Advertisement

Defect Accumulation in Nanoporous Wear-Resistant Coatings Under Collective Recrystallization: Simulation by Hybrid Cellular Automaton Method

  • Dmitry D. Moiseenko
  • Pavel V. Maksimov
  • Sergey V. Panin
  • Dmitriy S. Babich
  • Viktor E. Panin
Living reference work entry

Abstract

A modification of a multiscale hybrid discrete-continual approach of excitable cellular automata is developed. The new version of the method is accomplished by considering the porosity and nanocrystalline structure of a material and the algorithms of calculation of local force moments and angular velocities of microscale rotations. The excitable cellular automata method was used to carry out numerical experiment (NE) for heating of continuous and nanoporous specimens with nanocrystalline TiAlC coatings. The numerical experiments have shown that nanoporosity allows to substantially reduce the rate of collective crystallization. In so doing the nanoporosity slowed down propagation of the heat front in the specimens. This fact can play both positive and negative roles at deposition of the coatings and their further use. On the one hand, by slowing the heat front propagation, one can significantly reduce the level of thermal stresses in deeper layers of the material. On the other hand, such deceleration in case of the high value of the thermal expansion coefficient can give rise to the formation of large gradients of thermal stress, which initiate nucleation and rapid growth of a main crack.

References

  1. 1.
    Radovic M, Barsoum M. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92:20–7.Google Scholar
  2. 2.
    Levashov E, Merzhanov A, Shtansky D. Advanced technologies, materials and coatings developed in scientific-educational center of SHS. Galvanotechnik. 2009;9:1–13.Google Scholar
  3. 3.
    Lin JP, Zhao LL, Li GY, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics. 2001;19:131–6.CrossRefGoogle Scholar
  4. 4.
    Voevodin AA, Zabinski JS. Nanocomposite and nanostructured tribological materials for space applications. Compos Sci Technol. 2006;65:741–8.Google Scholar
  5. 5.
    Kartavykh AV, Kaloshkin SD, Cherdyntsev VV, et al. Application of microstructured intermetallides in turbine manufacture. Part 1: present state and prospects (a review). Inorg Mater Appl Res. 2013;4:12–20.CrossRefGoogle Scholar
  6. 6.
    Voevodin AA, Zabinski JS, Muratore C. Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci Technol. 2005;10:665–79.CrossRefGoogle Scholar
  7. 7.
    Shtansky D, Kiryukhantsev-Korneev P, Sheveyko A, et al. Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of MAX-phase Ti2−xCrxAlC targets. Surf Coat Technol. 2009;203:3595–609.CrossRefGoogle Scholar
  8. 8.
    Pearson J, Zikry M, Wahl K. Microstructural modeling of adaptive nanocomposite coatings for durability and wear. Wear. 2009;266:1003–12.CrossRefGoogle Scholar
  9. 9.
    Appel F, Heaton J-D. Gamma titanium aluminide alloys: science and technology. Weinheim: Wiley-VCH; 2011.CrossRefGoogle Scholar
  10. 10.
    Ying G, Wang X. Numerical simulation of the SHS temperature fields of al-Ti-C system based on plane propagating pattern. Int J Mod Phys C. 2009;20:1087.CrossRefzbMATHGoogle Scholar
  11. 11.
    Ying G, He X, Du S-Y, et al. Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti–Cr–al–C systems. Rare Metals. 2014;33:527–33.CrossRefGoogle Scholar
  12. 12.
    Panin VE. Physical mesomechanics of heterogeneous media and computer-aided design of materials. Cambridge: Cambridge International Science Publ; 1998.Google Scholar
  13. 13.
    Panin VE, Egorushkin VE. Curvature solitons as generalized structural wave carriers of plastic deformation and fracture. Phys Mesomech. 2013;16:267–86.CrossRefGoogle Scholar
  14. 14.
    Panin VE, Egorushkin VE, Panin AV. The plastic shear channeling effect and the nonlinear waves of localized plastic deformation and fracture. Phys Mesomech. 2010;13:215–32.CrossRefGoogle Scholar
  15. 15.
    Panin VE, Egorushkin VE, Panin AV. Physical Mesomechanics of a deformed solid as a multilevel system. I. Physical fundamentals of the multilevel approach. Phys Mesomech. 2006;9:9–20.Google Scholar
  16. 16.
    Egorushkin VE. Dynamics of plastic deformation. Localized inelastic strain waves in solids. In: Physical Mesomechanics of heterogeneous media and computer-aided Design of Materials. Cambridge: Cambridge Interscience Publishing; 1998. p. 41–6.Google Scholar
  17. 17.
    Egorushkin VE. Dynamics of plastic deformation: waves of localized plastic deformation in solids. Russ Phys J. 1992;35:316–34.CrossRefGoogle Scholar
  18. 18.
    Zuev LB, Barannikova SA. Evidence for the existence of localized plastic flow auto-waves generated in deforming metals. Nat Sci. 2010;2:476–83.Google Scholar
  19. 19.
    Zuev LB, Danilov VI, Gorbatenko VV. Autowaves of localized plastic deformation. Zhurn Tekh Fiz. 1995;65:91–103.Google Scholar
  20. 20.
    Zuev LB. Wave phenomena in low-rate plastic flow in solids. Ann Phys. 2001;10:965–84.CrossRefGoogle Scholar
  21. 21.
    Panin VE, Egorushkin VE, Panin AV. Nonlinear wave processes in a deformable solid as in a multiscale hierarchically organized system. Physics-Uspekhi. 2012;55:1260–7.CrossRefGoogle Scholar
  22. 22.
    Panin AV. Nonlinear waves of localized plastic flow in nanostructured surface layers of solids and thin films. Phys Mesomech. 2005;8:5–15.Google Scholar
  23. 23.
    Romanova VA, Balokhonov RR, Emelyanova OS. On the role of internal interfaces in the development of mesoscale surface roughness in loaded materials. Phys Mesomech. 2011;14:159–66.CrossRefGoogle Scholar
  24. 24.
    Krivtsov AM. Molecular dynamics simulation of impact fracture in polycrystalline materials. Meccanica. 2003;38:61–70.CrossRefzbMATHGoogle Scholar
  25. 25.
    Loskutov AY, Mikhailov AS. Foundations of synergetics. Berlin/New York: Springer; 1990.zbMATHGoogle Scholar
  26. 26.
    Wolfram S. Cellular automata as models of complexity. Nature. 1984;311:419–24.CrossRefGoogle Scholar
  27. 27.
    Wiener N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol México. 1946;16:205–65.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Smolin AY, Eremina GM, Sergeyev VV, Shilko EV, Psakhie SG. Three-dimensional MCA simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter. Phys Mesomech. 2014;17:292–303.CrossRefGoogle Scholar
  29. 29.
    Smolin AY, Shilko EV, Astafurov SV, Konovalenko IS, Buyakova SP, Psakhie SG. Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method. Defence Technology. 2015;11:18–34.CrossRefGoogle Scholar
  30. 30.
    Kroc J. Application of cellular automata simulations to modelling of dynamic recrystallization. Lect Notes Comput Sci. 2002;2329:773–82.CrossRefzbMATHGoogle Scholar
  31. 31.
    Godara A, Raabe D. Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylene (iPP) by using a cellular automaton. Model Simul Mater Sci Eng. 2005;13:733–51.CrossRefGoogle Scholar
  32. 32.
    Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. New York: Pergamon; 1995.Google Scholar
  33. 33.
    Moiseenko DD, Panin VE, Maksimov PV, Panin SV, Berto F. Material fragmentation as dissipative process of micro rotation sequence formation: hybrid model of excitable cellular automata. AIP Conf Proc. 2014;1623:427–30.CrossRefGoogle Scholar
  34. 34.
    Moiseenko DD, Panin VE, Elsukova TF. Role of local curvature in grain boundary sliding in a deformed polycrystal. Phys Mesomech. 2013;16:335–47.CrossRefGoogle Scholar
  35. 35.
    Panin VE, Egorushkin VE, Moiseenko DD, et al. Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading. Comput Mater Sci. 2016;116:74–81.CrossRefGoogle Scholar
  36. 36.
    Sih GC. Mesomechanics of energy and mass interaction for dissipative systems. Phys Mesomech. 2010;13:233–44.CrossRefGoogle Scholar
  37. 37.
    Mott NF. Slip at grain boundaries and grain growth in metals. Proc Phys Soc. 1948;60:391–4.CrossRefzbMATHGoogle Scholar
  38. 38.
    Sadovskii VM, Sadovskaya OV. On the acoustic approximation of thermomechanical description of a liquid crystal. Phys Mesomech. 2013;16:310–6.CrossRefGoogle Scholar
  39. 39.
    Meshcheryakov YI, Khantuleva TA. Nonequilibrium processes in condensed media: part 1. Experimental studies in light of nonlocal transport theory. Phys Mesomech. 2015;18:228–43.CrossRefGoogle Scholar
  40. 40.
    Moiseenko DD, Pochivalov YI, Maksimov PV, Panin VE. Rotational deformation modes in near-boundary regions of grain structure in a loaded polycrystal. Phys Mesomech. 2013;16:248–58.CrossRefGoogle Scholar
  41. 41.
    Moiseenko DD, Maksimov PV, Panin SV, Panin VE. Defect accumulation in Nanoporous wear-resistant coatings under collective recrystallization. Simulation by hybrid cellular automaton method. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V, editors. Proceedings of VII European congress on computational methods in applied sciences and engineering. Published on-line https://eccomas2016.org/proceedings/pdf/10631.pdf.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dmitry D. Moiseenko
    • 1
  • Pavel V. Maksimov
    • 1
  • Sergey V. Panin
    • 3
  • Dmitriy S. Babich
    • 2
  • Viktor E. Panin
    • 1
    • 3
  1. 1.Laboratory of Physical Mesomechanics and Non-destructive testingInstitute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations