Optical Fiber Sensor Network and Industrial Applications

  • Qizhen SunEmail author
  • Zhijun Yan
  • Deming Liu
  • Lin Zhang
Reference work entry


For many of sensing applications, multiplexed sensor networks which can map the sensing signal of a large structure or surveying at complex conditions are required, greatly promoting the development of the fiber optic sensor network with large capacity. In this chapter, three typical fiber optic sensor networks and their applications will be introduced. Firstly, the ultra-weak fiber Bragg grating (UWFBG) sensor networks with ultra-large capacity for quasi-distributed and continuous distributed sensing in a single fiber link are investigated, which is realized by the multiplexing of UWFBGs or UWFBG based Fabry-Parot interferometers (FPI). Secondly, special fiber grating sensor networks with advanced functions and competitive performances, including the tilted fiber grating (TFG) sensors or distributed Bragg grating fiber laser (DBRFL) sensors multiplexed in a single fiber, are investigated. Thirdly, fiber optic sensors passive optical networks (SPON) with good adaptability, high extendibility, and great flexibility are comprehensively studied, which includes the star topology SPON and the tree topology SPON for colored sensors and colorless sensors accessing. For each type of sensor network, the sensor structures, networking mechanisms, system architectures, demodulation methods, and typical sensing performances are systematically discussed. Moreover, the developed systems or equipment and field tests for a wide range of commercial and industrial applications, especially for resource exploration, geophysics, infrastructure, medical diagnosis, food quality, and security control, are presented.


Fiber optic sensor network Fiber grating sensor network Fiber optic distributed sensing Senor passive optical network 


  1. F. Ai, Q. Sun, W. Zhang, T. Liu, Z. Yan, D. Liu, in Optical Fiber Communication Conference, OSA Technical Digest, San Diego, California (2017)Google Scholar
  2. F. Ai, H. Li, T. He, Z. Yan, D. Liu, Q. Sun, in Optical Fiber Communication Conference, OSA Technical Digest, San Diego, California (2018)Google Scholar
  3. A.P. Avolio, M. Butlin, A. Walsh, Physiol. Meas. 31, 1 (2009)CrossRefGoogle Scholar
  4. M. Cecconi, A. Rhodes, J. Poloniecki, A. Rhodes, Crit. Care 13, 1 (2009)Google Scholar
  5. J.W. Cheng, Q.Z. Sun, F. Ai, Y.Y. Luo, W. Zhang, X.L. Li, D.M. Liu, IEEE Photonics J. 10, 3 (2018)Google Scholar
  6. E. Cleve, E. Bach, E. Schollmeyer, Anal. Chim. Acta 420, 143–247 (2000)Google Scholar
  7. ElectroniCast Consultants (2017). Accessed May 2017
  8. R.W. Fallon, in Doctoral Dissertation, ed. by R.W. Fallon (Aston University, 2000), p. 18Google Scholar
  9. C.Z. Fan, F. Ai, Y.J. Liu, Z.J. Xu, G. Wu, W. Zhang, C. Liu, Z.J. Yan, D.M. Liu, Q.Z. Sun, in Optical Fiber Communication Conference, OSA Technical Digest San Diego, California (2019)Google Scholar
  10. T. Fu, Y. Liu, K.T. Lau, J. Leng, Compos. Part B-Eng. 66, 420–429 (2014)Google Scholar
  11. B.O. Guan, X.S. Sun, Y.N. Tan, in European Workshop on Optical Fibre Sensors, Porto, Portugal 76530Z (2010)Google Scholar
  12. T. Guo, A.C. Wong, W.S. Liu, B.O. Guan, C. Lu, H.Y. Tam, Opt. Express 19, 3 (2011)Google Scholar
  13. J. Harrison, S. Foster, in Optical Sensors 2017, New Orleans, Louisiana (2017)Google Scholar
  14. C.Y. Hu, H.Q. Wen, W. Bai, J. Lightwave Technol. 32, 7 (2014)Google Scholar
  15. M. Jamrógiewicz, J. Pharm. Biomed. Anal. 66, 7 (2012)CrossRefGoogle Scholar
  16. L. Jin, Y.Z. Liang, M.P. Li, L.H. Cheng, J. Li, B.O. Guan, J. Lightwave Technol. 32, 22 (2014)CrossRefGoogle Scholar
  17. P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, Nat. Commun. 9, 2509 (2018)CrossRefGoogle Scholar
  18. Y. Kim, Y. Noh, K. Kim, IEEE Commun. Lett. 21, 11 (2017)Google Scholar
  19. X.L. Li, Q.Z. Sun, D. Liu, R.B. Liang, J.J. Zhang, J.H. Wo, P.P. Shum, D.M. Liu, Opt. Express 20, 11 (2012a)Google Scholar
  20. X.L. Li, Q.Z. Sun, J.H. Wo, M.L. Zhang, D.M. Liu, J. Lightwave Technol. 30, 8 (2012b)Google Scholar
  21. D.M. Liu, Q.Z. Sun, P. Lu, L. Xia, C.T. Sima, Photon. Sens. 6, 1 (2016)CrossRefGoogle Scholar
  22. T. Liu, D.D. Lv, Y.Y. Luo, W.G. Lu, Z.J. Yan, K. Wang, C.Q. Li, D.M. Liu, Q.Z. Sun, in Conference on Lasers and Electro-Optics, San Jose, California (2018)Google Scholar
  23. M. Manley, Chem. Soc. Rev. 43, 24 (2014)CrossRefGoogle Scholar
  24. A. Mateeva, J. Lopez, H. Potters, J. Mestayer, B. Cox, D. Kiyashchenko, Geophys. Prospect. 62, 4 (2014)CrossRefGoogle Scholar
  25. G.E. McVeigh, C.W. Bratteli, D.J. Morgan, C.M. Alinder, S.P. Glasser, S.M. Finkelstein, J.N. Cohn, Hypertension 33, 6 (1999)CrossRefGoogle Scholar
  26. A. Menditto, M. Patriarca, B. Magnusson, Accred. Qual. Assur. 12, 1 (2007)CrossRefGoogle Scholar
  27. S.V. Miridonov, M.G. Shlyagin, D. Tentori, Fiber Optic. Laser Sens. Appl. 3541, 33–40 (1998)Google Scholar
  28. S. Ni, H. Kanamori, D. Helmberger, Nature 434, 582 (2005)CrossRefGoogle Scholar
  29. S. Samo, D.A. Carlson, D.L. Gregory, S.H. Gawel, J.E. Pandolfino, P.J. Kahrilas, Clinical Gastroenterology and Hepatology 15, 3 (2016)Google Scholar
  30. B.S. Song, in System-Level Techniques for Analog Performance Enhancement, ed. by B. S. S. By, (Springer, Cham, 2016), pp. 195–225Google Scholar
  31. Q.Z. Sun, J.H. Wo, H. Wang, D.M. Liu, in Proceedings of SPIE, Conference on Optical Fiber Sensors San Diego, California (2014)Google Scholar
  32. Q.Z. Sun, F. Ai, D.M. Liu, J.W. Cheng, H.B. Luo, K. Peng, Y.Y. Luo, Z.J. Yan, P.P. Shum, Sci. Rep. 7, 41137:1–8 (2017)Google Scholar
  33. M. Vidakovic, I. Armakolas, T. Sun, J. Carlton, K.T.V. Grattan, J. Lightwave Technol. 34, 18 (2016)Google Scholar
  34. Z. Wang, H.Q. Wen, C.Y. Hu, W. Bai, Y.T. Dai, Chin. Opt. Lett. 14, 1 (2016)Google Scholar
  35. J.Y. Wang, F. Ai, J.W. Cheng, W. Zhang, Z.J. Yan, D.M. Liu, Q.Z. Sun, IEEE Photonic. Tech. Lett. 30, 18 (2018a)Google Scholar
  36. J.Y. Wang, F. Ai, Q.Z. Sun, T. Liu, H. Li, Z.J. Yan, D.M. Liu, Opt. Express 26, 19 (2018b)CrossRefGoogle Scholar
  37. J.H. Wo, M. Jiang, M.X. Malnou, Q.Z. Sun, J.J. Zhang, P.P. Shum, D.M. Liu, Opt. Express 20, 3 (2012)CrossRefGoogle Scholar
  38. J.H. Wo, H. Wang, Q.Z. Sun, P.P. Shum, D.M. Liu, J. Biomed. Opt. 19, 1 (2014)CrossRefGoogle Scholar
  39. T. Woodcock, C. O’Donnell, G. Downey, J. Near Infrared Spectrosc. 16, 1 (2008)CrossRefGoogle Scholar
  40. T. Yamate, G. Fujisawa, T. Ikegami, J. Lightwave Technol. 35, 16 (2017)CrossRefGoogle Scholar
  41. Z. Yan, C. Mou, K. Zhou, X. Chen, L. Zhang, J. Lightwave Technol. 29, 18 (2011)CrossRefGoogle Scholar
  42. Z. Yan, A. Adebayo, K. Zhou, L. Zhang, H. Fu, D. Robinson, Opt. Photonics J. 3, 5 (2013)CrossRefGoogle Scholar
  43. M.H. Yang, W. Bai, H.Y. Guo, H.Q. Wen, H.H. Yu, D.S. Jiang, Photonic Sens 6, 1 (2016)CrossRefGoogle Scholar
  44. M.L. Zhang, Q.Z. Sun, Z. Wang, X.L. Li, H.R. Liu, D.M. Liu, Opt. Commun. 285, 13–14 (2012a)CrossRefGoogle Scholar
  45. Y. Zhang, X. Xie, H. Xu, Opto-Electron. Eng. 39, 8 (2012b)Google Scholar
  46. W. Zhang, X.L. Ni, J.Y. Wang, F. Ai, Y.Y. Luo, Z.J. Yan, D.M. Liu, Q.Z. Sun, J. Lightwave Technol. (2019). Accepted to be publishedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Optical and Electronic Information, Next Generation Internet Access National Engineering Laboratory (NGIAS)Huazhong University of Science and TechnologyWuhanP. R. China
  2. 2.Aston Institute of Photonic TechnologiesAston UniversityBirminghamUK

Section editors and affiliations

  • T. Sun
    • 1
  1. 1.City, University of LondonLondonUK

Personalised recommendations