Advertisement

Cognitive Radio and TV White Space (TVWS) Applications

  • J. H. Martin
  • L. S. Dooley
  • K. C. P. Wong
Living reference work entry

Abstract

As more user applications emerge for wireless devices, the corresponding amount of traffic is rapidly expanding, with the corollary that ever-greater spectrum capacity is required. Service providers are experiencing deployment blockages due to insufficient bandwidth being available to accommodate such devices. TV White Space (TVWS) represents an opportunity to supplement existing licensed spectrum by exploiting unlicensed resources. TVWS spectrum has materialized from the unused TV channels in the switchover from analogue to digital platforms. The main obstacles to TVWS adoption are reliable detection of primary users (PU) i.e., TV operators and consumers, allied with specifically, the hidden node problem. This chapter presents a new generalized enhanced detection algorithm (GEDA) that exploits the unique way digital terrestrial TV (DTT) channels are deployed in different geographical areas. GEDA effectively transforms an energy detector into a feature sensor to achieve significant improvements in detection probability of a DTT PU. Furthermore, by framing a novel margin strategy utilizing a keep-out contour, the hidden node issue is resolved and a viable secondary user sensing solution formulated. Experimental results for a cognitive radio TVWS model have formalized both the bandwidth and throughput gains secured by TVWS users with this new paradigm.

References

  1. 1.
    Cisco (2016) Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 [Online], Available at http://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf. Accessed Feb 2016
  2. 2.
    Hossain E, Niyato D, Han Z (2009) Dynamic spectrum access and management in cognitive radio networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Nekovee M (2010) Cognitive radio access to TV white spaces: spectrum opportunities, commercial applications and remaining technology challenges. In: IEEE DySPAN, Singapore, 6–9 Apr 2010. IEEE, pp 1–10Google Scholar
  4. 4.
    Fitch M, Nekovee M, Kawade S, Briggs K, MacKenzie R (2011) Wireless service provision in TV white space with cognitive radio technology: a telecom operator’s perspective and experience. IEEE Commun Mag 49(3);64–73CrossRefGoogle Scholar
  5. 5.
    OFCOM (2016) Digital Switchover Transmitter Details [Online]. Available at https://www.ofcom.org.uk/spectrum/information/transmitter-frequency. Accessed 14 Mar 2017
  6. 6.
    FCC (2015) Engineering DTV Maps [Online], Available at https://www.fcc.gov/media/engineering/dtvmaps. Accessed Jan 2015
  7. 7.
    GSMA (2014) Understanding 5G: perspectives on future technological advancements in mobile [Online]. Available at https://www.gsmaintelligence.com/research/?file=141208-5g.pdf&download. Accessed Feb 2016
  8. 8.
    NGMN (2015) NGMN 5G White Paper. Frankfurt Germany, NGMN, Version 1.0Google Scholar
  9. 9.
    EPRS (2016) 5G network technology- putting Europe at the leading edge, Brussels, European Parliament, PE 573.892Google Scholar
  10. 10.
    Akyildiz IF, Lee W-Y, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Netw IEEE 23(4):6–12CrossRefGoogle Scholar
  11. 11.
    Haykin S (2005) Cognitive radio: brain empowered wireless communication. IEEE JSAC 23(2):201–220Google Scholar
  12. 12.
    Nekovee M (2011) Current trends in regulation of secondary access to TV white spaces using cognitive radio. In: IEEE globecom 2011, Kathmandu, 5–9 Dec 2011. IEEE, pp 1–6Google Scholar
  13. 13.
    Nekovee M (2012) TV white space services in the UK: current status and future. In: Directions, BT, HSN 2012 conference presentation, 12/1/2012 Jeju IslandGoogle Scholar
  14. 14.
    Cambridge White Spaces Consortium (2012) Cambridge TV white spaces trial, a summary of the technical findings [online]. Available at http://www.cambridgewireless.co.uk/docs/Cambridge. Accessed 20th Apr 2013
  15. 15.
    Chen K-C, Prasad R (2009) Cognitive radio networks. Wiley, ChichesterCrossRefGoogle Scholar
  16. 16.
    Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50:2127–2159CrossRefGoogle Scholar
  17. 17.
    Martin JH, Dooley LS, Wong KCP (2016) A new dynamic spectrum access algorithm for TV white space cognitive radio networks. IET Commun J 10(18):2591–2597CrossRefGoogle Scholar
  18. 18.
    OFCOM (2015) Implementing TV white spaces. London, OFCOM, 12 Feb 2015Google Scholar
  19. 19.
    Ramjee R, Roy S, Chintalapudi K (2016) A critique of FCC’s TV white space regulations. GetMobile 20(1):20–25CrossRefGoogle Scholar
  20. 20.
    Nominet (2018) Autonomous vehicles [Online]. Available at https://www.nominet.uk/emerging-technology/autonomous-vehicles-driven/. Accessed Feb 2018
  21. 21.
    Lei Qiu Jing C, Viessmann A, Kocks C, Bruck GH, Jung P, Qingyang Hu R (2011) A spectrum sensing prototype for TV white space in China. In: GLOBECOM 2011, Kathmandu, 5–9 Dec 2011. IEEE, pp 1–6Google Scholar
  22. 22.
    Chen H-S, Gao W (2011) Spectrum sensing for TV white space in North America. IEEE J Sel Areas Commun 29(2):1–11CrossRefGoogle Scholar
  23. 23.
    IEEE (2013) 802.11af™-2013: IEEE standards- amendment 5: television white spaces (TVWS) operation. IEEE Computer SocietyGoogle Scholar
  24. 24.
    Sheng L, Shao J, Ding J (2010) A novel energy-efficient approach to DSR based routing protocol for ad hoc network. In: ICECE 2010, Wuhan, 25–27 June 2010. IEEE, pp 2618–2620Google Scholar
  25. 25.
    Yuanzhou L, Weihua H (2010) Optimization strategy for mobile ad hoc network based on AODV routing protocol. In: WiCOM 2010, Chengdu, 23–25 Sept 2010. IEEE, pp 1–4Google Scholar
  26. 26.
    Baldo N, Zorzi M (2008) Fuzzy logic for cross-layer optimization in cognitive radio networks. IEEE Commun Mag 46(4):64–71CrossRefGoogle Scholar
  27. 27.
    Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18CrossRefGoogle Scholar
  28. 28.
    Ghosh C, Agrawal DP (2007) ROPAS: cross-layer cognitive architecture for wireless mobile adhoc networks. In: IEEE international conference on mobile adhoc and sensor systems, Pisa, pp 1–7Google Scholar
  29. 29.
    Kokar MM, Lechowicz L (2009) Language issues for cognitive radio. Proc IEEE 97(4): 689–707CrossRefGoogle Scholar
  30. 30.
    He A, Bae KK, Newman TR, Gaeddert J, Kim K, Menon R, Morales-Tirado L, Neel J, Zhao Y, Reed JH, Tranter WH (2010) A survey of artificial intelligence for cognitive radios. IEEE Trans Veh Technol 59(4):1578–1592CrossRefGoogle Scholar
  31. 31.
    Zhu X, Champagne B, Zhu W-P (2013) Cooperative spectrum sensing based on the rao test in non-Gaussian noise environments. In: WCSP 2013, Hangzhou, 24–26 Oct 2013. IEEE, pp 1–6Google Scholar
  32. 32.
    Martin JH, Dooley LS, Wong KCP (2011) A new cross-layer design strategy for TV white space cognitive radio applications. In: IEEE IWCLD, pp 1–5Google Scholar
  33. 33.
    Martin JH, Dooley LS, Wong KCP (2013) A new cross-layer dynamic spectrum access architecture for TV white space cognitive radio applications. In: IET ISP, pp 1—5Google Scholar
  34. 34.
    COGEU (2009) Cognitive radio systems for efficient sharing of TV white spaces in European context [Online]. Available at http://www.ict-cogeu.eu/pdf/COGEU_D2_1%20(ICT_248560).pdf. Accessed 20 Apr 2015
  35. 35.
    Taub H, Schilling DL (1986) Principles of communication systems. McGraw-Hill, New YorkGoogle Scholar
  36. 36.
    Kang K-M, Park JC, Cho S-I, Jeong BJ (2012) Deployment and coverage of cognitive radio networks in TV white space. IEEE Commun Mag 50:88–95CrossRefGoogle Scholar
  37. 37.
    Alcatel-Lucent and BT (2013) WI-FI roaming – building on ANDSF AND HOTSPOT2.0 [Online]. Available at http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/6686-wi-fi-roaming-building-andsfand-hotspot20.pdf. Accessed July 2015

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • J. H. Martin
    • 1
    • 2
  • L. S. Dooley
    • 3
  • K. C. P. Wong
    • 3
  1. 1.IP/Optical Networks (ION)NokiaBristolUK
  2. 2.School of Computing and CommunicationsThe Open UniversityMilton KeynesUK
  3. 3.School of Computing and CommunicationsThe Open UniversityMilton KeynesUK

Section editors and affiliations

  • Yue Gao
    • 1
  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations