Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Hydrogenation Reaction in Ionic Liquids

  • Wenbao Ma
  • Yunxiang Qiao
  • Zhenshan HouEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_84-1

Abbreviations

ILs

Ionic liquids

NPs

Nanoparticles

nbd

Norbornadiene

bmim

1-Butyl-3-methylimidazolium

cod

1,5-Cyclooctadiene

BINAP

1,1′-Binaphthalene-2,2′-diylbis(diphenylphosphane)

RT

Room temperature

cIL

Chiral ionic liquid

scCO 2

Supercritical CO2

SIL

Supported ionic liquid

[BMMim]OAc

1-Butyl-2,3-dimethylimidazolium acetate

Introduction

Ionic liquids (ILs) are organic salts with organic cation and suitable anion combinations, which exhibit low melting points (<100 °C). The most common salts in use are those with alkylammonium, alkylphosphonium, N-alkylpyridinium, and N, N-dialkylimidazolium cations with various organic or inorganic anions. ILs have many unusual properties, such as low vapor pressure, wide liquid range, strong polarity, inherent designer nature, and recyclability. Not surprisingly, ILs have been found wide applications in various catalytic reactions, especially in hydrogenation reactions.

ILs in the Hydrogenation Reactions

There are several book chapters, especially a...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Ghavre M, Morrissey S, Gathergood N (2011) Hydrogenation in ionic liquids. In: Kokorin A (ed) Ionic liquids: applications and perspectives. IntechOpen, Rijeka, pp 331–392. chapter 15Google Scholar
  2. 2.
    Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and Hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1, 3-Dialkylimidazoliurn salts. Angew Chem Int Ed 34:2698–2700CrossRefGoogle Scholar
  3. 3.
    Hu AG, Ngo HL, Lin WB (2004) Remarkable 4,4’-substituent effects on Binap: highly enantioselective Ru catalysts for asymmetric hydrogenation of β-aryl Ketoesters and their immobilization in room-temperature ionic liquids. Angew Chem Int Ed 43:2501–2504CrossRefGoogle Scholar
  4. 4.
    Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8:1628–1634CrossRefGoogle Scholar
  5. 5.
    Guernik S, Wolfson A, Herskowitz M, Greenspoon N, Geresh S (2001) A novel system consisting of Rh-DuPHOS and ionic liquid for asymmetric hydrogenations. Chem Commun 22:2314–2315CrossRefGoogle Scholar
  6. 6.
    Dyson PJ, Ellis DJ, Welton T (2001) A temperature-controlled reversible ionic liquid–water two phase-single phase protocol for hydrogenation catalysis. Can J Chem 79:705–708CrossRefGoogle Scholar
  7. 7.
    Schulz PS, Müller N, Bösmann A, Wasserscheid P (2007) Effective chirality transfer in ionic liquids through ion-pairing effects. Angew Chem Int Ed 46:1293–1295CrossRefGoogle Scholar
  8. 8.
    Chen DJ, Schmitkamp M, Franciò G, Klankermayer J, Leitner W (2008) Enantioselective hydrogenation with racemic and Enantiopure Binap in the presence of a chiral ionic liquid. Angew Chem Int Ed 47:7339–7341CrossRefGoogle Scholar
  9. 9.
    Brown RA, Pollet P, McKoon E, Eckert CA, Liotta CL, Jessop PG (2001) Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide. J Am Chem Soc 123:1254–1255CrossRefGoogle Scholar
  10. 10.
    Solinas M, Pfaltz A, Cozzi PG, Leitner W (2004) Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc 126:16142–16147CrossRefGoogle Scholar
  11. 11.
    Luska KL, Migowski P, Sayed SE, Leitner W (2015) Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective Hydrodeoxygenation of phenols. Angew Chem Int Ed 54:15750–15755CrossRefGoogle Scholar
  12. 12.
    Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W (2018) Bimetallic nanoparticles in supported ionic liquid phases as multifunctional catalysts for the selective Hydrodeoxygenation of aromatic substrates. Angew Chem Int Ed 130(39):12903–12908CrossRefGoogle Scholar
  13. 13.
    Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229CrossRefGoogle Scholar
  14. 14.
    Rossi LM, Machado G, Fichtner PFP, Teixeira SR, Dupont J (2004) On the use of ruthenium dioxide in 1-n-butyl-3-methylimidazolium ionic liquids as catalyst precursor for hydrogenation reactions. Catal Lett 92:149–155CrossRefGoogle Scholar
  15. 15.
    Julis J, Hölscher M, Leitner W (2010) Selective hydrogenation of biomass derived substrates using ionic liquid-stabilized ruthenium nanoparticles. Green Chem 12:1634–1639CrossRefGoogle Scholar
  16. 16.
    Yu YY, Zhu WW, Hua L, Yang HM, Qiao YX, Zhang R, Guo L, Zhao XG, Hou ZS (2014) Ionic liquid-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles for catalytic hydrogenation. J Colloid Interface Sci 415:117–126CrossRefGoogle Scholar
  17. 17.
    Tao RT, Miao SD, Liu ZM, Xie Y, Han BX, An GM, Ding KL (2009) Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reactions. Green Chem 11:96–101CrossRefGoogle Scholar
  18. 18.
    Zhu WW, Yu YY, Yang HM, Hua L, Qiao YX, Zhao XG, Hou ZS (2013) Cooperative effects in catalytic hydrogenation regulated by both the cation and anion of an ionic liquid. Chem Eur J 19:2059–2066CrossRefGoogle Scholar
  19. 19.
    Cimpeanu V, Kočevar M, Parvulescu VI, Leitner W (2009) Preparation of rhodium nanoparticles in carbon dioxide induced ionic liquids and their application to selective hydrogenation. Angew Chem Int Ed 48:1085–1088CrossRefGoogle Scholar
  20. 20.
    Karakulina A, Gopakumar A, Akçok İ, Roulier BL, LaGrange T, Katsyuba SA, Das S, Dyson PJ (2016) A rhodium nanoparticle–Lewis acidic ionic liquid catalyst for the Chemoselective reduction of Heteroarenes. Angew Chem Int Ed 55(1):292–296CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Section editors and affiliations

  • Buxing Han
    • 1
    • 2
  • Pete Licence
    • 3
  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.University of NottinghamNottinghamUK