Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically)

  • Graham K. Murphy
  • Tanja Gulder
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_39-1


Fluorinated hypervalent iodine (III) reagents are a century-old class of compounds undergoing a resurgence over the past few decades. The renewed interest in these compounds stems from their ability to transfer fluorine to Lewis basic reagents as though they were a source of fluoronium “F +” ion. The purpose of this chapter is to introduce the reader to this growing field of fluorination chemistry by illustrating key trends and reactivity patterns, from the first synthesis of the reagent to the most recent advancements in catalytic asymmetric fluorinations [ 1]. The discussion will follow the chemistry of two classes of fluorinated hypervalent iodine (III) compounds, the (difluoroiodo)arenes ( 1) and the fluorinated iodobenzoxole ( 2) (Fig. 1). While this is intended to be comprehensive, the focus will be on discussing the differing reactivity patterns induced by these compounds, as opposed to presenting an exhaustive list of all the work.
This is a preview of subscription content, log in to check access.


  1. 1.
    Kohlhepp, S. V.; Gulder, T., Chem. Soc. Rev. 2016, 45, 6270.CrossRefGoogle Scholar
  2. 2.
    (a) Weinland, R. F.; Stille, W., Chem. Ber. 1901, 34, 2631; (b) Weinland, R. F.; Stille, W., Liebig Ann. Chem. 1903, 328, 132.Google Scholar
  3. 3.
    Lemal, D. M.; Tao, J.; Murphy, G. K., Difluoroiodotoluene. In Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd: 2001.Google Scholar
  4. 4.
    Ye, C. F.; Twamley, B.; Shreeve, J. M., Org. Lett. 2005, 7, 3961.CrossRefGoogle Scholar
  5. 5.
    Sarie, J. C.; Thiehoff, C.; Mudd, R. J.; Daniliuc, C. G.; Kehr, G.; Gilmour, R., J. Org. Chem. 2017, 82, 11792.CrossRefGoogle Scholar
  6. 6.
    Legault, C. Y.; Prevost, J., Act. Cryst., Sect. E 2012, 68, 1238.CrossRefGoogle Scholar
  7. 7.
    Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A., J. Org. Chem. 2013, 78, 6763.CrossRefGoogle Scholar
  8. 8.
    Geary, G. C.; Hope, E. G.; Singh, K.; Stuart, A. M., Chem. Commun. 2013, 49, 9263.CrossRefGoogle Scholar
  9. 9.
    Zhang, J.; Szabó, K. J.; Himo, F., ACS Catal. 2017, 7, 1093.CrossRefGoogle Scholar
  10. 10.
    Zhou, B.; Xue, X.-s.; Cheng, J.-p., Tetrahedron Lett. 2017, 58, 1287.CrossRefGoogle Scholar
  11. 11.
    Zhou, B.; Yan, T.; Xue, X.-S.; Cheng, J.-P., Org. Lett. 2016, 18, 6128.CrossRefGoogle Scholar
  12. 12.
    Zupan, M.; Pollak, A., J. Chem. Soc., Chem. Commun. 1975, 1975, 715.CrossRefGoogle Scholar
  13. 13.
    The use of the M/P nomenclature for axial chirality is more convenient than the older and more complicated aR/aS definition. In addition, it avoids any confusion with centrochiral elements and it is in better agreement with the denotation for planar chirality. Detailed explanations on the M/P nomenclature can be found in (a) Hanson, K. R., J. Am. Chem. Soc. 1966, 88, 2731; (b) Helmchen, G., Nomenclature and Vocabulary of Organic Stereochemistry. In Methods of Organic Chemistry, Houben-Weyl, Vol. 21a Thieme, New York: 1995; (c) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.Google Scholar
  14. 14.
    Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K., Angew. Chem., Int. Ed. 2016, 55, 413.CrossRefGoogle Scholar
  15. 15.
    Yoshida, M.; Fujikawa, K.; Sato, S.; Hara, S., ARKIVOC 2003, 36.Google Scholar
  16. 16.
    Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N., Chem. Sci. 2014, 5, 2754.CrossRefGoogle Scholar
  17. 17.
    Geary, G. C.; Hope, E. G.; Singh, K.; Stuart, A. M., Chem. Commun. 2013, 49, 9263.CrossRefGoogle Scholar
  18. 18.
    Sato, S.; Yoshida, M.; Hara, S., Synthesis 2005, 2602.Google Scholar
  19. 19.
    Hara, S.; Nakahigashi, J.; Ishi-i, K.; Sawaguchi, M.; Sakai, H.; Fukuhara, T.; Yoneda, N., Synlett 1998, 495.Google Scholar
  20. 20.
    Molnár, I. G.; Gilmour, R., J. Am. Chem. Soc. 2016, 138, 5004.CrossRefGoogle Scholar
  21. 21.
    Banik, S. M.; Medley, J. W.; Jacobsen, E. N., J. Am. Chem. Soc. 2016, 138, 5000.CrossRefGoogle Scholar
  22. 22.
    Patrick, T. B.; Scheibel, J. J.; Hall, W. E.; Lee, Y. H., J. Org. Chem., 1980, 45, 4492.CrossRefGoogle Scholar
  23. 23.
    Kitamura, T.; Muta, K.; Oyamada, J., J. Org. Chem., 2015, 80, 10431.CrossRefGoogle Scholar
  24. 24.
    Banik, S. M.; Medley, J. W.; Jacobsen, E. N., Science 2016, 353, 51.CrossRefGoogle Scholar
  25. 25.
    Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J., Angew. Chem., Int. Ed. 2014, 53, 12897.CrossRefGoogle Scholar
  26. 26.
    Hara, S.; Nakahigashi, J.; Ishi-i, K.; Fukuhara, T.; Yoneda, N., Tetrahedron Lett. 1998, 39, 2589.CrossRefGoogle Scholar
  27. 27.
    Zhao, Z.; Racicot, L.; Murphy, G. K., Angew. Chem., Int. Ed. 2017, 56, 11620.CrossRefGoogle Scholar
  28. 28.
    Sawaguchi, M.; Hara, S.; Fukuhara, T.; Yoneda, N., J. Fluorine Chem. 2000, 104, 277.CrossRefGoogle Scholar
  29. 29.
    Yuan, W.; Szabó, K. J., Angew. Chem. Int. Ed. 2015, 54, 8533.CrossRefGoogle Scholar
  30. 30.
    Ulmer, A.; Brunner, C.; Arnold, A. M.; Poethig, A.; Gulder, T., Chem. Eur. J. 2016, 22, 3660.CrossRefGoogle Scholar
  31. 31.
    Yang, B.; Chansaenpak, K.; Wu, H.; Zhu, L.; Wang, M.; Li, Z.; Lu, H., Chem. Commun. 2017, 53, 3497.CrossRefGoogle Scholar
  32. 32.
    Geary, G. C.; Hope, E. G.; Stuart, A. M., Angew. Chem. Int. Ed. 2015, 54, 14911.CrossRefGoogle Scholar
  33. 33.
    Woerly, E. M.; Banik, S. M.; Jacobsen, E. N., J. Am. Chem. Soc. 2016, 138, 13858.CrossRefGoogle Scholar
  34. 34.
    Kong, W.; Feige, P.; de Haro, T.; Nevado, C., Angew. Chem., Int. Ed. 2013, 52, 2469.CrossRefGoogle Scholar
  35. 35.
    Ilchenko, N. O.; Hedberg, M.; Szabó, K. J., Chem. Sci. 2017, 8, 1056.CrossRefGoogle Scholar
  36. 36.
    Banik, S. M.; Mennie, K. M.; Jacobsen, E. N., J. Am. Chem. Soc. 2017, 139, 9152.CrossRefGoogle Scholar
  37. 37.
    Tao, J.; Tran, R.; Murphy, G. K., J. Am. Chem. Soc. 2013, 135, 16312.CrossRefGoogle Scholar
  38. 38.
    Sinclair, G. S.; Tran, R.; Tao, J.; Hopkins, W. S.; Murphy, G. K., Eur. J. Org. Chem. 2016, 2016, 4603.CrossRefGoogle Scholar
  39. 39.
    Emer, E.; Twilton, J.; Tredwell, M.; Calderwood, S.; Collier, T. L.; Liegault, B.; Taillefer, M.; Gouverneur, V., Org. Lett. 2014, 16, 6004.CrossRefGoogle Scholar
  40. 40.
    Zhou, Y.; Zhang, Y.; Wang, J., Org. Biomol. Chem. 2016, 14, 10444.CrossRefGoogle Scholar
  41. 41.
    Zhao, Z.; Kulkarni, K. G.; Murphy, G. K., Adv. Synth. Catal. 2017, 359, 2222.CrossRefGoogle Scholar
  42. 42.
    Kulkarni, K. G.; Miokovic, B.; Sauder, M.; Murphy, G. K., Org. Biomol. Chem. 2016, 14, 9907.CrossRefGoogle Scholar
  43. 43.
    Fuchigami, T.; Fujita, T., J. Org. Chem. 1994, 59, 7190.CrossRefGoogle Scholar
  44. 44.
    Arrica, M. A.; Wirth, T., Eur. J. Org. Chem. 2005, 2005, 395.Google Scholar
  45. 45.
    Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S., Tetrahedron Lett. 2003, 44, 4117.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada
  2. 2.Department of Chemistry and Catalysis Research Center (CRC)Technical University MunichGarchingGermany