. Hou, J.C. Knight, Raman gain suppression in all-solid photonic bandgap fibre, in European Conference and Exhibition on Optical Communication 2007 (Berlin 2007), paper 7.1.1Google Scholar
  46. M.B. Volf, Mathematical Approach to Glass (Elsevier Science Publishers, Amsterdam, 1988)Google Scholar
  47. U. Wandinger, in Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere, ed. by C. Weitkamp (Ed), (Springer, Berlin, 2005), p. 1Google Scholar
  48. J.O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burgner, A. Yariv, 1.6 kW Yb fibre amplifier using chirped seed amplification for stimulated Brillouin scattering suppression. Appl. Opt. 56, B116 (2017)CrossRefGoogle Scholar
  49. A. Winkelmann, O. Schott, Uber die Elastizität und Uber die Zugund Druckfestigkeit Verschiedener Neuer Gläser in Ihrer Abhängigkeit von der Chemischen Zusammensetzung. Ann. Phys. (Berlin) 287(697) (1894)CrossRefGoogle Scholar
  50. M. Zervas, C. Codemard, High power fiber lasers: a review. IEEE J. Sel. Top. Quant. Electron. 20, 219 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Center for Optical Materials Science and Engineering Technologies (COMSET) and the Department of Materials Science and EngineeringClemson UniversityClemsonUSA

Section editors and affiliations

  • John Canning
    • 1
    • 2
    • 3
  1. 1.Faculty of Engineering.University of New South Wales (UNSW)SydneyAustralia
  2. 2.Australian Sensing and Identification Systems Pty. Ltd.SydneyAustralia
  3. 3.School of Computing and CommunicationsUniversity of Technology SydneySydneyAustralia

Personalised recommendations