Shock Waves

  • Stefano TrilloEmail author
  • Matteo Conforti
Reference work entry


We discuss the physics of shock waves with special emphasis on the phenomena related to the field of nonlinear fiber optics. We first introduce the general mechanism commonly known as gradient catastrophe and the related concept of classical shock waves. Then we proceed to discuss the possible regularization mechanisms of the shock, and in particular the dispersive regularization, which is behind the formation of dispersive shock waves in fibers. We then discuss different possible scenarios that lead to observe the formation of dispersive shock waves in fibers, such as pulse propagation, four-wave mixing, and passive resonators, also showing that fibers allow for investigating the dispersive regime of classical problems related to the physics of shock such as the dam-break problem and the propagation of Riemann waves. We also discuss the phase-matching mechanism that induces the shock to efficiently radiate resonant radiation in the normal dispersion regime. Throughout the text we refer to the mathematical models and the approaches that are employed to describe such phenomena.


  1. G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic, New York, 2013)Google Scholar
  2. G.P. Agrawal, C. Headley III, Kink solitons and optical shocks in dispersive nonlinear media. Phys. Rev. A 46, 1573 (1992)CrossRefGoogle Scholar
  3. S.A. Akhmanov, D.P. Krindach, A.V. Migulin, A.P. Sukhorukov, R.V. Khokhlov, Thermal self-action of laser beams. IEEE J. Quantum Electron. QE-4, 568 (1968)CrossRefGoogle Scholar
  4. N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995)Google Scholar
  5. D. Anderson, S. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)CrossRefGoogle Scholar
  6. D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9, 1358 (1992)CrossRefGoogle Scholar
  7. G. Biondini, Y. Kodama, On the Whitham equations for the defocusing nonlinear Schrödinger equation with step initial data. J. Nonlinear Sci. 16, 435–481 (2006)CrossRefGoogle Scholar
  8. D. Bohm, D.J. Hiley, Measurement understood through the quantum potential approach. Found. Phys. 14, 255 (1984)CrossRefGoogle Scholar
  9. D. Cai, A.R. Bishop, N. Gronbech-Jensen, B. Malomed, Dark shock waves in the nonlinear Schrödinger system with internal losses. Phys. Rev. Lett. 78, 223 (1997)CrossRefGoogle Scholar
  10. M. Conforti, S. Trillo, Dispersive wave emission from wave breaking. Opt. Lett. 38, 3815–3818 (2013)CrossRefGoogle Scholar
  11. M. Conforti, F. Baronio, S. Trillo, Resonant radiation shed by dispersive shock waves. Phys. Rev. A 89, 013807 (2014)CrossRefGoogle Scholar
  12. M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, Parametric excitation of multiple resonant radiations from localized wavepackets. Sci. Rep. 5, 9433 (2015)CrossRefGoogle Scholar
  13. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, S. Trillo, Observation of a gradient catastrophe generating solitons. Phys. Rev. Lett. 102, 083902 (2009)CrossRefGoogle Scholar
  14. C. Conti, S. Stark, P.S.J. Russell, F. Biancalana, Multiple hydrodynamical shocks induced by the Raman effect in photonic crystal fibres. Phys. Rev. A 82, 013838 (2010)CrossRefGoogle Scholar
  15. F. Demartini, C.H. Townes, T.K. Gustafson, P.L. Kelley, Self-steepening of light pulses. Phys. Rev. 164, 312 (1967)CrossRefGoogle Scholar
  16. B. Dubrovin, S. Novikov, The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogoliubov-Whitham averaging method. Akademiia Nauk SSSR, Doklady 270, 781–785 (1983)Google Scholar
  17. B. Dubrovin, T. Grava, C. Klein, A. Moro, On critical behaviour in systems of Hamiltonian partial differential equations. J. Nonlinear Sci. 25, 631–707 (2015)CrossRefGoogle Scholar
  18. G.A. El, M.A. Hoefer, Dispersive shock waves and modulation theory. Physica D 333, 11 (2016)CrossRefGoogle Scholar
  19. G.A. El, V.V. Geogjaev, A.V. Gurevich, A.L. Krylov, Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87, 186–192 (1995)CrossRefGoogle Scholar
  20. J. Fatome, C. Finot, G. Millot, A. Armaroli, S. Trillo, Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X 4, 021022 (2014)Google Scholar
  21. E. Fermi, J. Pasta, S. Ulam, in Collected Papers of Enrico Fermi, vol. 2, ed. by E. Segré (The University of Chicago, Chicago, 1965), pp. 977–988Google Scholar
  22. C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)CrossRefGoogle Scholar
  23. M.G. Forest, K.T.R. McLaughlin, Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers. J. Nonlinear Sci. 8, 43 (1998)CrossRefGoogle Scholar
  24. A. Fratalocchi, C. Conti, G. Ruocco, S. Trillo, Free-energy transition in a gas of noninteracting nonlinear wave particles. Phys. Rev. Lett. 101, 044101 (2008)CrossRefGoogle Scholar
  25. J. Garnier, G. Xu, S. Trillo, A. Picozzi, Incoherent dispersive shocks in the spectral evolution of random waves. Phys. Rev. Lett. 111, 113902 (2013)CrossRefGoogle Scholar
  26. N. Ghofraniha, C. Conti, G. Ruocco, S. Trillo, Shocks in nonlocal media. Phys. Rev. Lett. 99, 043903 (2007)CrossRefGoogle Scholar
  27. D. Grischkowsky, E. Courtens, J.A. Armstrong, Observation of self-steepening of optical pulses with possible shock formation (Rb vapour). Phys. Rev. Lett. 31, 422 (1973)CrossRefGoogle Scholar
  28. A. Gurevich, A.L. Krylov, Dissipationless shock waves in media with positive dispersion. Sov. Phys. JETP 65, 944–953 (1987)Google Scholar
  29. A. Gurevich, L. Pitaevskii, Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291 (1974)Google Scholar
  30. A. Gurevich, A. Shvartsburg, Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 31, 1084–1089 (1970)Google Scholar
  31. J.-P. Hamaide, P. Emplit, Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres. Electron. Lett. 24, 819 (1988)CrossRefGoogle Scholar
  32. J.L. Hammack, H. Segur, The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech. 65, 289–314 (1974)CrossRefGoogle Scholar
  33. J. Hietarinta, T. Kuusela, B.A. Malomed, Shock waves in the dissipative Toda lattice. J. Phys. A. 28 3015–3024 (1995)CrossRefGoogle Scholar
  34. M. Hoefer, M. Ablowitz, I. Coddington, E. Cornell, P. Engels, V. Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys. Rev. A 74, 023623 (2006)CrossRefGoogle Scholar
  35. P.A.P. Janantha, P. Sprenger, M.A. Hoefer, M. Wu, Observation of self-cavitating envelope dispersive shock waves in yttrium iron garnet thin films. Phys. Rev. Lett. 119, 024101 (2017)CrossRefGoogle Scholar
  36. A. Kamchatnov, Nonlinear Periodic Waves and Their Modulations: An Introductory Course (World Scientific, Singapore, 2000)CrossRefGoogle Scholar
  37. S. Kamvissis, K.D.T.-R. McLaughlin, P. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (Princeton University Press, Princeton, 2003)CrossRefGoogle Scholar
  38. V.I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon, Oxford, 1975), p. 101Google Scholar
  39. Y.S. Kivshar, B.A. Malomed, Raman-induced optical shocks in nonlinear fibers. Opt. Lett. 18, 485 (1993)CrossRefGoogle Scholar
  40. Y.S. Kivshar, S.K. Turitsyn, Optical double layers. Phys. Rev. A 47, R3502 (1993)CrossRefGoogle Scholar
  41. Y. Kodama, The Whitham equations for optical communications: mathematical theory of NRZ. SIAM J. Appl. Math. 59, 2162 (1999)CrossRefGoogle Scholar
  42. Y. Kodama, S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291 (1995)CrossRefGoogle Scholar
  43. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973)CrossRefGoogle Scholar
  44. R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2004)Google Scholar
  45. Y. Liu, H. Tu, S.A. Boppart, Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett. 37, 2172 (2012)CrossRefGoogle Scholar
  46. L.A. Lugiato, R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987)CrossRefGoogle Scholar
  47. M.D. Maiden, N.K. Lowman, D.V. Anderson, M.E. Schubert, M.A. Hoefer, Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits. Phys. Rev. Lett. 116, 174501 (2016)CrossRefGoogle Scholar
  48. S. Malaguti, A. Corli, S. Trillo, Control of gradient catastrophes developing from dark beams. Opt. Lett. 35, 4217–4219 (2010)CrossRefGoogle Scholar
  49. S. Malaguti, G. Bellanca, S. Trillo, Dispersive wave-breaking in coherently driven passive cavities. Opt. Lett. 39, 2475–2478 (2014)CrossRefGoogle Scholar
  50. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, N. Picquét, Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016)CrossRefGoogle Scholar
  51. S. Moiseev, R. Sagdeev, Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy 5, 43 (1963)CrossRefGoogle Scholar
  52. A. Moro, S. Trillo, Mechanism of wave breaking from a vacuum point in the defocusing nonlinear Schrödinger equation. Phys. Rev. E 89, 023202 (2014)CrossRefGoogle Scholar
  53. Y. Nakamura, H. Bailung, P.K. Shukla, Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602 (1999)CrossRefGoogle Scholar
  54. H. Nakatsuka, D. Grischkowsky, A.C. Balant, Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910 (1981)CrossRefGoogle Scholar
  55. A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Pique, G. Millot, Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers. Opt. Lett. 42, 3044 (2017)CrossRefGoogle Scholar
  56. M.V. Pavlov, Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging. Theor. Math. Phys. 71, 584 (1987)CrossRefGoogle Scholar
  57. D. Peregrine, Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)CrossRefGoogle Scholar
  58. M.L. Quiroga-Teixeiro, Raman-induced asymmetry of wave breaking in optical fibers. Phys. Scr. 51, 373 (1995)CrossRefGoogle Scholar
  59. S. Randoux, F. Gustave, P. Suret, G. El, Optical random Riemann waves in integrable turbulence. Phys. Rev. Lett. 118, 233901 (2017)CrossRefGoogle Scholar
  60. J.E. Rothenberg, Femtosecond optical shocks and wave breaking in fiber propagation. J. Opt. Soc. Am. B 6, 2392 (1989)CrossRefGoogle Scholar
  61. J.E. Rothenberg, D. Grischkowsky, Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531 (1989)CrossRefGoogle Scholar
  62. M. Salerno, B.A. Malomed, V.V. Konotop, Shock wave dynamics in a discrete nonlinear Schrödinger equation with internal losses. Phys. Rev. E 62, 8651 (2000)CrossRefGoogle Scholar
  63. R. Taylor, D. Baker, H. Ikezi, Observation of collisionless electrostatic shocks. Phys. Rev. Lett. 24, 206 (1970)CrossRefGoogle Scholar
  64. J.R. Thompson, R. Roy, Nonlinear dynamics of multiple four-wave mixing processes in a single-mode fiber. Phys. Rev. A 43, 4987–4996 (1991)CrossRefGoogle Scholar
  65. W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 467 (1985)CrossRefGoogle Scholar
  66. S. Trillo, A. Valiani, Hydrodynamic instability of multiple four-wave mixing. Opt. Lett. 35, 3967–3969 (2010)CrossRefGoogle Scholar
  67. S. Trillo, G. Deng, G. Biondini, M. Klein, G. Clauss, A. Chabchoub, M. Onorato, Experimental observation and theoretical description of multisoliton fission in shallow water. Phys. Rev. Lett. 117, 144102 (2016)CrossRefGoogle Scholar
  68. B. Varlot, S. Wabnitz, J. Fatome, G. Millot, C. Finot, Experimental generation of optical flaticon pulses. Opt. Lett. 38, 3899–3902 (2013)CrossRefGoogle Scholar
  69. S. Wabnitz, Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion. J. Opt. 15, 064002 (2013)CrossRefGoogle Scholar
  70. W. Wan, S. Jia, J.W. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007)CrossRefGoogle Scholar
  71. K.E. Webb, Y.Q. Xu, M. Erkintalo, S.G. Murdoch, Generalized dispersive wave emission in nonlinear fiber optics. Opt. Lett. 38, 151–153 (2013)CrossRefGoogle Scholar
  72. B. Wetzel, D. Bongiovanni, M. Kues, Y. Hu, Z. Chen, J.M. Dudley, S. Trillo, S. Wabnitz, R. Morandotti, Experimental generation of Riemann waves in optics: a route to shock wave control. Phys. Rev. Lett. 117, 073902 (2016)CrossRefGoogle Scholar
  73. J.R. Whinnery, D.T. Miller, F. Dabby, Thermal convection and spherical aberration distortion of laser beams in low-loss liquids. IEEE J. Quantum Electron. QE-3, 382 (1967)CrossRefGoogle Scholar
  74. G. Whitham, Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965)CrossRefGoogle Scholar
  75. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)Google Scholar
  76. G. Xu, D. Vocke, D. Faccio, J. Garnier, T. Roger, S. Trillo, A. Picozzi, From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat. Commun. 6, 8131 (2015)CrossRefGoogle Scholar
  77. G. Xu, A. Mussot, A. Kudlinski, S. Trillo, F. Copie, M. Conforti, Shock wave generation triggered by a weak background in optical fibers. Opt. Lett. 41, 2656 (2016)CrossRefGoogle Scholar
  78. G. Xu, M. Conforti, A. Kudlinski, A. Mussot, S. Trillo, Dispersive dam-break flow of a photon fluid. Phys. Rev. Lett. 118, 254101 (2017)CrossRefGoogle Scholar
  79. N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of FerraraFerraraItaly
  2. 2.CNRS, UMR 8523, PhLAM – Physique des Lasers Atomes et MoléculesUniversity of LilleLilleFrance

Personalised recommendations