Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Electrospray Ionization Mass Spectrometry of Phospholipids

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_198-1

Abbreviations and Acronyms


Atmospheric pressure chemical ionization


Electron ionization


Electrospray ionization


Fourier-transform ion cyclotron resonance


Gas chromatography




High-performance liquid chromatography


Ion mobility spectrometry


Ion trap


Liquid chromatography


Matrix-assisted laser desorption/ionization


Mass spectrometry


Tandem mass spectrometry


Nonalcoholic fatty liver disease










Thin-layer chromatography




Mass spectrometry (MS) is unequivocally one of the most powerful and contemporary methods of (phospho)lipid analysis (Yang and Han 2016). The extreme sensitivity of MS, its considerable mass accuracy, and high mass resolution (dependent on the used mass spectrometer and the quality of its mass analyzer) enable the detailed analysis of complex biological lipid mixtures...

This is a preview of subscription content, log in to check access.


  1. Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev. 2018;37:107–38.PubMedCrossRefGoogle Scholar
  2. Bielawska K, Dziakowska I, Roszkowska-Jakimiec W. Chromatographic determination of fatty acids in biological material. Toxicol Mech Methods. 2010;20:526–37.PubMedCrossRefGoogle Scholar
  3. Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83:79–98.PubMedCrossRefGoogle Scholar
  4. Bruins AP. Mechanistic aspects of electrospray ionization. J Chromatogr A. 1998;794:345–57.CrossRefGoogle Scholar
  5. Byrdwell WC. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001;36:327–46.PubMedCrossRefGoogle Scholar
  6. Domingues MR, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids. 2008;156:1–12.PubMedCrossRefGoogle Scholar
  7. Eibisch M, Fuchs B, Schiller J, Süß R, Teuber K. Analysis of phospholipid mixtures from biological tissues by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS): a laboratory experiment. J Chem Educat. 2011;88:503–7.CrossRefGoogle Scholar
  8. Ellis SR, Brown SH, In Het Panhuis M, Blanksby SJ, Mitchell TW. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res. 2013;52:329–53.PubMedCrossRefGoogle Scholar
  9. Engel KM, Schiller J. A comparison of PC oxidation products as detected by MALDI-TOF and ESI-IT mass spectrometry. Chem Phys Lipids. 2017;203:33–45.PubMedCrossRefGoogle Scholar
  10. Engel KM, Griesinger H, Schulz M, Schiller J. Normal-phase versus reversed-phase thin-layer chromatography (TLC) to monitor oxidized phosphatidylcholines by TLC/mass spectrometry. Rapid Commun Mass Spectrom. 2019;33:60–5.PubMedCrossRefGoogle Scholar
  11. Fuchs B, Schiller J. Mass spectrometry of biological molecules. In: Encyclopedia of analytical chemistry. John Wiley & Sons Ltd., Chichester; 2016. Google Scholar
  12. Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49:450–75.PubMedCrossRefGoogle Scholar
  13. Fuchs B, Süss R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A. 2011;1218:2754–74.PubMedCrossRefGoogle Scholar
  14. Furey A, Moriarty M, Bane V, Kinsella B, Lehane M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 2013;115:104–22.PubMedCrossRefGoogle Scholar
  15. Giles C, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Contemporary lipidomic analytics: opportunities and pitfalls. Prog Lipid Res. 2018;71:86–100.PubMedCrossRefGoogle Scholar
  16. Gode D, Volmer, DA. Lipid imaging by mass spectrometry – a review. Analyst. 2013;138:1289–315.PubMedCrossRefGoogle Scholar
  17. Griesinger H, Fuchs B, Süß R, Matheis K, Schulz M, Schiller J. Stationary phase thickness determines the quality of thin-layer chromatography/matrix-assisted laser desorption and ionization mass spectra of lipids. Anal Biochem. 2014;451:45–7.PubMedCrossRefGoogle Scholar
  18. Groessl M, Graf S, Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140:6904–11.PubMedCrossRefGoogle Scholar
  19. Gros M, Borros S, Amabilino DB, Veciana J, Folch I. Characterization of the vulcanization products of squalene by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: model studies on the vulcanization of natural rubber. J Mass Spectrom. 2001;36:294–300.CrossRefGoogle Scholar
  20. Gross JH. Mass spectrometry – a textbook. 2nd ed. Heidelberg: Springer; 2011.CrossRefGoogle Scholar
  21. Hofmann T, Schmidt C. Instrument response of phosphatidylglycerol lipids with varying fatty acyl chain length in nano-ESI shotgun experiments. Chem Phys Lipids. 2019;223:104782.PubMedCrossRefGoogle Scholar
  22. Hsu FF, Lodhi IJ, Turk J, Semenkovich CF. Structural distinction of diacyl-, alkylacyl, and alk-1-enylacyl glycerophosphocholines as [M – 15] ions by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2014;25:1412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hyötyläinen T, Orešič M. Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res. 2014;55:43–60.PubMedCrossRefGoogle Scholar
  24. Jaskolla TW, Karas M. Compelling evidence for Lucky Survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom. 2011;22:976–88.PubMedCrossRefGoogle Scholar
  25. Kayganich KA, Murphy RC. Fast atom bombardment tandem mass spectrometric identification of diacyl, alkylacyl, and alk-1-enylacyl molecular species of glycerophosphoethanolamine in human polymorphonuclear leukocytes. Anal Chem. 1992;64:2965–71.PubMedCrossRefGoogle Scholar
  26. Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. Mass Spectrom Rev. 2013;32:90–117.PubMedCrossRefGoogle Scholar
  27. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res. 2001;42:663–72.PubMedGoogle Scholar
  28. Lam SM, Shui G. Lipidomics as a principal tool for advancing biomedical research. J Genet Genomics. 2013;40:375–90.PubMedCrossRefGoogle Scholar
  29. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, Vance DE. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3:321–31.PubMedCrossRefGoogle Scholar
  30. Li X, He Q, Hou H, Zhang S, Zhang X, Zhang Y, Wang X, Han L, Liu K. Targeted lipidomics profiling of marine phospholipids from different resources by UPLC-Q-Exactive Orbitrap/MS approach. J Chromatogr B. 2018;1096:107–12.CrossRefGoogle Scholar
  31. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJ. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54:1523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liu S, Sjövall J, Griffiths WJ. Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal Chem. 2003;75:5835–46.PubMedCrossRefGoogle Scholar
  33. Nimptsch A, Fuchs B, Süß R, Zschörnig K, Jakop U, Göritz F, Schiller J, Müller K. A simple method to identify ether lipids in spermatozoa samples by MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2013;405:6675–82.PubMedCrossRefGoogle Scholar
  34. Pham HT, Maccarone AT, Thomas MC, Campbell JL, Mitchell TW, Blanksby SJ. Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards “top-down” lipidomics. Analyst. 2014;139:204–14.PubMedCrossRefGoogle Scholar
  35. Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22:332–64.PubMedCrossRefGoogle Scholar
  36. Sales S, Knittelfelder O, Shevchenko A. Lipidomics of human blood plasma by high-resolution shotgun mass spectrometry. Methods Mol Biol. 2017;1619:203–12.PubMedCrossRefGoogle Scholar
  37. Sethi S, Brietzke E. Recent advances in lipidomics: analytical and clinical perspectives. Prostaglandins Other Lipid Mediat. 2017;128–129:8–16.PubMedCrossRefGoogle Scholar
  38. Tuzimski T, Sherma J. Encyclopedia of lipidomics. Thin-layer chromatography and mass spectrometry for the analysis of lipids. Dordrecht: Springer; 2016.Google Scholar
  39. Vasquez AM, Mouchlis VD, Dennis EA. Review of four major distinct types of human phospholipase A2. Adv Biol Regul. 2018;67:212–8.PubMedCrossRefGoogle Scholar
  40. Wang C, Wang M, Han X. Applications of mass spectrometry for cellular lipid analysis. Mol Biosyst. 2015;11:698–713.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Wang M, Wang C, Han RH, Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108.PubMedCrossRefGoogle Scholar
  42. Wang M, Wang C, Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? Mass Spectrom Rev. 2017;36:693–714.PubMedCrossRefGoogle Scholar
  43. Wang J, Wang C, Han X. Tutorial on lipidomics. Anal Chim Acta. 2019;1061:28–41.PubMedCrossRefGoogle Scholar
  44. Wilm M. Principles of electrospray ionization. Mol Cell Proteomics. 2011;10:M111.009407.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Wozny K, Lehmann WD, Wozny M, Akbulut BS, Brügger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal Bioanal Chem. 2019;411:915–24.PubMedCrossRefGoogle Scholar
  46. Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41:954–69.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Zhao YY, Cheng XL, Lin RC, Wei F. Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med. 2015;9:153–68.PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute for Medical Physics and BiophysicsLeipzig UniversityLeipzigGermany