Advertisement

Multiscale Simulation of Precipitation in Copper-Alloyed Pipeline Steels and in Cu-Ni-Si Alloys

  • Dennis Rapp
  • Seyedsaeid Sajadi
  • David Molnar
  • Peter Binkele
  • Ulrich Weber
  • Stephen Hocker
  • Alejandro Mora
  • Joerg Seeger
  • Siegfried Schmauder
Living reference work entry

Abstract

In crystalline solids, the formation of precipitates is caused by the clustering of individual solute atoms dissolved in the matrix. This can happen, if the formation of clusters is energetically favorable relative to the dissolved state of atoms randomly distributed within the matrix. The clustering is driven by the stochastic process of diffusion and depending on diffusion speed, solute concentration, and mixing energies, atom clusters will form and grow, shrink or reach an equilibrium state after a long time of diffusion. As the presence of precipitates can greatly alter the mechanical properties of materials, the simulation of this nanoscopic process starting from the alloy composition up to the final distribution of precipitate numbers and sizes is key for computational design of alloys with desired mechanical properties. For achieving this, the atomistic kinetic Monte Carlo (AKMC) simulation method is used to mimic the stochastical diffusion process. For later stages of precipitation involving bigger clusters, the continuum phase-field method (PFM) can be used to accelerate the simulation. In this chapter, we will present two successful examples for the simulation of precipitation: One coupled approach of AKMC and PFM that was used for predicting the precipitation in copper-alloyed iron and another example of AKMC in the multicomponent Cu-Ni-Si system.

Notes

Acknowledgments

Support from the DFG through Collaborative Research Centre SFB 716, Project B.2 is gratefully acknowledged. The detailed description of each example in the chapter is reproduced from recently published works of the authors with kind support of the involved publishing company John Wiley & Sons, Inc. The original sources are Molnar et al. [1] and Sajadi et al. [2].

References

  1. 1.
    Molnar D, Weber U, Binkele P, Rapp D, Schmauder S. Prediction of macroscopic damage behaviour of precipitation strengthened steels via multiscale simulations. GAMM-Mitteilungen. 2015;38(2):228–47.CrossRefGoogle Scholar
  2. 2.
    Sajadi S, Hocker S, Mora A, Binkele P, Seeger J, Schmauder S. Precipitation in a copper matrix modeled by ab initio calculations and atomistic kinetic monte carlo simulations. Phys Status Solidi B. 2016.Google Scholar
  3. 3.
    Cluster of Excellence in Simulation Technology (SimTech), University of Stuttgart. Von isolierten numerischen Ansätzen zu einer integrativen Systemwissenschaft. SimTech. 2016. URL http://www.simtech.uni-stuttgart.de/
  4. 4.
    Kohlhoff S, Schmauder S, Gumbsch P. Coupled atomistic-continuum calculations of near interface cracking in metal-ceramic interfaces. Oxford: Pergamon Press, no. 4 in Acta-Scripta Metallurgica Proceedings Series; 1990. pp. 63–70.Google Scholar
  5. 5.
    Miller RE, Tadmor EB. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng. 2009;17(5):053001.CrossRefGoogle Scholar
  6. 6.
    Božić Ž, Schmauder S, Mlikota M, Hummel M. Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue Fract Eng Mater Struct. 2014;37:1043–54.CrossRefGoogle Scholar
  7. 7.
    Groh S, Zbib HM. Advances in discrete dislocations dynamics and multiscale modeling. J Eng Mater Technol Trans ASME. 2009;131(4):041209.CrossRefGoogle Scholar
  8. 8.
    Kizler P, Uhlmann D, Schmauder S. Linking nanoscale and macroscale: calculation of the change in crack growth resistance of steels with different states of Cu precipitation using a modification of stress-strain curves owing to dislocation theory. Nucl Eng Des. 2000;196(2):175–83.CrossRefGoogle Scholar
  9. 9.
    Kumar NN, Durgaprasad P, Dutta B, Dey G. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach. Comput Mater Sci. 2012;53(1):258–67.CrossRefGoogle Scholar
  10. 10.
    Monnet G. Investigation of precipitation hardening by dislocation dynamics simulations. Philos Mag. 2006;86(36):5927–41.CrossRefGoogle Scholar
  11. 11.
    Queyreau S, Monnet G, Wirth BD, Marian J. Modeling the dislocation-void interaction in a dislocation dynamics simulation. MRS Proc. 2011;1297Google Scholar
  12. 12.
    Siddiq A, Schmauder S, Rühle M. Niobium/alumina bicrystal interface fracture: a theoretical interlink between local adhesion capacity and macroscopic fracture energies. Eng Fract Mech. 2008;75(8):2320–32.CrossRefGoogle Scholar
  13. 13.
    Singh CV, Warner DH. An atomistic-based hierarchical multiscale examination of age hardening in an al-cu alloy. Metall Mater Trans A. 2013;44(6):2625–44.CrossRefGoogle Scholar
  14. 14.
    Molnar D. Multiskalensimulationen zum mechanischen verhalten von kupferlegiertem α-eisen. PhD thesis, University of Stuttgart. 2014. URL http://elib.uni-stuttgart.de/opus/volltexte/2015/9726
  15. 15.
    Uhlmann D. Werkstoffcharakterisierung des Werkstoffs 15 NiCuMoNb 5 einschließlich der Ermittlung der schädigungsmechanischen Parameter für das Rousselier-Modell für zwei Werkstoffzustände. Technischer Fachbericht, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart. 1999.Google Scholar
  16. 16.
    Weber U. Entwicklung von Softwarebausteinen zur Modellierung von Schädigungsvorg ängen mit besonderer Berücksichtigung der Nanosimulation. Final Report, Anhang 2, Technischer Fachbericht, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart. 2002.Google Scholar
  17. 17.
    Nembach E. Particle strengthening of metals and alloys. New York: Wiley; 1997.Google Scholar
  18. 18.
    Schmauder S, Binkele P. Atomistic computer simulation of the formation of Cu-precipitates in steels. Comput Mater Sci. 2002;24(1–2):42–53.CrossRefGoogle Scholar
  19. 19.
    Willer D, Zies G, Kuppler D, Fähl J, Katerbau KH. Service-induced changes of the properties of copper-containing ferritic pressure-vessel and piping steels. Final report, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart. 2001.Google Scholar
  20. 20.
    Pan F, Ruoff H, Willer D, Katerbau KH. Investigation on the microstructure of a pressure vessel/pipe steel 15 NiCuMoNb 5 (WB36). MPA-Bericht, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart. 1996.Google Scholar
  21. 21.
    Schick M, Wiedemann J, Willer D. Untersuchungen zur sicherheitstechnischen Bewertung von geschweissten Komponenten aus Werkstoff 15 NiCuMoNb 5 (WB36) im Hinblick auf die Zähigkeitsabnahme unter Betriebsbeanspruchung. Technischer Fachbericht, Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart. 1997.Google Scholar
  22. 22.
    Binkele P. Atomistische modellierung und computersimulation der ostwaldreifung von ausscheidungen beim einsatz von kupferhaltigen stählen. PhD thesis, University of Stuttgart; 2006.Google Scholar
  23. 23.
    Soisson F, Barbu A, Martin G. Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater. 1996;44(9):3789–800.CrossRefGoogle Scholar
  24. 24.
    Schmauder S, Kohler C. Atomistic simulations of solid solution strengthening of α-iron. Comput Mater Sci. 2011;50(4):1238–43.CrossRefGoogle Scholar
  25. 25.
    Bacon DJ, Osetsky YN. Mechanisms of hardening due to copper precipitates in α-iron. Philos Mag. 2009;89(34–36):3333–49.CrossRefGoogle Scholar
  26. 26.
    Grammatikopoulos P, Bacon DJ, Osetsky YN. The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron. Model Simul Mater Sci Eng. 2011;19(1):1–15.CrossRefGoogle Scholar
  27. 27.
    Kohler C, Kizler P, Schmauder S. Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition. Model Simul Mater Sci Eng. 2005a;13(1):35–45.CrossRefGoogle Scholar
  28. 28.
    Kohler C, Kizler P, Schmauder S. Atomistic simulation of the pinning of edge dislocations in ni by nb3al precipitates. Mater Sci Eng A. 2005b;400:481–4.CrossRefGoogle Scholar
  29. 29.
    Osetsky YN, Bacon DJ. An atomic-level model for studying the dynamics of edge dislocations in metals. Model Simul Mater Sci Eng. 2003;11(4):427–46.CrossRefGoogle Scholar
  30. 30.
    Heo YU, Kim YK, Kim JS, Kim JK. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy. Acta Mater. 2013;61(2):519–28.CrossRefGoogle Scholar
  31. 31.
    Othen PJ, Jenkins ML, Smith GDW. High-resolution Electron-microscopy studies of the structure of cu precipitates in α-Fe. Philos Mag A. 1994;70(1):1–24.CrossRefGoogle Scholar
  32. 32.
    Pizzini S, Roberts KJ, Phythian WJ, English CA, Greaves GN. A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe-Cu and Fe-Cu-Ni alloys. Philos Mag Lett. 1990;61(4):223–9.CrossRefGoogle Scholar
  33. 33.
    Othen PJ, Jenkins ML, Smith GDW, Phythian WJ. Transmission Electron-microscope investigations of the structure of copper precipitates in thermallyaged Fe-cu and Fe-cu-Ni. Philos Mag Lett. 1991;64(6):383–91.CrossRefGoogle Scholar
  34. 34.
    Habibi-Bajguirani HR, Jenkins ML. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5. Philos Mag Lett. 1996;73(4):155–62.CrossRefGoogle Scholar
  35. 35.
    Habibi HR. Atomic structure of the Cu precipitates in two stages hardening in maraging steel. Mater Lett. 2005;59(14–15):1824–7.CrossRefGoogle Scholar
  36. 36.
    Monzen R, Jenkins ML, Sutton AP. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. Philos Mag A. 2000a;80(3):711–23.CrossRefGoogle Scholar
  37. 37.
    Monzen R, Iguchi M, Jenkins ML. Structural changes of 9R copper precipitates in an aged Fe-Cu alloy. Philos Mag Lett. 2000b;80(3):137–48.CrossRefGoogle Scholar
  38. 38.
    Ackland GJ, Bacon DJ, Calder AF, Harry T. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential. Philos Mag A. 1997;75(3):713–32.CrossRefGoogle Scholar
  39. 39.
    Blackstock JJ, Ackland GJ. Phase transitions of copper precipitates in Fe-Cu alloys. Philos Mag A. 2001;81(9):2127–48.CrossRefGoogle Scholar
  40. 40.
    Erhart P, Marian J, Sadigh B. Thermodynamic and mechanical properties of copper precipitates in α-iron from atomistic simulations. Phys Rev B. 2013;88:024,116.CrossRefGoogle Scholar
  41. 41.
    Le Bouar Y. Atomistic study of the coherency loss during the b.c.c.-9R transformation of small copper precipitates in ferritic steels. Acta Mater. 2001;49(14):2661–9.CrossRefGoogle Scholar
  42. 42.
    Ludwig M, Farkas D, Pedraza D, Schmauder S. Embedded atom potential for Fe-Cu interactions and simulations of precipitate-matrix interfaces. Model Simul Mater Sci Eng. 1998;6(1):19–28.CrossRefGoogle Scholar
  43. 43.
    Molnar D, Maier F, Binkele P, Schmauder S. Molecular dynamics simulations on the coherency of Cu precipitates in bcc Fe. In: Eberhardsteiner J, et al., editors. Proceedings of the 20th European congress on computational methods in applied sciences and engineering (ECCOMAS), Wien; 2012a. pp. 1–7.Google Scholar
  44. 44.
    Goodman SR, Brenner SS, Low JR Jr. An FIM-atom probe study on the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy. Metall Trans. 1973;4(10):2371–8.CrossRefGoogle Scholar
  45. 45.
    Russell KC, Brown LM. Dispersion strengthening model based on differing elastic-moduli applied to iron-copper system. Acta Metall. 1972;20(7):969.CrossRefGoogle Scholar
  46. 46.
    Weber U. Modellierung von Verformung und Schädigung in Werkstoffgefügen mit unterschiedlich großen Teilchen und unter Wasserstoffeinfluss. PhD thesis, University of Stuttgart, Stuttgart. 2006.Google Scholar
  47. 47.
    Rousselier G. Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des. 1987;105(1):97–111.CrossRefGoogle Scholar
  48. 48.
    Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B, Schmauder S. Multiscale simulations on the coarsening of Cu-rich precipitates in α-fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations. Acta Mater. 2012b;60(20):6961–71.CrossRefGoogle Scholar
  49. 49.
    Soisson F, Fu CC. Cu-precipitation kinetics in α-Fe from atomistic simulations: vacancy-trapping effects and Cu-cluster mobility. Phys Rev B. 2007a;76:214102.CrossRefGoogle Scholar
  50. 50.
    Soisson F, Fu CC. Energetic landscapes and diffusion properties in FeCu alloys. Solid State Phenom. 2007b;129:31–9.CrossRefGoogle Scholar
  51. 51.
    Hocker S, Binkele P, Schmauder S. Precipitation in α-Fe based Fe-Cu-Ni-Mn-alloys: behaviour of Ni and Mn modelled by ab initio and kinetic Monte Carlo simulations. App Phys A: Mater Sci Process. 2014;115:679–87.CrossRefGoogle Scholar
  52. 52.
    Molnar D, Binkele P, Hocker S, Schmauder S. Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed α-iron at different states of thermal ageing. Philos Mag. 2012;92(5):586–607.CrossRefGoogle Scholar
  53. 53.
    Nestler B, Choudhury A. Phase-field modeling of multi-component systems. Curr Opinion Solid State Mater Sci. 2011;15(3):93–105.CrossRefGoogle Scholar
  54. 54.
    Choudhury A, Nestler B. Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys Rev E Stat Nonlinear Soft Matter Phys. 2012;85(2):021602.CrossRefGoogle Scholar
  55. 55.
    Janssens KGF, Raabe D, Kozeschnik E, Miodownik MA, Nestler B. Computational materials engineering. 1st ed. Burlington, MA, USA: Elsevier Academic Press; 2007.  https://doi.org/10.1016/B978-0-12-369468-3.50012-5.
  56. 56.
    Boettinger WJ, Warren JA, Beckermann C, Karma A. Phase-field simulation of solidification. Annu Rev Mater Res. 2002;32:163–94.CrossRefGoogle Scholar
  57. 57.
    Chen LQ. Phase-field models for microstructure evolution. Annu Rev Mater Res. 2002;32:113–40.CrossRefGoogle Scholar
  58. 58.
    Thornton K, Ågren J, Voorhees PW. Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 2003;51(19):5675–710.CrossRefGoogle Scholar
  59. 59.
    Singer-Loginova I, Singer HM. The phase-field technique for modeling multiphase materials. Rep Prog Phys. 2008;71(10):106,501.CrossRefGoogle Scholar
  60. 60.
    Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution. Calphad: Comput Coupling Phase Diagrams Thermochem. 2008;32(2):268–94.CrossRefGoogle Scholar
  61. 61.
    Molnar D, Binkele P, Mora A, Mukherjee R, Nestler B, Schmauder S. Molecular dynamics virtual testing of thermally aged Fe-Cu microstructures obtained from multiscale simulations. Comput Mater Sci. 2014;81:466–70.CrossRefGoogle Scholar
  62. 62.
    Hu SY, Ludwig M, Kizler P, Schmauder S. Atomistic simulations of deformation and fracture of alpha-fe. Model Simul Mater Sci Eng. 1998;6(5):567–86.CrossRefGoogle Scholar
  63. 63.
    Saraev D, Kizler P, Schmauder S. The influence of frenkel defects on the deformation and fracture of alpha-fe single crystals. Model Simul Mater Sci Eng. 1998;7(6):1013–23.CrossRefGoogle Scholar
  64. 64.
    Molnar D, Binkele P, Hocker S, Schmauder S. Multiscale modelling of nano tensile tests for different Cu-precipitation states in α-Fe. In: Gumbsch P, Giessen E, editors. Proceedings of the 5th international conference multiscale materials modeling (MMM2010). Freiburg: Fraunhofer Verlag; 2010. pp. 235–239.Google Scholar
  65. 65.
    Hocker S, Schmauder S, Kumar P. Molecular dynamics simulations of Ni/NiAl interfaces. Eur Phys J B. 2011;82(2):133–41.CrossRefGoogle Scholar
  66. 66.
    Nedelcu S, Kizler P, Schmauder S, Moldovan N. Atomic scale modelling of edge dislocation movement in the α-fe-cu system. Model Simul Mater Sci Eng. 2000;8(2):181–91.CrossRefGoogle Scholar
  67. 67.
    Lasko G, Saraev D, Schmauder S, Kizler P. Atomic-scale simulations of the interaction between a moving dislocation and a bcc/fcc phase boundary. Comput Mater Sci. 2005;32(3–4):418–25.CrossRefGoogle Scholar
  68. 68.
    Stadler J, Mikulla R, Trebin HR. IMD: a software package for molecular dynamics studies on parallel computers. Int J Mod Phys C. 1997;8(5):1131–40.CrossRefGoogle Scholar
  69. 69.
    Bonny G, Pasianot RC, Castin N, Malerba L. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Philos Mag. 2009;89(34–36):3531–46.CrossRefGoogle Scholar
  70. 70.
    Drotleff K. Wechselwirkung von Cu-Ni-Ausscheidungen und Stufenversetzungen in α-Fe mittels Molekulardynamik-Simulationen, Studienarbeit, Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF), University of Stuttgart. 2011.Google Scholar
  71. 71.
    Suzuki T, Takeuchi S, Yoshinaga H. Dislocation dynamics and plasticity. Berlin: Springer; 1991, chapter 6.3.1CrossRefGoogle Scholar
  72. 72.
    Kizler P, Kohler C, Binkele P, Willer D, Al-Kassab T, Schmauder S. Nanosimulation of precipitate strengthening in steel, based on atomic-scale characterization of structure and order of precipitates. 31 MPA-seminar in Verbindung mit der Fachtagung Werkstoff- & Bauteilverhalten in der Energie und Anlagentechnik, Stuttgart; 2005. pp. 26.1–26.19, cD-ROM, ISSN 1861-5414.Google Scholar
  73. 73.
    IMD. IMD user guide. 2016. URL http://imd.itap.physik.uni-stuttgart.de/
  74. 74.
    Hull D, Bacon DJ. Introduction to dislocations. 5th ed. Butterworth-Heinemann; 2011.Google Scholar
  75. 75.
    Hirth JP, Lothe J, editors. Theory of dislocations. 2nd ed. Malabar: Krieger Publishing Company; 1992.MATHGoogle Scholar
  76. 76.
    Devincre B. Homepage for microMegas (mM). 2016. URL http://zig.onera.fr/mm_home_page/
  77. 77.
    Rosenberg JM, Piehler HR. Calculation of the Taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall Trans. 1971;2:257–9.CrossRefGoogle Scholar
  78. 78.
    Mählich U, Steglich D, Besson J, Brocks W. A user-material subroutine of the rousselier-model of porous metal plasticity. Technischer Bericht GKSS/WMS/00/02, GKSS-Forschungszentrum. 2000.Google Scholar
  79. 79.
    Batisse R, Bethmont M, Devesa G, Rousselier G. Ductile fracture of a A508 CI.3 steel in relation with inclusion content: the benefit of the local approach of fracture and continuum damage mechanics. Nucl Eng Des. 1987;105:113–20.CrossRefGoogle Scholar
  80. 80.
    Seidenfuß M. Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffs 20 MnMoNi 5. PhD thesis, University of Stuttgart, Stuttgart. 1992.Google Scholar
  81. 81.
    Rousselier G. Section 6.6 – The rousselier model for porous metal plasticity and ductile fracture. In: Lemaitre J, editor. Handbook of materials behavior models. New York: Academic; 2001. p. 436–45.CrossRefGoogle Scholar
  82. 82.
    Kocks UF. The relation between polycrystal deformation and single-crystal deformation. Metall Mater Trans. 1970;1(5):1121–43.CrossRefGoogle Scholar
  83. 83.
    Lockyer S, Noble FW. Precipitate structure in a Cu-Ni-Si alloy. Mater Sci. 1994;29:218–26.CrossRefGoogle Scholar
  84. 84.
    Jia Y, Wang M, Chen C, Dong Q, Wang S, Li Z. Orientation and diffraction patterns of -ni2si precipitates in CuNiSi alloy. J Alloys Compd. 2013;557:147–51.CrossRefGoogle Scholar
  85. 85.
    Rdzawski Z, Stobrawa J. Thermomechanical processing of CuNiSiCrMg alloy. Mater Sci Technol. 1993;9:142–8.CrossRefGoogle Scholar
  86. 86.
    Zhao D, Dong Q, Liu P, Kang B, Huang J, Jin Z. Aging behavior of CuNiSi alloy. Mater Sci Eng A. 2003;361:93–9.CrossRefGoogle Scholar
  87. 87.
    Corson M. Über Cu-Ni-Si legierungen. Z Metallkd. 1927;19:370.Google Scholar
  88. 88.
    Lei Q, Li Z, Zhu A, Qiu W, Liang S. The transformation behavior of Cu8.0Ni1.8Si0.6Sn0.15Mg alloy during isothermal heat treatment. Mater Charact. 2011;62:904–11.CrossRefGoogle Scholar
  89. 89.
    Kinder J, Fischer-Bühner J. Ausscheidungsuntersuchungen an höherfesten und hochleitfähigen [cuni2si]. Metall. 2005;59:722–7.Google Scholar
  90. 90.
    Lei Q, Li Z, Dai C, Wang J, Chen X, Xi J, Yang W, Chen D. Effect of aluminum on microstructure and property of CuNiSi alloys. Mat Sci Eng A. 2013;572:65–74.CrossRefGoogle Scholar
  91. 91.
    Cheng J, Tang B, Yu F, Shen B. Evaluation of nanoscaled precipitates in a CuNiSiCr alloy during aging. J Alloys Compd. 2014;614:189–95.CrossRefGoogle Scholar
  92. 92.
    Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y. Improvement in strength and electrical conductivity of CuNiSi alloys by aging and cold rolling. J Alloys Compd. 2006;417:116–20.CrossRefGoogle Scholar
  93. 93.
    Altenberger I, Kuhn H, Gholami M, Mhaede M, Wagner L. Ultrafine-grained precipitation hardened copper alloys by swaging or accumulative roll bonding. Metals. 2015;5:763–76.CrossRefGoogle Scholar
  94. 94.
    Monzen R, Watanabe C. Microstructure and mechanical properties of CuNiSi alloys. Mater Sci Eng A. 2008;483:117119.Google Scholar
  95. 95.
    Lee S, Matsunaga H, Sauvage X, Horita Z. Strengthening of CuNiSi alloy using high-pressure torsion and aging. Mater Charact. 2014;90:62–70.CrossRefGoogle Scholar
  96. 96.
    Binkele P, Schmauder S. An atomistic Monte Carlo simulation of precipitation in a binary system. Z Metallkd. 2003;94:1–8.CrossRefGoogle Scholar
  97. 97.
    Vincent E, Becquart C, Pareige C, Pareige P, Domain C. Precipitation of the fecu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater. 2008;373:387–401.CrossRefGoogle Scholar
  98. 98.
    Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5:482–8.CrossRefGoogle Scholar
  99. 99.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996a;6:15.CrossRefGoogle Scholar
  100. 100.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996b;54:11,169.CrossRefGoogle Scholar
  101. 101.
    Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558.CrossRefGoogle Scholar
  102. 102.
    Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys Rev B. 1994;49:14,251.CrossRefGoogle Scholar
  103. 103.
    Monkhorst H, Pack J. Special points for brillouin-zone integrations. Phys Rev B. 1976;13:5188.MathSciNetCrossRefGoogle Scholar
  104. 104.
    Blöchl P. Projector augmented-wave method. Phys Rev B. 1994;50:17,953.CrossRefGoogle Scholar
  105. 105.
    Kresse G, Joubert J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.CrossRefGoogle Scholar
  106. 106.
    Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46:6671.CrossRefGoogle Scholar
  107. 107.
    Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1993;48:4978.CrossRefGoogle Scholar
  108. 108.
    Jelinek B, Groh S, Horstemeyer MF, Houze J, Kim SG, Wagner GJ, Moitra A, Baskes MI. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys Rev B. 2012;85:245,102.CrossRefGoogle Scholar
  109. 109.
    Miettinen J. Thermodynamic description of the CuAlNi system at the CuNi side. Calphad. 2005;29:212–21.CrossRefGoogle Scholar
  110. 110.
    Hu T, Chen J, Liu J, Liu Z, Wu C. The crystallographic and morphological evolution of the strengthening precipitates in CuNiSi alloys. Acta Mater. 2013;61:1210–9.CrossRefGoogle Scholar
  111. 111.
    Lei J, Huang J, Liu P, Jing X, Zhao D, Jing X. The effects of aging precipitation on the recrystallization of CuNiSiCr alloy. Wuhan Univ Technol-Mat Sci Edit. 2005;20:21–4.CrossRefGoogle Scholar
  112. 112.
    Zhang Y, Tian B, Volinsky A, Sun H, Chai Z, Liu P, Chen X, Liu Y. Microstructure and precipitate’s characterization of the Cu-Ni-Si-P alloy. J Mater Eng Perform. 2016;25:1336–41.CrossRefGoogle Scholar
  113. 113.
    Villars P, Okamoto H. Cu-Ni-Si vertical section of ternary phase diagram: datasheet from “linus pauling file multinaries edition – 2012” in springermaterials. 2014. URL http://materials.springer.com/isp/phase-diagram/docs/c_0926898, copyright 2014 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan.
  114. 114.
    Novikov V. Concise dictionary of materials science structure and characterization of polycrystalline materials, 105. In: CRC press LLC; 2003.Google Scholar
  115. 115.
    Hu QM, Yang R, Xu DS, Hao YL, Li D. Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al. Phys Rev B. 2003;67:224,203.CrossRefGoogle Scholar
  116. 116.
    Tyson W, Miller W. Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci. 1977;62:267.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dennis Rapp
    • 1
  • Seyedsaeid Sajadi
    • 1
  • David Molnar
    • 1
  • Peter Binkele
    • 1
  • Ulrich Weber
    • 2
  • Stephen Hocker
    • 1
  • Alejandro Mora
    • 1
  • Joerg Seeger
    • 3
  • Siegfried Schmauder
    • 1
  1. 1.Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF)University of StuttgartStuttgartGermany
  2. 2.Materials Testing Institute, University of StuttgartStuttgartGermany
  3. 3.Wieland-Werke AGUlmGermany

Personalised recommendations