Advertisement

Metrology pp 1-35 | Cite as

In-line Measurement Technology and Quality Control

  • Gisela LanzaEmail author
  • Benjamin Haefner
  • Leonard Schild
  • Dietrich Berger
  • Niclas Eschner
  • Raphael Wagner
  • Marielouise Zaiß
Living reference work entry
Part of the Precision Manufacturing book series (PRECISION)

Abstract

In-line quality control is able to provide direct feedback with regard to quality deviations in production systems. Thus, it is a crucial enabler to guarantee high-quality standards and prohibit waste within production. As an enabler for this, in-line measurement technology is to be implemented and applied in the production system in an effective manner. In this chapter, different types of in-line measurement technology are explained and structured. Based on this, a framework is introduced to systematically implement in-line metrology in production systems in order to realize suitable quality control cycles. Finally, the application of the framework is demonstrated in various industrial use cases.

Keywords

In-line measurement technology Quality control Quality control cycles Measurement technology Quality value stream mapping Measurement uncertainty Lightweight production Additive manufacturing Precision engineering Matching strategies 

References

  1. Aleshin NP, Murashov VV, Evgenov AG, Grigoriev MV, Shchipakov NA, Vasilenko SA, Krasnov IS (2016) The classification of flaws of metal materials synthesized by the selective laser melting method and the capabilities of nondestructive testing methods for their detection. Russ J Nondestruct Test 52(1):38–43CrossRefGoogle Scholar
  2. Colledani M, Tolio T (2006) Impact of quality control on production system performance. CIRP Ann-Manuf Technol 55(1):453–456CrossRefGoogle Scholar
  3. Colledani M, Ebrahimi D, Tolio T (2014) Integrated quality and production logistics modelling for the design of selective and adaptive assembly systems. CIRP Ann Manuf Technol 63(1):453–456CrossRefGoogle Scholar
  4. Damm B (2013) Robuste Kurbelwellenmessung mit Röntgenstrahlung. Dissertation. RWTH Aachen, AachenGoogle Scholar
  5. DIN EN ISO 15530-3 (2012) Geometrische Produktspezifikation und -prüfung (GPS) – Verfahren zur Ermittlung der Messunsicherheit von Koordinatenmessgeräten (KMG) – Teil 3: Anwendung von kalibrierten Werkstücken oder NormalenGoogle Scholar
  6. Ebrahimi D (2014) Integrated quality and production logistic performance modeling for selective and adaptive assembly systems. Dissertation. Politecnico di Milano, MilanoGoogle Scholar
  7. Eschner N, Kopf R, Lieneke T, Künneke T, Berger D, Häfner B et al (2017a) Kombination etablierter und additiver Fertigung. ZWF 112(7–8):469–472CrossRefGoogle Scholar
  8. Eschner N, Lingenhöl J, Öppling S, Lanza G (2017b) Monitoring a laser beam melting process with acoustic signalss. wt-online 107(11/12):818–823Google Scholar
  9. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445CrossRefGoogle Scholar
  10. Fanselow S, Sachs M, Wirth KE, Schmidt J, Peukert W (2016) New methods for process-adapted characterization for selective beam melting powders. In: Kniffka W, Eichmann M, Witt G (ed.) Rapid.Tech – International Trade Show & Conference for Additive Manufacturing. Proceedings of the 13th Rapid.Tech Conference. Hanser, Munich, pp 185–196Google Scholar
  11. Gevatter H-J, Grünhaupt U (2006) Handbuch der Mess- und Automatisierungstechnik in der Produktion. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  12. Haefner B, Kraemer A, Stauss T, Lanza G (2014) Quality value stream mapping. Procedia CIRP 17:254–259CrossRefGoogle Scholar
  13. Imkamp D, Schmitt R, Berthold J (2012) Blick in die Zukunft der Fertigungsmesstechnik. tm Tech Mess 79(10):433–439CrossRefGoogle Scholar
  14. Iyama T, Mizuno M, McKay KN, Yoshihara N, Nishikawa N (2013) Optimal strategies for corrective assembly approach applied to a high-quality relay production system. Comput Ind 64(5):556–564CrossRefGoogle Scholar
  15. JCGM 100:2008 (2008) Evaluation of measurement data – guide to the expression of uncertainty in measurement (GUM). Joint Committee for Guides in MetrologyGoogle Scholar
  16. JCGM 101:2008 (2008) Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method. Joint Committeefor Guides in MetrologyGoogle Scholar
  17. Kayasa MJ, Herrmann C (2012) A simulation-based evaluation of selective and adaptive production systems (SAPS) supported by quality strategy in production. Procedia CIRP 3:14–19CrossRefGoogle Scholar
  18. Kock H (2017) Track and trace fingerprint. Fraunhofer IPM, Freiburg. Available online at https://www.ipm.fraunhofer.de/content/dam/ipm/de/PDFs/Pressemitteilung/2017/PI-Track-trace-fingerprint-bauteil-rueckverfolgung.pdf. Updated on 6 Jan 2017, checked on 4 Apr 2018Google Scholar
  19. Koelmel A (2016) Integrierte Messtechnik für Prozessketten unreifer Technologien am Beispiel der Batterieproduktion für Elektrofahrzeuge. Dissertation. Karlsruhe Institute of Technology, KarlsruheGoogle Scholar
  20. Koelmel A, Sauer A, Lanza G (2014) Quality-oriented production planning of battery assembly systems for electric mobility. Procedia CIRP 23:149–154CrossRefGoogle Scholar
  21. La Croix A (2008) Risiko-kontrollierte Anwendung von Innovation & technologischem Fortschritt – Abschlussbericht zum INS 24 Projekt: Standarisierte Entscheidungshilfe zur Reifegradbewertung im Proudukt-Lebenszyklus – MachbarkeitsstudieGoogle Scholar
  22. Lanza G, Haefner B, Kraemer A (2015) Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching. CIRP Ann Manuf Technol 64(1):399–402CrossRefGoogle Scholar
  23. Lanza G, Kopf R, Zaiß M, Stricker N, Eschner N, Jacob A et al (2017) Laser-Strahlschmelzen – Technologie mit Zukunftspotenzial. Ein Handlungsleitfaden. Karlsruhe Institute of Technology (KIT), KarlsruheGoogle Scholar
  24. Loosen P, Funck M (2011) Integrative Produktion von Mikro-Lasern. In: Brecher C (ed) Cluster of excellence “Integrative production technology for high-wage countries”. Springer, Berlin/Heidelberg, pp 1068–1113Google Scholar
  25. Mankins JC (2009) Technology readiness assessments. A retrospective. Acta Astronaut 65(9–10):1216–1223CrossRefGoogle Scholar
  26. Matsuura S, Shinozaki N (2011) Optimal process design in selective assembly when components with smaller variance are manufactured at three shifted means. Int J Prod Res 49(3):869–882CrossRefGoogle Scholar
  27. Mease D, Nair VN, Sudjianto A (2004) Selective assembly in manufacturing: statistical issues and optimal binning strategies. Technometrics 46(2):165–175Google Scholar
  28. Nicolais L (2011) Wiley encyclopedia of composites. Sheet molding compounds. Wiley, HobokenCrossRefGoogle Scholar
  29. Peter M, Fleischer J (2014) Rotor balancing by optimized magnet positioning during algorithm-controlled assembly process: selection and assembly of rotor components minimizing the unbalance. In: Franke J (ed.) Proceedings of the 4th International Electric Drives Production Conference (EDPC). IEEE, pp 1–4Google Scholar
  30. QASS GmbH (2018) Quality monitoring during welding. Available online at http://qass.net/downloads/QASS%20-%20Welding%20-%20Quality%20Monitoring.pdf. Updated on 4 June 2018, checked on 4 June 2018
  31. Reif K (2012) Dieselmotor-management. Systeme, Komponenten, Steuerung und Regelung, 5th edn. Vieweg+Teubner, WiesbadenGoogle Scholar
  32. Schmitt R, Damm B (2008) Prüfen und Messen im Takt. Wie sie mit Inline-Messtechnik ihre Wertschöpfung maximieren. QZ 53:57–59Google Scholar
  33. Schmitt R, Imkamp D, Bettenhausen K, Berthold J (2011) Fertigungsmesstechnik 2020. Technologie-Roadmap für die Messtechnik in der industriellen Produktion. VDI, DüsseldorfGoogle Scholar
  34. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5(2):1–25Google Scholar
  35. Wagner R, Haefner B, Lanza G (2018) Adaptive quality control strategies for high precision products. Procedia CIRP 75:57–62Google Scholar
  36. Weckenmann A, Jiang X, Sommer K-D, Neuschaefer-Rube U, Seewig J, Shawa L, Estler T (2009) Multisensor data fusion in dimensional metrology. CIRP Ann Manuf Technol 58(2):701–721CrossRefGoogle Scholar
  37. Zaiß M, Jank M-H, Netzelmann U, Waschkies T, Rabe U, Herrmann H-G et al (2017) Use of thermography and ultrasound for the quality control of SMC lightweight material reinforced by carbon fiber tapes. Procedia CIRP 62:33–38CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gisela Lanza
    • 1
    Email author
  • Benjamin Haefner
    • 1
  • Leonard Schild
    • 1
  • Dietrich Berger
    • 1
  • Niclas Eschner
    • 1
  • Raphael Wagner
    • 1
  • Marielouise Zaiß
    • 1
  1. 1.wbk Institute of Production ScienceKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations