Advertisement

Polymer Optical Fiber Sensors and Devices

  • Ricardo OliveiraEmail author
  • Filipa Sequeira
  • Lúcia Bilro
  • Rogério Nogueira
Reference work entry

Abstract

This chapter will present a review of polymer optical fiber-based sensors and techniques. The main characteristics of optical fibers will be briefly summarized, with special focus on POFs. Since POF end face termination plays an important role in the coupling efficiency, the recent technologies used to prepare the POF end face will be described. Finally, the most recent advances in sensing technologies employing POFs will be reviewed.

Keywords

Optical fiber sensor Polymer optical fiber (POF) Microstructured polymer optical fiber (mPOF) Polishing Splicing Intensity-based sensors Wavelength-based sensors Polarimetric-based sensors Interferometric-based sensors Multimode interference (MMI) Polymer optical fiber Bragg grating (PFBG) Long-period grating (LPG) Tilted fiber Bragg grating (TFBG) 

Notes

Acknowledgements

This work was supported by FCT-Fundação para a Ciência e Tecnologia through Portuguese national funds by project hiPOF (PTDC/EEI-TEL/7134/2014), project INITIATE and investigator grant IF/01664/2014.

References

  1. A. Abang, D.J. Webb, Demountable connection for polymer optical fiber grating sensors. Opt. Eng. 51(8), 80503 (2012).  https://doi.org/10.1117/1.OE.51.8.080503CrossRefGoogle Scholar
  2. A. Abang, D. Saez-Rodriguez, K. Nielsen, O. Bang, D.J. Webb, Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre, in Proceedings of the SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, (Krakow, 2013), p. 87943Q.  https://doi.org/10.1117/12.2026796
  3. O. Abdi, K.C. Wong, T. Hassan, K.J. Peters, M.J. Kowalsky, Cleaving of solid single mode polymer optical fiber for strain sensor applications. Opt. Commun. 282(5), 856–861 (2009).  https://doi.org/10.1016/j.optcom.2008.11.046CrossRefGoogle Scholar
  4. A. Argyros, I. Bassett, M. van Eijkelenborg, M. Large, J. Zagari, N.A. Nicorovici, …, C.M. de Sterke. Ring structures in microstructured polymer optical fibres. Opt. Express. 9(13), 813–820 (2001).  https://doi.org/10.1364/OE.9.000813CrossRefGoogle Scholar
  5. AGC Chemicals, Asahi Glass Co. Ltd., Amorphous Fluoropolymer (CYTOP) (Tokyo, 2009)Google Scholar
  6. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, V.S. Afshar, J. Canning, D. Abbott, T.M. Monro, Cleaving of extremely porous polymer fibers. IEEE Photon. J. 1(6), 286–292 (2009).  https://doi.org/10.1109/JPHOT.2009.2038796CrossRefGoogle Scholar
  7. A.K. Baker, P.E. Dyer, Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation. Appl. Phys. A Solids Surf. 57(6), 543–544 (1993).  https://doi.org/10.1007/BF00331756CrossRefGoogle Scholar
  8. G. Barton, M.A. van Eijkelenborg, G. Henry, M.C.J. Large, J. Zagari, Fabrication of microstructured polymer optical fibres. Opt. Fiber Technol. 10(4), 325–335 (2004).  https://doi.org/10.1016/j.yofte.2004.05.003CrossRefGoogle Scholar
  9. K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W.R. Walsh, G. Rajan, Experimental study and analysis of hydrostatic pressure sensitivity of polymer fibre Bragg gratings. J. Lightwave Technol. 33(12), 2456–2462 (2015).  https://doi.org/10.1109/JLT.2014.2386346CrossRefGoogle Scholar
  10. T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997).  https://doi.org/10.1364/OL.22.000961CrossRefGoogle Scholar
  11. I.-L. Bundalo, K. Nielsen, C. Markos, O. Bang, Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express 22(5), 5270–5276 (2014).  https://doi.org/10.1364/OE.22.005270CrossRefGoogle Scholar
  12. J. Canning, E. Buckley, N. Groothoff, B. Luther-Davies, J. Zagari, UV laser cleaving of air–polymer structured fibre. Opt. Commun. 202(1–3), 139–143 (2002).  https://doi.org/10.1016/S0030-4018(01)01727-8CrossRefGoogle Scholar
  13. K.E. Carroll, C. Zhang, D.J. Webb, K. Kalli, A. Argyros, M.C. Large, Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express 15(14), 8844–8850 (2007).  https://doi.org/10.1364/OE.15.008844CrossRefGoogle Scholar
  14. N. Cennamo, G. Testa, S. Marchetti, L. De Maria, R. Bernini, L. Zeni, M. Pesavento, Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sensors Actuators B Chem. 241, 534–540 (2017).  https://doi.org/10.1016/j.snb.2016.10.104CrossRefGoogle Scholar
  15. K. Chah, N. Linze, C. Caucheteur, P. Mégret, P. Tihon, O. Verlinden, …, M. Wuilpart, Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber. Appl. Opt. 51(25), 6130–6138 (2012).  https://doi.org/10.1364/AO.51.006130CrossRefGoogle Scholar
  16. H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, M.A. van Eijkelenborg, Continuous wave ultraviolet light-induced fiber Bragg gratings in few – and single-mode microstructured polymer optical fibers. Opt. Lett. 30(24), 3296–3298 (2005).  https://doi.org/10.1364/OL.30.003296CrossRefGoogle Scholar
  17. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006).  https://doi.org/10.1103/RevModPhys.78.1135CrossRefGoogle Scholar
  18. S.N. Elias, N. Arsad, S. Abubakar, Nitrite detection using plastic optical fiber (POF); an early stage investigation towards the development of oral cancer sensor using POF. Optik – Int. J. Light Electron Opt. 126(21), 2908–2911 (2015).  https://doi.org/10.1016/j.ijleo.2015.07.038CrossRefGoogle Scholar
  19. C. Emslie, Polymer optical fibres. J. Mater. Sci. 23(7), 2281–2293 (1988).  https://doi.org/10.1007/BF01111879CrossRefGoogle Scholar
  20. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, K. Nielsen, H.K. Rasmussen, …, O. Bang, Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express 6(2), 649–659 (2016).  https://doi.org/10.1364/OME.6.000649CrossRefGoogle Scholar
  21. R. Ferreira, L. Bilro, C. Marques, R. Oliveira, R. Nogueira. Refractive index and viscosity: dual sensing with plastic fibre gratings, in Proceedings of the SPIE 9157, 23rd International Conference on Optical Fibre Sensors, (Santander, 2014), p. 915793.  https://doi.org/10.1117/12.2058833
  22. M.V.P. Ghirghi, V. Minkovich, A.G. Villegas, Polymer optical fiber termination with use of liquid nitrogen. IEEE Photon. Technol. Lett. 26(5), 516–519 (2014).  https://doi.org/10.1109/LPT.2013.2295885CrossRefGoogle Scholar
  23. S. Grassini, M. Ishtaiwi, M. Parvis, A. Vallan, Design and deployment of low-cost plastic optical fiber sensors for gas monitoring. Sensors 15(1), 485–498 (2015).  https://doi.org/10.3390/s150100485CrossRefGoogle Scholar
  24. B. Gu, M. Yin, A.P. Zhang, J. Qian, S. He, Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer. Opt. Express 19(5), 4140–4146 (2011).  https://doi.org/10.1364/OE.19.004140CrossRefGoogle Scholar
  25. T. Guo, F. Liu, B.-O. Guan, J. Albert, Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 78, 19–33 (2016).  https://doi.org/10.1016/j.optlastec.2015.10.007CrossRefGoogle Scholar
  26. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978).  https://doi.org/10.1063/1.89881CrossRefGoogle Scholar
  27. M.P. Hiscocks, M.A. van Eijkelenborg, A. Argyros, M.C.J. Large, Stable imprinting of long-period gratings in microstructured polymer optical fibre. Opt. Express 14(11), 4644–4649 (2006).  https://doi.org/10.1364/OE.14.004644CrossRefGoogle Scholar
  28. X. Hu, C.-F.J. Pun, H.-Y. Tam, P. Mégret, C. Caucheteur, Tilted Bragg gratings in step-index polymer optical fiber. Opt. Lett. 39(24), 6835–6838 (2014).  https://doi.org/10.1364/OL.39.006835CrossRefGoogle Scholar
  29. X. Hu, P. Mégret, C. Caucheteur, Surface plasmon excitation at near-infrared wavelengths in polymer optical fibers. Opt. Lett. 40(17), 3998–4001 (2015).  https://doi.org/10.1364/OL.40.003998CrossRefGoogle Scholar
  30. S.Y. Huang, J.N. Blake, B.Y. Kim, Perturbation effects on mode propagation in highly elliptical core two-mode fibers. J. Lightwave Technol. 8(1), 23–33 (1990).  https://doi.org/10.1109/50.45925CrossRefGoogle Scholar
  31. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, H. Xiao, Polymer optical fiber for large strain measurement based on multimode interference. Opt. Lett. 37(20), 4308–4310 (2012).  https://doi.org/10.1364/OL.37.004308CrossRefGoogle Scholar
  32. C. Jiang, M.G. Kuzyk, J.-L. Ding, W.E. Johns, D.J. Welker, Fabrication and mechanical behavior of dye-doped polymer optical fiber. J. Appl. Phys. 92(1), 4–12 (2002).  https://doi.org/10.1063/1.1481774CrossRefGoogle Scholar
  33. I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H.K. Rasmussen, L. Khan, …, O. Bang, Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 47(4), 271–272 (2011).  https://doi.org/10.1049/el.2010.7347CrossRefGoogle Scholar
  34. P. Kaiser, E.A.J. Marcatili, S.E. Miller, A new optical fiber. Bell Syst. Tech. J. 52(2), 265–269 (1973).  https://doi.org/10.1002/j.1538-7305.1973.tb01963.xCrossRefGoogle Scholar
  35. A.L. Khalaf, F.S. Mohamad, P.T. Arasu, A.A. Shabaneh, N.A. Rahman, H.N. Lim, …, M.H. Yaacob, Modified plastic optical fiber coated graphene/polyaniline nanocomposite for ammonia sensing, in 2016 IEEE 6th International Conference on Photonics (ICP). (IEEE, 2016).  https://doi.org/10.1109/ICP.2016.7510030
  36. S. Kiesel, K. Peters, T. Hassan, M. Kowalsky, Large deformation in-fiber polymer optical fiber sensor. 20(6), 2008–2010 (2008).  https://doi.org/10.1109/LPT.2008.916929CrossRefGoogle Scholar
  37. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996).  https://doi.org/10.1364/OL.21.001547CrossRefGoogle Scholar
  38. M. Koerdt, S. Kibben, O. Bendig, S. Chandrashekhar, J. Hesselbach, C. Brauner, …, L. Kroll, Fabrication and characterization of Bragg gratings in perfluorinated polymer optical fibers and their embedding in composites. Mechatronics 34, 137–146 (2016).  https://doi.org/10.1016/j.mechatronics.2015.10.005CrossRefGoogle Scholar
  39. K. Krebber, P. Lenke, S. Liehr, J. Witt, M. Schukar, Smart technical textiles with integrated POF sensors, in Proceedings of SPIE 6933, Smart Sensor Phenomena, Technology, Networks, and Systems, (California, 2008), p. 69330V.  https://doi.org/10.1117/12.776758
  40. B.T. Kuhlmey, R.C. McPhedran, C.M. de Sterke, Modal cutoff in microstructured optical fibers. Opt. Lett. 27(19), 1684–1686 (2002).  https://doi.org/10.1364/OL.27.001684CrossRefGoogle Scholar
  41. M.G. Kuzyk, U.C. Paek, C.W. Dirk, Guest-host polymer fibers for nonlinear optics. Appl. Phys. Lett. 59(8), 902–904 (1991).  https://doi.org/10.1063/1.105271CrossRefGoogle Scholar
  42. S. Küper, M. Stuke, UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: Characterization of incubation sites with fourier transform IR- and UV-spectroscopy. Appl. Phys. A Solids Surf. 49(2), 211–215 (1989).  https://doi.org/10.1007/BF00616301CrossRefGoogle Scholar
  43. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, K. Kalli, Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber. IEEE Photon. Technol. Lett. 27(7), 693–696 (2015).  https://doi.org/10.1109/LPT.2014.2386692CrossRefGoogle Scholar
  44. M.C.J. Large, S. Ponrathnam, A. Argyros, N.S. Pujari, F. Cox, Solution doping of microstructured polymer optical fibres. Opt. Express 12(9), 1966–1971 (2004).  https://doi.org/10.1364/OPEX.12.001966CrossRefGoogle Scholar
  45. M.C.J. Large, L. Poladian, G.W. Barton, M.A. van Eijkelenborg, Microstructured Polymer Optical Fibres. Microstructured Polymer Optical Fibres (Springer US, Boston, 2008).  https://doi.org/10.1007/978-0-387-68617-2CrossRefGoogle Scholar
  46. S.H. Law, J.D. Harvey, R.J. Kruhlak., M. Song, E. Wu, G.W. Barton, …, M.C.J. Large, Cleaving of microstructured polymer optical fibres. Opt. Commun. 258(2), 193–202 (2006).  https://doi.org/10.1016/j.optcom.2005.08.011CrossRefGoogle Scholar
  47. C.S.J. Leitão, P.F. da Costa Antunes, J.A.M. Bastos, J. de Lemos Pinto, P.S. de Brito André, Plastic optical fiber sensor for noninvasive arterial pulse waveform monitoring. IEEE Sensors J. 15(1), 14–18 (2015).  https://doi.org/10.1109/JSEN.2014.2336594CrossRefGoogle Scholar
  48. S.G. Leon-Saval, R. Lwin, A. Argyros, Multicore composite single-mode polymer fiber. Opt. Express 20(1), 141–148 (2012).  https://doi.org/10.1364/OE.20.000141CrossRefGoogle Scholar
  49. Z. Li, H.Y. Tam, L. Xu, Q. Zhang, Fabrication of long-period gratings in poly(methyl methacrylate-co-methyl vinyl ketone-co-benzyl methacrylate)-core polymer optical fiber by use of a mercury lamp. Opt. Lett. 30(10), 1117–1119 (2005).  https://doi.org/10.1364/OL.30.001117CrossRefGoogle Scholar
  50. L. Li, L. Xia, Z. Xie, D. Liu, All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20(10), 11109–11120 (2012).  https://doi.org/10.1364/OE.20.011109CrossRefGoogle Scholar
  51. G. Liu, D. Feng, Evanescent wave analysis and experimental realization of refractive index sensor based on D-shaped plastic optical fiber. Optik – Int. J. Light Electron Opt. 127(2), 690–693 (2016).  https://doi.org/10.1016/j.ijleo.2015.10.129CrossRefGoogle Scholar
  52. H.Y. Liu, G.D. Peng, P.L. Chu, Thermal tuning of polymer optical fiber Bragg gratings. IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).  https://doi.org/10.1109/68.935816CrossRefGoogle Scholar
  53. H. Liu, G. Peng, P. Chu, Polymer fiber Bragg gratings with 28-dB transmission rejection. IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).  https://doi.org/10.1109/LPT.2002.1012390CrossRefGoogle Scholar
  54. D. Luo, Y. Yue, P. Li, J. Ma, L.L. Zhang, Z. Ibrahim, Z. Ismail, Concrete beam crack detection using tapered polymer optical fiber sensors. Measurement 88, 96–103 (2016).  https://doi.org/10.1016/j.measurement.2016.03.028CrossRefGoogle Scholar
  55. R. Lwin, A. Argyros, Connecting microstructured polymer optical fibres to the world, In 18th International Conference on Plastic Optical Fibers. (Sydney, 2009)Google Scholar
  56. C. Markos, A. Stefani, K. Nielsen, H.K. Rasmussen, W. Yuan, O. Bang, High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4765 (2013).  https://doi.org/10.1364/OE.21.004758CrossRefGoogle Scholar
  57. C.A.F. Marques, L.B. Bilro, N.J. Alberto, D.J. Webb, R.N. Nogueira, Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows. Opt. Commun. 307, 57–61 (2013).  https://doi.org/10.1016/j.optcom.2013.05.059CrossRefGoogle Scholar
  58. T. Martynkien, P. Mergo, W. Urbanczyk, Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure. IEEE Photon. Technol. Lett. 25(16), 1562–1565 (2013).  https://doi.org/10.1109/LPT.2013.2271240CrossRefGoogle Scholar
  59. N.A. Mortensen, Effective area of photonic crystal fibers. Opt. Express 10(7), 341–348 (2002).  https://doi.org/10.1364/OE.10.000341CrossRefGoogle Scholar
  60. N.A. Mortensen, Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers. Opt. Lett. 30(12), 1455–1457 (2005).  https://doi.org/10.1364/OL.30.001455CrossRefGoogle Scholar
  61. N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, K.P. Hansen, Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 28(20), 1879–1881 (2003).  https://doi.org/10.1364/OL.28.001879CrossRefGoogle Scholar
  62. R. Nogueira, R. Oliveira, L. Bilro, J. Heidarialamdarloo, New advances in polymer fiber Bragg gratings. Opt. Laser Technol. 78(Part A), 104–109 (2015).  https://doi.org/10.1016/j.optlastec.2015.08.010CrossRefGoogle Scholar
  63. G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura, Ultra-sensitive strain and temperature sensing based on modal interference in perfluorinated polymer optical fibers. IEEE Photon. J. 6(5), 6802306 (2014).  https://doi.org/10.1109/JPHOT.2014.2352637CrossRefGoogle Scholar
  64. G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura, Strain and temperature sensing based on multimode interference in partially chlorinated polymer optical fibers. IEICE Electron. Express 12(2), 20141173 (2015).  https://doi.org/10.1587/elex.12.20141173CrossRefGoogle Scholar
  65. R. Oliveira, L. Bilro, R. Nogueira, Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express 23(8), 10181–10187 (2015a).  https://doi.org/10.1364/OE.23.010181CrossRefGoogle Scholar
  66. R. Oliveira, L. Bilro, R. Nogueira, Smooth end face termination of microstructured, graded-index, and step-index polymer optical fibers. Appl. Opt. 54(18), 5629–5633 (2015b).  https://doi.org/10.1364/AO.54.005629CrossRefGoogle Scholar
  67. R. Oliveira, S. Aristilde, J.H. Osorio, M.A.R. Franco, L. Bilro, R.N. Nogueira, C.M.B. Cordeiro, Intensity liquid level sensor based on multimode interference and fiber Bragg grating. Meas. Sci. Technol. 27(12), 125104 (2016a).  https://doi.org/10.1088/0957-0233/27/12/125104CrossRefGoogle Scholar
  68. R. Oliveira, L. Bilro, T.H.R. Marques, M. Napierala, T. Tenderenda, P. Mergo, …, R. Nogueira, Bragg Gratings Inscription in Highly Birefringent Microstructured POFs. IEEE Photon. Technol. Lett. 28(6), 621–624 (2016b).  https://doi.org/10.1109/LPT.2015.2503241CrossRefGoogle Scholar
  69. R. Oliveira, T.H.R. Marques, L. Bilro, C.M.B. Cordeiro, R.N. Nogueira, Strain, temperature and humidity sensing with multimode interference in POF. The 25th International Conference on Plastic Optical Fibres, OP35 (2016c)Google Scholar
  70. R. Oliveira, T.H.R. Marques, L. Bilro, R. Nogueira, C.M.B. Cordeiro, Multiparameter POF Sensing based on Multimode Interference and Fiber Bragg Grating. J. Light. Technol. 1–8 (2016d).  https://doi.org/10.1109/JLT.2016.2626793CrossRefGoogle Scholar
  71. R. Oliveira, J.H. Osorio, S. Aristilde, L. Bilro, R.N. Nogueira, C.M.B. Cordeiro, Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings. Meas. Sci. Technol. 27(7), 75107 (2016e).  https://doi.org/10.1088/0957-0233/27/7/075107CrossRefGoogle Scholar
  72. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P.S.J. Russell, Highly birefringent photonic crystal fibers. Opt. Lett. 25(18), 1325–1327 (2000).  https://doi.org/10.1364/OL.25.001325CrossRefGoogle Scholar
  73. G.D. Peng, P.L. Chu, Polymer optical fiber Photosensitivities and highly tunable fiber gratings. Fiber Integr. Opt. 19(4), 277–293 (2000).  https://doi.org/10.1080/014680300300001662CrossRefGoogle Scholar
  74. G.D. Peng, Z. Xiong, P.L. Chu, Photosensitivity and gratings in dye-doped polymer optical fibers. Opt. Fiber Technol. 5(2), 242–251 (1999).  https://doi.org/10.1006/ofte.1998.0298CrossRefGoogle Scholar
  75. D. Rithesh Raj, S. Prasanth, T.V. Vineeshkumar, C. Sudarsanakumar, Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun. 340, 86–92 (2015).  https://doi.org/10.1016/j.optcom.2014.11.092CrossRefGoogle Scholar
  76. D. Saez-Rodriguez, K. Nielsen, O. Bang, D. Webb, Simple room temperature method for polymer optical fibre cleaving. J. Lightwave Technol. 33(23), 4712–4716 (2015).  https://doi.org/10.1109/JLT.2015.2479365CrossRefGoogle Scholar
  77. D. Sáez-Rodríguez, K. Nielsen, O. Bang, D.J. Webb, Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Opt. Lett. 39(12), 3421–3424 (2014).  https://doi.org/10.1364/OL.39.003421CrossRefGoogle Scholar
  78. F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, N. Cennamo, Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications. Sensors 16(12), 2119 (2016).  https://doi.org/10.3390/s16122119CrossRefGoogle Scholar
  79. M. Silva-López, A. Fender, W.N. MacPherson, J.S. Barton, J.D.C. Jones, D. Zhao, …, I. Bennion, Strain and temperature sensitivity of a single-mode polymer optical fiber. Opt. Lett. 30(23), 3129–3131(2005).  https://doi.org/10.1364/OL.30.003129CrossRefGoogle Scholar
  80. L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 13(4), 615–627 (1995).  https://doi.org/10.1109/50.372474CrossRefGoogle Scholar
  81. R. Srinivasan, B. Braren, R.W. Dreyfus, L. Hadel, D.E. Seeger, Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: laser-induced fluorescence analysis, chemical analysis, and doping studies. J. Opt. Soc. Am. B 3(5), 785–791 (1986).  https://doi.org/10.1364/JOSAB.3.000785CrossRefGoogle Scholar
  82. G. Statkiewicz-Barabach, D. Kowal, M.K. Szczurowski, P. Mergo, W. Urbanczyk, Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber. IEEE Photon. Technol. Lett. 25(5), 496–499 (2013).  https://doi.org/10.1109/LPT.2013.2244590CrossRefGoogle Scholar
  83. G. Statkiewicz-Barabach, P. Maniewski, P. Mergo, W. Urbanczyk, Fiber Bragg grating-based Fabry-Perot interferometer in polymer fiber, in The 25th International Conference on Plastic Optical Fibres. (UK 2016), p. OP22Google Scholar
  84. G. Statkiewicz, T. Martynkien, W. Urbańczyk, Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain. Opt. Commun. 241(4), 339–348 (2004).  https://doi.org/10.1016/j.optcom.2004.07.021CrossRefGoogle Scholar
  85. A. Stefani, K. Nielsen, H.K. Rasmussen, O. Bang, Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization. Opt. Commun. 285(7), 1825–1833 (2012a).  https://doi.org/10.1016/j.optcom.2011.12.033CrossRefGoogle Scholar
  86. A. Stefani, M. Stecher, G.E. Town, O. Bang, Direct writing of fiber Bragg grating in microstructured polymer optical fiber. IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012b).  https://doi.org/10.1109/lpt.2012.2197194.CrossRefGoogle Scholar
  87. M. Steffen, M. Schukar, J. Witt, K. Krebber, M. Large, A. Argyros, Investigation of mPOF-LPGs for sensing applications, in 18th International Conference on Plastic Optical Fibers. (Sydney, 2009), p. 25–26Google Scholar
  88. M.K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, D.J. Webb, Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber. Opt. Express 18(12), 12076–12087 (2010).  https://doi.org/10.1364/OE.18.012076CrossRefGoogle Scholar
  89. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, E. Schena, Optical fiber-based MR-compatible sensors for medical applications: An overview. Sensors 13(10), 14105–14120 (2013).  https://doi.org/10.3390/s131014105CrossRefGoogle Scholar
  90. X.A. Ton, V. Acha, P. Bonomi, B. Tse Sum Bui, K. Haupt, A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens. Bioelectron. 64, 359–366 (2015).  https://doi.org/10.1016/j.bios.2014.09.017CrossRefGoogle Scholar
  91. M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, …, J. Zagari Recent progress in microstructured polymer optical fibre fabrication and characterisation. Opt. Fiber Technol. 9(4), 199–209 (2003).  https://doi.org/10.1016/S1068-5200(03)00045-2CrossRefGoogle Scholar
  92. M.A. van Eijkelenborg, W. Padden, J.A. Besley, Mechanically induced long-period gratings in microstructured polymer fibre. Opt. Commun. 236, 75–78 (2004).  https://doi.org/10.1016/j.optcom.2004.03.004CrossRefGoogle Scholar
  93. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, …, N.A. Nicorovici, Microstructured polymer optical fibre. Opt. Express, 9(7), 319–327 (2001).  https://doi.org/10.1364/OE.9.000319CrossRefGoogle Scholar
  94. D. Webb, M. Aressy, A. Argyros, J.S. Barton, H. Dobb, … M. Silva-López, Grating and interferometric devices in POF, in 14th International Conference on Polymer Optical Fibers. (Hong Kong, 2005), p. 325–328Google Scholar
  95. J. Witt, M. Breithaupt, J. Erdmann, K. Krebber, Humidity sensing based on microstructured POF long period gratings, in Proceedings of the 20th International Conference on Plastic Optical Fibres. (Bilbao, 2011), p. 409–414Google Scholar
  96. C. Wochnowski, S. Metev, G. Sepold, UV-laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci. 154, 706–711 (2000).  https://doi.org/10.1016/S0169-4332(99)00435-3CrossRefGoogle Scholar
  97. G.K.L. Wong, M.S. Kang, H.W. Lee, F. Biancalana, C. Conti, T. Weiss, P.S.J. Russell, Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337(6093), 446–449 (2012).  https://doi.org/10.1126/science.1223824CrossRefGoogle Scholar
  98. G. Woyessa, A. Fasano, A. Stefani, C. Markos, H.K. Rasmussen, O. Bang, Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016).  https://doi.org/10.1364/OE.24.001253CrossRefGoogle Scholar
  99. Q. Wu, Y. Semenova, P. Wang, G. Farrell, High sensitivity SMS fiber structure based refractometer – analysis and experiment. Opt. Express 19(9), 7937–7944 (2011).  https://doi.org/10.1364/OE.19.007937CrossRefGoogle Scholar
  100. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).  https://doi.org/10.1109/68.748232CrossRefGoogle Scholar
  101. P. Yeh, N. Yeh, C.-H. Lee, T.-J. Ding. Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients. Renew. Sust. Energ. Rev. 75, 461–468 (2017).  https://doi.org/10.1016/j.rser.2016.11.011CrossRefGoogle Scholar
  102. W. Yuan, L. Khan, D.J. Webb, K. Kalli, H.K. Rasmussen, A. Stefani, O. Bang, Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 19(20), 19731–19739 (2011).  https://doi.org/10.1364/OE.19.019731CrossRefGoogle Scholar
  103. C. Zhang, X. Chen, D.J. Webb, G.-D. Peng. Water detection in jet fuel using a polymer optical fibre Bragg grating, in Proceedings of the SPIE 7503, 20th International Conference on Optical Fibre Sensors, (Edinburgh, 2009), p. 750380.  https://doi.org/10.1117/12.848696
  104. C. Zhang, W. Zhang, D.J. Webb, G.-D. Peng, Optical fibre temperature and humidity sensor. Electron. Lett. 46(9), 643 (2010).  https://doi.org/10.1049/el.2010.0879CrossRefGoogle Scholar
  105. W. Zhang, D.J. Webb, Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors. Opt. Lett. 39(10), 3026–3029 (2014).  https://doi.org/10.1364/OL.39.003026CrossRefGoogle Scholar
  106. W. Zhang, D.J. Webb, G.-D. Peng, Investigation into time response of polymer fiber Bragg grating based humidity sensors. J. Lightwave Technol. 30(8), 1090–1096 (2012a).  https://doi.org/10.1109/JLT.2011.2169941CrossRefGoogle Scholar
  107. W. Zhang, D.J. Webb, G.-D. Peng, Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor. Opt. Lett. 37(8), 1370–1372 (2012b).  https://doi.org/10.1117/12.922279CrossRefGoogle Scholar
  108. G. Zhou, C.F.J. Pun, H.Y. Tam, A.C.L. Wong, C. Lu, P.K.A. Wai, Single-mode perfluorinated polymer optical fibers with refractive index of 1.34 for biomedical applications. IEEE Photon. Technol. Lett. 22(2), 106–108 (2010).  https://doi.org/10.1109/LPT.2009.2036377CrossRefGoogle Scholar
  109. Q. Zhuang, H. Yaosheng, M. Yu, L. Wei, L. Xianping, Z. Wenhui, …, L. Elfed, Water-equivalent fiber radiation dosimeter with two scintillating materials. Biomedical Optics Express 7(12), 4919–4927 (2016).  https://doi.org/10.1364/BOE.7.004919CrossRefGoogle Scholar
  110. O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, Optical Short Range Transmission Systems. POF Handbook (Springer, Berlin, 2008).  https://doi.org/10.1007/978-3-540-76629-2CrossRefGoogle Scholar
  111. J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol. 7(2), 101–140 (2001).  https://doi.org/10.1006/ofte.2000.0355CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ricardo Oliveira
    • 1
    Email author
  • Filipa Sequeira
    • 1
  • Lúcia Bilro
    • 1
  • Rogério Nogueira
    • 1
  1. 1.Instituto de TelecomunicaçõesCampus Universitário de SantiagoAveiroPortugal

Section editors and affiliations

  • Ginu Rajan
    • 1
  1. 1.School of Electrical, Computer and Telecommunications EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations